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Abstract: Relatively low levels of antioxidant enzymes and high oxygen metabolism result 

in formation of numerous oxidized DNA lesions in the tissues of the central nervous 

system. Accumulation of damage in the DNA, due to continuous genotoxic stress, has been 

linked to both aging and the development of various neurodegenerative disorders. Different 

DNA repair pathways have evolved to successfully act on damaged DNA and prevent 

genomic instability. The predominant and essential DNA repair pathway for the removal of 

small DNA base lesions is base excision repair (BER). In this review we will discuss the 

current knowledge on the involvement of BER proteins in the maintenance of genetic 

stability in different brain regions and how changes in the levels of these proteins 

contribute to aging and the onset of neurodegenerative disorders. 

Keywords: brain; neurodegeneration; reactive oxygen species; DNA damage;  

base excision repair 

 

1. Introduction 

Our genome is under constant genotoxic stress. Endogenous agents, such as reactive oxygen species 

(ROS) produced during physiological cellular metabolism, have the potential to attack the DNA 
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molecules, thus generating various oxidized lesions (reviewed in [1,2]). Additional sources of DNA 

damage represent exogenous insults, like ionizing radiation and UV-light exposure. As the 

maintenance of genomic integrity is of highest priority, living organisms have evolved multiple 

molecular mechanisms to repair damaged DNA. An inability to remove various types of DNA 

damages results in a broad spectrum of pathologies, such as neuronal deficits, immunodeficiencies, 

premature aging and cancer (reviewed in [3]). 

Post-mitotic cells, like neurons of the central nervous system (CNS) possess a limited selection of 

the canonical DNA repair pathways, which makes them particularly sensitive to further DNA damage 

response (DDR) deficiencies [4]. A functional and efficient DDR is therefore of crucial importance to 

ensure their survival. Since neurons that are lost are generally not replaced, DNA repair is essential to 

sustain brain homeostasis. Given the high oxygen metabolism of the brain and the relatively low levels 

of antioxidant enzymes, ROS-induced oxidized DNA lesions represent a major type of neuronal DNA 

damage (reviewed in [5,6]). 7,8-dihydro-8-oxo-guanine (8-oxo-G) is one of the most frequently 

generated oxidized DNA lesions and thus often used as a marker of oxidative stress and ROS-damage. 

The predominant DNA repair pathway enabling efficient removal of small base damages due to ROS, 

alkylating agents or spontaneous decay, is base excision repair (BER) (Figure 1). This pathway is 

carried out through either short-patch (SP-) or long-patch BER (LP-BER) subpathways. The SP-BER 

(Figure 1A) is initiated by one of the eleven lesion-specific DNA glycosylases, grouped in three 

classes (monofunctional, bifunctional, endonuclease VIII (Nei)-like proteins (NEIL)) [7], which 

recognize and excise the damaged base from the DNA by hydrolyzing the N-glycosidic bond. In the 

case of monofunctional glycosylases (such as uracil N-glycosylase (UNG), single-strand-specific 

monofunctional uracil DNA glycosylase 1 (SMUG1), methyl-CpG binding domain protein (MBD4), 

thymine DNA glycosylase (TDG), MutY glycosylase homologue (MUTYH) and alkyladenine DNA 

glycosylase (AAG)), upon hydrolysis of the N-glycosidic bond an abasic (AP) site is generated and the 

DNA backbone is subsequently cleaved by the apurinic/apyrimidinic endonuclease 1 (APE1), 

producing a single nucleotide (1 nt) gap with 3'-hydroxyl (3'-OH) and a 5'-deoxyribose phosphate  

(5'-dRP) moiety, respectively. In addition to the N-glycosidic hydrolysis, bifunctional glycosylases 

(like 8-oxoguanine DNA glycosylase (OGG1) and Endonuclease III-like 1 (NTHL1)) cleave the 

phosphodiester backbone by β-elimination, through the AP lyase activity, giving rise to a 3' terminal 

sugar phosphate (3'-ddR5P) and a 5'-phosphate residue. The 3'-ddR5P is further processed by APE1, 

resulting in a 1nt gap with 3'-OH terminus. In case the repair is initiated by NEIL1/2/3 glycosylases, 

after N-glycosidic hydrolysis, processing of the termini by β,δ-elimination is catalyzed, resulting in 3'- 

and 5'-phosphate residues, respectively. The 3'-phosphate is thereafter cleaved by polynucleotide 

kinase (PNK), producing a 1nt gap with 3'-OH terminus. In all situations the 1nt gap, created during 

SP-BER, will be filled by DNA polymerase (Pol) β through incorporation of one nucleotide. If the 

repair was initiated by monofunctional glycosylases, a polymerisation step is followed by Pol β 5'-dRP 

lyase activity. A newly synthetized product contains 3'-OH and 5'-phosphate termini that can be ligated 

by the X-ray repair cross complementing 1 protein (XRCC1)/DNA ligase III complex. If Pol β dRP 

lyase activity can not process the 5' terminus created through glycosylase independent APE1 directed 

incision of natural AP sites (AP) or 2'-deoxyribonolactone (2'-dRL) residues, as well as oxidation or 

reduction of 5'-deoxyribose fragment, LP-BER subpathway (Figure 1B) will take place. Removal of 

such a blocking 5' moiety can occur either through: (i) strand-displacement DNA synthesis where a 
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switch to Pols δ or ε takes place after incorporation of first nucleotide by Pol β [8–11], or (ii) the  

Hit-and-Run mechanism by alternating flap endonuclease 1 (FEN1) cleavage and Pols β synthesis 

(reviewed in [2,12]). Extension by Pol δ/ε is mediated through displacement of the downstream strand, 

generating a 5'-flap that can be recognized and cleaved by FEN1. The resulting 3'-OH and  

5'-phosphate termini are finally ligated by DNA ligase I. 

Figure 1. Short-patch (SP-) and long-patch base excision repair (LP-BER) sub-pathways. The 

damaged base is recognized and excised by a DNA glycosylase, resulting often in AP site 

formation, which is further processed by APE1. Subsequent end-processing generates  

3'-OH and 5'-phosphate (5'-P) termini, enabling access of repair Pols. Depending on the 

number of newly incorporated nucleotides, the BER pathway divides into two  

sub-pathways: short-patch BER (SP-BER) and long-patch BER (LP-BER). (A) In SP-BER, 

a Pol β-mediated single nucleotide incorporation is followed by strand ligation, catalyzed 

by the XRCC1/DNA ligase III complex; (B) In contrast, LP-BER synthesizes a repair 

patch consisting of 2–12 nucleotides by: (i) the Hit-and-Run mechanism involving 

alternating FEN1 cleavage and Pols β synthesis; or (ii) the strand-displacement DNA 

synthesis concerted by Pols β and δ/ε. The 5'-flap, created during strand-displacement 

DNA synthesis, is removed by the FEN1 generating a nick. The FEN1 created nick is 

sealed by DNA ligase I. For more details see text. 

 

Numerous studies in the past decades strongly associate the accumulation of DNA lesions, induced 

by DNA repair deficiencies, with a broad spectrum of progressive neurodegenerative disorders. Thus, 

the aim of this review is to summarize the current knowledge of the deficiencies in BER proteins 

associated with neurodegeneration and to illustrate the pivotal role of efficient oxidative DNA damage 

repair needed to protect the neurons of the CNS. We will present the findings gained from the various 

studies by following the proteins in the order they appear in the BER pathway (Table 1). 
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Table 1. Overview of BER proteins and their involvement in physiology and pathology of the 

brain. The information listed is an overview of the data presented in the manuscript text. ↑ 

stands for up-regulation or an increase, while ↓ signifies either down-regulation or decrease.  

Protein Physiological 

expression in brain 

Expression changes  

induced by 

Changes associated with 

neurodgenerative disorders 

Brain specific effect of 

knockout/knockdown  Protein family 

D
N

A
 g

ly
co

sy
la

se
s 

H
el

ix
-h

ai
rp

in
-h

el
ix

 f
am

il
y 

OGG1 

- ↓ postnatal  

- ↑ from 8 weeks  

- ↓ age-dependently 

↑ 

- cigarette smoke  

- dieldrin-proliferating 

cells  

- SIF in murine brains 

PD - ↑ - differentiation shift-

neural to astrocytic lineage

- mild PD phenotype with 

age  

- ↑ sensitivity to 

dopaminergic substances 

and ischemia-induced 

DNA damage  

- combination with CSB 

kd—no effect on CS 

phenotype 

ALS 

- S326C increased risk  

- ↑ in presymptomatic SOD1 

mice  

↓ 

- dieldrin-differentiated 

cells  

- fenvalerate 

HD 

- OGG1 increases TNR 

instability, especially the 

S326C  

- ↓ in striatum of HD mice  

No 

change 
- lead (Pb)  

Stroke/  

Ischemia 

- various effects depending 

on the model used 

AD - ↑ but also ↓ observed 

MUTYH 

- ↑ in neonate and 

adult brain  

- ↓ with age  

None reported 

PD - ↑  

None reported 

Stroke/  

Ischemia 
- mainly ↑  

Other 

disorders 

- possibly ↓ in equine 

cerebellar abiotrophy 

 

MBD4 None reported None reported 
Diverse 

disorders 

- ↑ in schizophrenia and 

bipolar disorder patients  
None reported 

 

NTHL1 None reported None reported 
Diverse 

disorders 
- no association with MS risk  None reported 

E
nd

on
uc

le
as

e 
V

II
I-

li
ke

 

NEIL1 - ↑ mid-age, during 

differentiation  

- ↓ with age  

- minor changes in 

hippocampal 

mitochondria over 

lifespan 

None reported Stroke/  

Ischemia 

- no changes by OGD in 

hippocampal slice cultures, 

↓ by hypothermia 

- impaired memory and 

increased brain damage 

after ischemia/reperfusion 

in ko mice 

NEIL2 - ↑ during 

differentiation 

None reported Stroke/  

Ischemia 

- no changes after OGD None reported 

NEIL3 - stem cell rich 

regions, also in early 

embryos 

- ↓ with age 

None reported Stroke/  

Ischemia 

- ↓ in hypoxia - ko with ↓ neuronal 

progenitors and NSC 

differentiation ability 

 

AAG - highly expressed in 

several brain regions 

None reported  None reported  - ko results in suppression, 

while Tg in increase of 

toxicity induced by 

alkylating agents 

U
D

G
 UNG - varying expression 

depending on brain 

region and age 

None reported AD/TNR 

disorders 

- changed in tauopathies and 

↓ in AD patients  

- ko and Tg with 

neurodegeneration  

- ko ↑ ischemic infarct size 

 TDG None reported None reported None reported - ko embryonic lethal  
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Table 1. Cont. 

Protein Physiological 

expression in brain 
Expression changes induced by

Changes associated with 

neurodgenerative disorders 

Brain specific effect of 

knockout/knockdown   Protein family 

E
nd

on
uc

le
as

es
 

  APE1 - ↓ with age  ↑ 

- 100% O2 in brains 

of young rats, but 

not in old ones 

AD 

- ↑ levels in patients, 

varying expression upon Aβ 

treatment 

- ↑ levels of p-APE1 (less active) 

- no significant correlation 

with D148E 

None reported 

PD 
- ↑ levels of p-APE1  

(less active) 

HD 
- 2-fold increase in 

cerebellum HD mice 

Stroke/  

ischemia 

- ↓ in several models of 

hypoxia, hypothermia, 

stroke and trauma 

Other 

diseases 

 

- ↓ in AOA patients  

- both ↑ and ↓ in ALS 

patients detected  

- association of missense 

mutations, D148E  

- ↑ in epilepsia model 

FEN1 None reported None reported HD - implicated in TNR 

expansion, increased in 

cerebellum of HD mice  

None reported 

 PNK - low expression  None reported MCSZ - multiple mutations 

associated 

None reported 

D
N

A
 p

ol
ym

er
as

es
 Pol β 

- constitutive 

expression  

- ↓ activity with age  

None reported 

AD - Aβ induced Pol β-mediated 

cell cycle reentrance, 

neuronal loss and 

differentiation of neural 

progenitors to neuronal 

lineage  

- MPP + induces Pol  

β-mediated cell cycle 

reentrance and cell death  

- neonatal lethal, altered 

neurogenesis in ko mice, 

which is p53 dependent 

and more pronounced in 

a DNA-PKcs ko 

background  

HD - Pol β accumulation along 

CAG repeats in striatum of 

HD mice 

Stroke/  

ischemia 

- ↑ in several models  

 

Pol δ + 

Pol ε 
None reported None reported 

HD - Pol δ blocks TNR 

expansion together with 

Srs2 and resolves  

TNR‐based hairpin 

structures together with 

WRN 

None reported 
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Table 1. Cont. 

Protein Physiological 

expression in brain 

Expression changes 

induced by 

Changes associated with 

neurodgenerative disorders 

Brain specific effect of 

knockout/knockdown  Protein family 

S
ca

ff
ol

d
in

g 

 XRCC1 None reported None reported 

AD 
- R194W and R399 ↑ risk,  

no effect by R280H/R399Q 
- XRCC1nes−cre ko mice 

age-dependent 

accumulation of DNA 

damage, loss of certain 

neurons in the 

cerebellum and altered 

hippocampal 

homeostasis 

HD 
- 2-fold increase in 

cerebellum HD mice 

Stroke/  

ischemia 

- ↓ in several models of 

ischemia, hypothermia 

Other 

diseases 

- ↑ levels in some parts of the 

brains of Down’s syndrome 

patients, and ↓ in others 

- ↑ levels in a rat epilepsia 

model 

D
N

A
 li

ga
se

s 

 
DNA 

ligase I 

- moderate in 

cerebellum, lateral 

ventricle and cerebral 

cortex  

- ↓ in hippocampus 

and striatum  

 HD 
- 2-fold ↑ in cerebellum HD 

mice 

- essential for 

embryonic development 

 
DNA 

ligase III 

- ↑ in cerebellum and 

cerebral cortex  

- moderate in 

hippocampus and 

lateral ventricle 

 

SCAN 
- association due to 

interaction with TDP1? 
- essential for 

embryonic development 
AOA1 - association? 

2. DNA Glycosylases 

2.1. The Helix-Hairpin-Helix DNA Glycosylases 

2.1.1. OGG1 

8-oxoguanine DNA glycosylase (OGG1) is a bifunctional DNA glycosylase that removes oxidized bases 

such as 8-oxo-G, 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FaPyG) and 7,8-dihydro-8-oxoadenine 

(8-oxo-A) from the DNA ([13–22], and reviewed in [2]). Importantly, while OGG1 removes 8-oxo-G 

and FaPyG when base pared to a natural cytosine (C), 8-oxo-A will not be removed when paired to 

native thymine (T). OGG1 is expressed in at least four different splice forms in mammalian cells, of 

which at least two contribute differentially to BER pathways removing 8-oxo-G from nuclear (nDNA) 

and mitochondrial DNA (mtDNA) [23]. By catalyzing the excision of an oxidatively damaged base, 

OGG1 initiates a canonical SP-BER pathway that involves the action of APE1, Pol β and 

XRCC1/DNA ligase III to reconstitute the original intact base pair.  

It is known that oxidative DNA damage plays a role in the process of ageing. OGG1 as one of the 

main regulators of 8-oxo-G levels in the genome, was shown to be widely expressed and active in 

human as well as rodent brains [24]. Initial transient decrease in OGG1 expression directly upon birth 

of mice, was followed by an increase after 8 weeks of age. Along this line, using a Comet-assay 
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analysis of DNA damage in isolated neurons and astrocytes from the cortex of young (7 days), adult  

(6 months) and old (2 years) rats, Swain et al. revealed an age-dependent increase in the number of 

OGG1-sensitive sites, accompanied by a decrease in the OGG1 activity [25]. Further, by testing the 

activity of neuronal extracts from rat cerebral cortices in an in vitro assay with synthetic 

oligonucleotide duplexes, the authors observe a marked decline of 8-oxo-G repair capacity with age [26]. 

The decline could be attributed to a decrease in the expression levels of OGG1 and other BER 

enzymes including APE1 and Pol β. Supplementation of the neuronal extracts with the reduced 

components individually did not result in rescuing of the BER activity, suggesting that the  

age-dependent decline was not a result of an overall deficiency in the single DNA repair factors. 

However, addition of OGG1 together with Pol β and T4 DNA ligase markedly improved the BER 

activity and thus suggested that several BER proteins are limiting factors in adult and old neurons.  

Acetylation of OGG1 has been shown to promote its enzymatic activity up to 10-fold in vitro [27]. 

Analysis of the OGG1 acetylation status in brain neurons of young rats revealed an increase in the 

acetylated form of OGG1 associated with either exercise or insulin-like growth factor-1 (IGF-1) 

treatment, a factor known to enhance neurogenesis [28]. In contrast, total OGG1 levels, as well as the 

amount of the acetylated OGG1 form, decreased with age in rats and correspondingly 8-oxo-G levels 

increased. The age-associated decrease in neurogenesis was possible to attenuate with exercise and 

IGF-1 treatment; at the same time exercise also improved the spatial memory, while IGF-1 treatment 

inhibited this process. These findings could potentially underline a role of oxidative DNA damage in 

age-related neuropathologies. Ogonovszky et al. further showed that neither were the levels of 8-oxo-G nor 

the OGG1 activity altered by exercise training in rats, suggesting that over-training does not induce 

oxidative stress in the brain and does not cause loss of memory [29]. 

Besides investigating the impact of the age-related decline on cellular level, studies of the mtDNA 

repair in particular revealed an association between DNA damage levels in the mitochondrial genome 

and different brain regions. By determining the mtDNA repair status in the central auditory system 

using a rat model of D-galactose-induced aging, Chen et al. observed a significant age-associated 

increase in mtDNA 4834 base pairs (bp) deletions and the number of terminal deoxynucleotidyl 

transferase–mediated uridine 5'-triphosphate-biotin nick end-labeling (TUNEL)-positive cells, a 

marker for apoptosis [30]. Interestingly, expression of Pol γ, the major mitochondrial Pol, and OGG1 

were remarkably down-regulated in the auditory cortex. Thus, potentially indicating that during aging, 

increased mtDNA damage likely resulted from a decrease in its DNA repair capacity. These findings 

are supported by the work of Gredilla et al. addressing the efficiency of BER throughout the murine 

lifespan in mitochondria from cortex and hippocampus, both of which are regions severely affected 

during aging and in neurodegenerative diseases [31]. OGG1 activity peaked at middle-age in cortical 

mitochondria, followed by a significant drop at old age. However, only minor changes were observed 

in hippocampal mitochondria during the whole lifespan of the animals. Furthermore, OGG1 activity 

was lower in hippocampal than in cortical mitochondria. Taken together, these data suggest an 

important region-specific regulation of mitochondrial BER during aging.  

The expression of OGG1 can also be modulated by many exogenous compounds, as shown by 

several studies discussed in the following. Cigarette smoke was found to induce DNA damage, as well 

as to alter OGG1 activity and distribution in several regions of the brain in neonatal mice; underlining 

the importance of cigarette smoke as risk factor for neurodevelopmental, as well as neurodegenerative 
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disorders [32]. Fenvalerate is a synthetic pyrethroid widely used as pesticide in agriculture in 

developing countries and acts as neurotoxic compound in adults. To investigate the potential toxicity 

of fenvalerate to developing organisms, Gu et al. treated zebrafish larvae with this pesticide and found 

that OGG1 expression was down-regulated in a concentration-dependent manner. Fenvalerate also 

caused brain impairment during zebrafish development, further underlining the toxic nature of the 

compound especially during development [33]. Another pesticide, the organochlorine dieldrin, is a 

known neurotoxicant ubiquitously distributed in the environment and is toxic for dopaminergic 

neurons in vitro. Dieldrin slightly up-regulated OGG1 activity in proliferating PC12 cells, while the  

8-oxo-G levels remained unchanged [34]. Differentiated PC12 cells on the other hand showed a longer 

lasting decline in OGG1 activity and a concomitant increase in 8-oxo-G levels. The differences 

between proliferating and differentiated cells might explain at least in part the vulnerability of post-mitotic 

neurons to oxidative stress and neurotoxins. A study that analyzed the impact of developmental 

exposure to lead (Pb), a known inducer of oxidative stress in the brain, found that cerebral 8-oxo-G 

levels were only transiently modulated early in life, at postnatal day 5, but were markedly elevated 20 

months after the exposure had ceased [35]. OGG1 activity itself was not altered by developmental Pb 

exposure, resulting in loss of the age-dependent inverse correlation between OGG1 activity and 8-oxo-G 

accumulation. Exposure to Pb in old age did not have an impact on 8-oxo-G levels, suggesting that 

age-related oxidative damage accumulation and neurodegeneration could be markedly influenced by 

developmental disturbances.  

Along the line of OGG1 involvement in development, OGG1 was found to be important for the 

determination of neural stem cell (NSC) differentiation by repairing mtDNA damage in differentiating 

neural cells [36]. NSCs derived from OGG1 knockout (ko) mice spontaneously accumulated mtDNA 

damage and shifted their differentiation direction toward an astrocytic lineage. A similar phenotype 

was observed when wild-type (wt) NSCs were subjected to mtDNA damaging insults, thus suggesting 

that mtDNA damage might be one of the primary signals for elevated astrogliosis and the lack of 

neurogenesis, a phenomenon observed after neuronal injury. Another study also demonstrated that 

small interfering RNA (siRNA) mediated knockdown (kd) of the DNA glycosylases OGG1 and 

endonuclease VIII (Nei)-like protein (NEIL) 3 decreased the differentiation ability of NSC, resulting in 

a decline of both neuronal and astrocytic gene expression after mitogen withdrawal, as well as a 

decrement in the stem cell marker Musashi-1 [37]. This suggests that OGG1 plays a role in governing 

essential NSC characteristics.  

Besides the above-described impacts on development and ageing, alterations in OGG1 have been 

associated with numerous neurodegenerative disorders as elaborated bellow. 

2.1.1.1. Parkinson’s Disease 

The primary cause of Parkinson’s disease (PD), the second most common age-related 

neurodegenerative disorder [38], is still unknown. However, the pathogenesis of PD has been linked to 

mitochondrial dysfunction and oxidative stress (reviewed in [39,40]). Both of these factors are 

regarded as important contributors to neuronal death in the substantia nigra (SN) of PD patient brains. 

Indeed, besides increased 8-oxo-G levels [41], it has been shown that, among several other DNA 

glycosylases, OGG1 is up-regulated in the SN of PD patients [42]. The potential involvement of 
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OGG1 in PD was further supported through the finding that aged OGG1 ko mice developed an age-

associated mild parkinsonian phenotype, which manifested among others in spontaneous locomotor 

behavior and decreased striatal dopamine levels [43]. Furthermore, this study showed that young 

OGG1 ko mice were more susceptible to the dopaminergic toxin 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine than their wt littermates. Finally, an age-associated increase in 8-oxo-G levels was 

seen in this mouse model, further validating this mouse strain as a possible model for PD. Nakabeppu 

et al. showed a significant increase in 8-oxo-G in mtDNA as well as an elevated expression of 8-oxo-G 

dGTPase (MTH1), OGG1 and MutY glycosylase homologue (MUTYH) in nigrostriatal dopaminergic 

neurons of PD patients, suggesting that the buildup of oxidized DNA lesions may be involved in the 

loss of dopaminergic neurons [44]. Furthermore, MTH1-null mice, exhibiting an increased accumulation 

of 8-oxo-G in striatal mtDNA, displayed a more extreme neuronal dysfunction after 1-methyl-4-phenyl-

1,2,3,6-tetrahydropyridine administration than wt mice; potentially indicating that oxidative DNA 

damage presents a major risk factor for PD.  

The OGG1 S326C polymorphism is commonly associated with an increased risk for various kinds 

of cancer, such as lung [45] and breast cancers [46]. Coppedè et al. investigated whether the 

occurrence of PD correlates with the OGG1 S326C polymorphism by screening 139 sporadic PD 

patients and 211 healthy matched controls [47]. Neither did the allele frequency of C326 differ 

between the groups (0.20 in PD patients and 0.19 in controls; p = 0.817), nor did the differences in 

genotype frequencies. Furthermore, there was no association of S326C with the disease age at onset  

(p = 0.791). Overall, these results suggested that the OGG1 S326C polymorphism is not associated 

with sporadic PD.  

Taken together, OGG1 seems to have a crucial influence on the pathogenesis of PD, but more 

studies are needed to shed light on the exact mechanism connecting oxidative DNA damage and PD.  

2.1.1.2. Amyotrophic Lateral Sclerosis 

Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease with adult onset 

(reviewed in [48]). It is characterized by progressive degeneration of motor neurons in the anterior 

horn cells of the spinal cord, the brain stem and the cerebral cortex. Increased levels of 8-oxo-G have 

been found in the spinal cords of ALS patients [49] and further evidence hints at a deficiency in 

mtDNA repair underlying the pathogenesis of ALS (reviewed in [39]). A study analyzing the 

association of the OGG1 S326C polymorphism in sporadic ALS found that both the C326 allele  

(p = 0.02) and the combined S326C + C326C genotype (OR = 1.65, 95% CI = 1.06–2.88) increased 

the risk of ALS [50]. Even though the risk was higher, no significant association between the disease 

phenotype and the S326C polymorphism, with respect to the age, onset site, as well as disease 

progression, could be observed. These results suggested a possible involvement of the human OGG1 

S326C polymorphism in the pathogenesis of sporadic ALS. 

The Cu/Zn-superoxide dismutase 1 (SOD1) is an antioxidant enzyme that converts superoxide 

anions (O2
–) to hydrogen peroxide (H2O2) and thus contributes to the control of the oxidative DNA 

damage levels. Murakami et al. used transgenic mice carrying mutant SOD1 as an animal ALS model 

to analyze the expression of OGG1 [51]. They found that the nuclear form of OGG1 was up-regulated 
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in presymptomatic mice, while mitochondrial OGG1 levels remained stable, thus potentially indicating 

that the de-regulation of protective mechanisms against oxidative stress could contribute to ALS. 

2.1.1.3. Triplet Repeat Expansion Diseases 

There are at least 18 different neurological diseases, among them Huntington’s disease (HD) and 

several inherited ataxias, that have been linked to the expansion of trinucleotide repeats (TNRs) in the 

human genome (reviewed in [52]). In HD, CAG triplet expansion occurs in the Huntingtin gene in 

post-mitotic neurons and results in altered interaction of the Huntingtin protein with other binding 

partners (reviewed in [39]). OGG1 has been suggested to play a role in this pathogenesis through the 

initiation of the BER pathway to excise 8-oxo-G present in these tracts [53]. This study suggested a “toxic 

oxidation” model in non-dividing cells by which the OGG1-initiated repair of 8-oxo-G triggers an 

iterative oxidation-excision cycle that culminates in progressive age-dependent expansion of the CAG 

repeats. The model predicts that triplet repeat expansion results from error-prone repair steps 

downstream of OGG1 and APE1 action, namely by strand displacement/slippage of the Pol during 

gap-filling reaction. Such slippage results in the formation of a hairpin structure, which gets stabilized 

by MSH2/MSH3, and cannot be recognized by FEN1 for flap trimming, since the 5' end of the flap is 

hidden in the hairpin structure. Importantly, this somatic age-dependent expansion is independent of 

cell division, as it takes place in terminally differentiated cells. Maybe somewhat surprisingly the largest 

expansions in TNRs occur in non-dividing tissues, where besides the BER-mediated toxic oxidation also 

nucleotide excision repair (NER) pathway has been implicated in pathogenesis of TNR expansions 

(reviewed in [54]). Several models have also been proposed to account for the TNR expansion in 

dividing tissue [54]. Interestingly, Jarem et al. showed that, while OGG1 activity is comparable on 

duplexes (i.e., linear dsDNA molecules) containing either TNR or a mixed sequence, OGG1 shows a 

reduced affinity and excision activity for 8-oxo-G in hairpin substrates [55]. These findings suggest 

that 8-oxo-G accumulates at hairpin structures, which can subsequently be incorporated into duplexes, 

thus giving rise to a TNR expansion that still contain unrepaired 8-oxo-G lesions capable of starting 

yet another toxic cycle of expansion. In contrast to Kovtun et al. a study by Lin et al. showed that the 

kd of OGG1 and APE1 did not affect repeat instability [56]. This discrepancy to the above mentioned 

data might well be a result of cell-line specific effects. Interestingly, CAG repeat expansion in HD is 

targeted preferentially to the striatum, while other brain regions, such as the cerebellum, remain 

spared. Investigating this phenomenon, Goula et al. found that oxidative DNA damage abnormally 

accumulates at CAG repeats in a length-dependent, as well as age- and tissue-independent manner in 

HD mice [57]. Analysis of protein levels and enzymatic activities in the striatum and cerebellum of 

HD mice, showed a striatum-specific down-regulation of proteins acting in the BER pathway 

downstream of OGG1, correlating with increased somatic CAG instability in the striatum over the 

cerebellum in HD mice. This suggests that the relative levels of BER proteins in different tissues 

potentially contribute to the disease manifestation. Besides wt OGG1, a recent study investigated the 

influence of the OGG1 S326C polymorphism on HD [58]. Both mono- or biallelic bearers of the 

mutant S326C allele tended to have an increased number of CAG repeats within the expanded HD 

allele (p = 0.049). Furthermore, mainly heterozygous subjects showed a significant (p = 0.041) earlier 
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disease onset than OGG1 wt individuals, suggesting a possible role of the human OGG1 S326C 

polymorphism in the development of HD.  

2.1.1.4. Stroke/Ischemia/Hypoxia 

Stroke is the third leading cause of death worldwide and its prevalence is steadily increasing 

(reviewed in [59]). It is mainly caused by thrombosis, embolism or hypotension and leads to a 

reduction of the blood flow insufficient to sustain normal cellular function (ischemia). Since the brain 

is an organ that consumes a large amount of oxygen, it is considered to be exposed to increased levels 

of oxidative DNA damage. The capacity to repair the oxidized DNA lesions is regarded as an 

important factor that determines neuronal survival after an ischemic insult (reviewed in [60]). Several 

studies have investigated means by which levels of OGG1 are regulated in different neuronal tissues 

upon ischemia and reperfusion. The results are quite heterogeneous and seem to depend largely on the 

model system used and analyzed. A study done by He et al. investigated the role of oxidative DNA 

damage in secondary remote tissue damage within the ventroposterior nucleus (VPN) after distal 

middle cerebral artery (MCA) occlusion in hypertensive rats [61]. Immunohistochemical analysis of 

the ipsilateral VPN revealed an increase in 8-oxo-G, while OGG1 immunoreactivity significantly 

decreased two weeks after cortical infarction (all p < 0.01). These findings, together with the notion 

that ebselen, a glutathione peroxidase mimic, significantly attenuated the loss of neurons and 

counteracted the effects in 8-oxo-G and OGG1, suggest a potential involvement of oxidative DNA 

damage in ischemia-induced delayed neuronal death within the VPN region. To understand the impact 

of oxygen and glucose deprivation on BER in two different regions of the hippocampus (CA1 and 

CA3/fascia dentata), Rolseth et al. measured the enzyme activities and gene expression levels of DNA 

glycosylases and AP-endonucleases in organotypic rat hippocampal slice cultures [62]. They found 

that under basal conditions AP-endonuclease activity and base removal of 1,N6-ethenoadenine (εA) 

and 8-oxo-G were approximately 20%–35% higher in the CA3/fascia dentata than in the CA1 region. 

In contrast to the AP-endonuclease activity and εA base removal, 8-oxo-G excision did not 

significantly change after 30 min or 8 h of oxygen and glucose deprivation. Additionally, reverse 

transcription-quantitative polymerase chain reaction (RT-qPCR) showed no changes in the 

transcription of OGG1 or any other of the investigated DNA glycosylases in response to a treatment of 

30 min. The study however did not investigate transcriptional levels at later time points. The authors 

concluded that the relatively low capacity for BER under basal conditions and the apparent failure to 

up-regulate the repair of oxidative damage after oxygen and glucose deprivation might contribute to 

the high vulnerability of the hippocampal CA1 region to ischemic injuries.  

A brief period of sublethal preconditioning ischemia can attenuate the injury extent arising from 

subsequent severe ischemia, possibly involving the activation of a variety of pathways that promote 

neuronal survival. Li et al. investigated whether BER could be induced as endogenous adaptive 

response, preventing the detrimental effect of oxidation damage, in a rat model where several episodes 

of ischemic preconditioning were applied prior to MCA occlusion to mimic a stroke [63]. In this study, 

ischemic preconditioning markedly reduced the nuclear accumulation of 8-oxo-G and other oxidized 

DNA lesions, leading to a decreased DNA damage response measured by p53 activation and 

nicotinamide adenine dinucleotide (NAD) depletion. Furthermore, measurements of BER activities in 
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nuclear extracts revealed that Pol β-mediated BER was markedly increased after ischemic 

preconditioning, likely as a result of an increase in the expression of Pol β, APE1 and OGG1 [63]. 

These results suggest that the protective effects of ischemic preconditioning might be partly due to 

enhanced repair of endogenous oxidized DNA lesions. Subsequent analysis of OGG1 ko mice revealed 

that OGG1 protects neurons against ischemia-induced oxidative DNA damage, as measured by 

accumulation of 8-oxo-G in the brain, and changes in cell death levels [64]. In contrast to the findings 

of Rolseth et al., this study showed an ischemia-induced elevation of 8-oxo-G incision activity 

resulting from an increase in the levels of a nuclear OGG1 isoform, peaking at around 6 h post 

treatment, thereby suggesting an adaptive response to oxidative nuclear DNA damage. From this it 

seems that OGG1 plays a role in reducing brain damage and improving functional outcome after 

ischemia by repairing oxidatively damaged nuclear DNA. Ischemia/reperfusion has been shown to lead 

to elevated matrix metalloproteinase activity, which further promoted (i) the degradation of the two 

important DNA repair proteins poly-ADP ribose polymerase 1 (PARP1) and XRCC1 and (ii) the 

accumulation of oxidative DNA damage after an ischemic stroke [65]. Concomitantly, analysis of 

primary cortical neurons subjected to oxygen-glucose deprivation displayed a marked decrease in 

OGG1, among other BER proteins [66]. Thus, it seems that the intranuclear gelatinase activity of 

matrix metalloproteinases acts in an intrinsic apoptotic pathway that is activated as a response to DNA 

damage in neurons during acute stroke injury. 

Hypothesizing that ischemia-reperfusion injuries in the spinal cord caused 8-oxo-G production and 

thus activated the DNA repair system involving OGG1, Lin et al. analyzed the spinal cords of rabbits 

after infrarenal aortic occlusion from 1 h to 48 h of reperfusion [67]. The results demonstrated that  

8-oxo-G was present in the grey matter after reperfusion and that, among other DNA repair proteins, 

the levels of OGG1 were markedly increased, peaking at around 6 h after reperfusion. Therefore, it seems 

that DNA repair proteins are rapidly expressed after spinal cord ischemia and subsequent reperfusion.  

Hyperoxic reoxygenation of asphyxiated newborns could cause increased damage to DNA. To 

investigate this matter, and also to test whether therapeutic hypothermia might attenuate the 

development of brain damage after asphyxia, newborn pigs were subjected to hypoxia followed by 

either normothermia or total body cooling [68]. 8-oxo-G was found to be elevated in the urine of 

hypoxic pigs, but these levels were not affected by hyperoxia or hypothermia. 8-oxo-G levels in brain 

and liver tissue did not change after any treatment. OGG1 expression in the hippocampus and the liver 

was down-regulated by hypothermia, without influencing the accumulation of oxidative DNA damage 

in genomic DNA. Also expression of OGG1 in the brain was not affected by hyperoxia. Thus, this 

study confirmed an increase in oxidative stress after hypoxia. In addition, DNA repair glycosylases 

were shown to be down-regulated by hypothermia but this had no effect on the accumulation of 

oxidative damage in genomic DNA.  

2.1.1.5. Alzheimer’s Disease 

Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by memory 

impairment, cognitive decline and behavioral changes. As such, it is the most common age-associated 

severe dementia. Molecular mechanisms that lead to AD are slowly being unveiled and include the 

deposition of amyloid β-peptide (Aβ) plaques as well as accumulation of oxidized base damage both in 
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the nuclear as well as the mtDNA (reviewed in [39]). Still, the involvement of DNA repair in the 

pathogenesis of AD is far from being completely understood.  

An increase in oxidative DNA damage and a concomitant reduction in OGG1 mediated BER were 

detected in vulnerable brain regions in various stages of AD (reviewed in [39]). A study investigating, 

whether oxidative DNA damage is already present in a recently described preclinical stage of AD 

showed a significant increase in 8-oxo-G levels as well as elevated OGG1 protein levels in the 

hippocampus and the parahippocampal gyri [69]. Furthermore, an increase in OGG1 mRNA was 

measured in the superior and middle temporal gyri. Summarizing, these data suggested that oxidative 

damage to DNA induced a compensatory increase in OGG1 expression early in the pathogenesis of AD. 

Feng et al. showed that Aβ induces oxidative DNA damage in murine brains, and that this effect 

can be counteracted by soybean isoflavones (SIFs), previously found to exhibit neuroprotective effects 

by suppression of oxidative stress [70]. Mechanistically, mRNA and protein levels of OGG1 were  

up-regulated by SIFs, suggesting that the protective effects of SIF might be at least partly associated 

with the regulation of oxidative DNA damage repair by OGG1. In a model system of AD using rabbits 

fed with a cholesterol-rich diet, it was shown that 8-oxo-G accumulated in the brain, primarily in the 

hippocampus, and induced a range of DNA repair activities [71]. In the same study, OGG1 was found 

to physically interact with the xeroderma pigmentosum group B-complementing protein (XPB), which 

may potentially account for a mechanism involving these DNA repair responses. Furthermore, in 

contrast to wt mice, mice lacking OGG1 showed no interleukin-6 (IL-6) activation but a drastic 

increase of the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α), suggesting that  

OGG1 may be involved in cytokine production induced by high cholesterol levels, and thus  

affecting neurodegeneration.  

2.1.1.6. Involvement of OGG1 in other Neurodegenerative Disorders 

Depression is known to induce elevated oxidative stress levels in peripheral blood of affected 

patients [72]. However, a study by Teyssier et al. found no significant impact of depression on the 

expression of OGG1 and several other oxidative stress-response proteins in the prefrontal cortex [73]. 

They concluded that the pathogenic role of oxidative stress in the brain could thus not be inferred from 

the alteration of peripheral parameters. However, as many other studies have shown that the amount of 

8-oxo-G levels do not necessarily correlate with the levels of OGG1 (and other related proteins), it 

might have been interesting to measure the actual 8-oxo-G content in the brain in this study as well. 

Mitochondrial OGG1 was down-regulated both at mRNA and protein levels in a pilocarpine-induced 

status epilepticus in the hippocampi of male rats, suggesting that lowering of mitochondrial BER 

enzymes may aggravate mtDNA damage and mitochondrial deficiency after the onset of a status 

epilepticus [74]. 

Cockayne syndrome (CS) is a rare recessive childhood-onset neurodegenerative disease, 

characterized by a deficiency in the DNA repair pathway of transcription-coupled NER (TC-NER). 

Mice with a targeted deletion of the CSB gene are used as a model for this disease. It was found that a 

double kd of CSB and OGG1 did not enhance the neurodegenerative phenotype, suggesting that in this 

disease unrepaired endogenous lesions are mostly substrate for NER, but not BER [75].  
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In summary, OGG1 is an enzyme that has been widely implicated to play a role in various 

physiological states of the brain and neuronal tissue, and its function is correlated to the onset of many 

neurodegenerative diseases. Still, the exact mechanisms that lead to the respective disorders, as well as 

the reasons why the regulation of OGG1 in different brain regions is so divergent, are far from  

being understood. Further studies are needed to unequivocally clarify the precise role of OGG1  

in neurodegeneration.  

2.1.2. MUTYH 

MUTYH (also sometimes called MUTY or MYH) is, like OGG1, a DNA glycosylase of the  

helix-hairpin-helix (HhH) family. It mediates the removal of adenine (A) paired with an 8-oxo-G [76,77], a 

situation that arises when replicative Pols bypass 8-oxo-G in an inaccurate manner by inserting a 

wrong A instead of a correct C. With this action MUTYH gives rise to a novel BER pathway involving 

Pol λ that reconstitutes the correct C:8-oxo-G base pair, which is then a substrate for OGG1 ([78–80], 

and reviewed in [2]); Several nuclear as well as mitochondrial isoforms of MUTYH are present in 

mammalian cells [81]. Biallelic mutations in MUTYH predispose to a familial adenomatous polyposis 

variant called MUTYH-associated polyposis (MAP) [82]. However, no evidence of increased risk for 

cancers of the brain tissue has been found in MAP patients [83].  

Up to date, a limited number of insights have been obtained regarding the potential roles of 

MUTYH in the brain. A study using MUTYH ko mice showed that there was no time-dependent 

accumulation of 8-oxo-G in brain tissue [84]. Interestingly, Lee et al. showed that levels of one 

embryonic isoform of MUTYH could be detected in rat brains at the E14 embryonic stage, after which 

it decreased during embryonic and neonatal development, while new isoforms appeared and gradually 

increased in the neonate and adult brain [85]. It seemed that during embryonic development expression 

levels of MUTYH followed the expression profile of proliferating cell nuclear antigen (PCNA). In 

addition, these proteins also colocalized in the nucleus. At later time points, when the levels of PCNA 

declined, MUTYH was detected primarily outside the nucleus. An activity for excision of A opposite 

8-oxo-G was detected in all the extracts. Even though the authors suggested that MUTYH might be 

primarily involved in post-replicative repair of nDNA, it is possible that MUTYH might rather be 

involved in repair of mtDNA in post-mitotic neurons. 

Though not much is known about the detailed role of MUTYH in the brain DDR, alterations in the 

MUTYH homeostasis have been associated with various neurodegenerative diseases, such as PD. 

2.1.2.1. Parkinson’s Disease 

Analogous to OGG1 levels, Fukae et al. demonstrated in the same study that also the levels of 

MUTYH are up-regulated in the SN of PD patients, suggesting that MUTYH is involved in the 

maintenance of mtDNA in PD brain [42]. As mentioned earlier, Nakabeppu et al. were able to show a 

significant increase in 8-oxo-G in mtDNA as well as an elevation in expression of MTH1, OGG1, and 

MUTYH in nigrostriatal dopaminergic neurons of PD patients, suggesting that the accumulation of 

these lesions may be involved in the loss of dopaminergic neurons [44]. Following the same line,  

Arai et al. found by immunohistochemical and biochemical analysis that MUTYH was up-regulated in 

the mitochondria of the SN of PD patients [86]. Western blot analysis identified a 47 kDa molecule as 
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the major isoform in these brains. Surprisingly, this isoform was localized to the mitochondria and 

stemmed from the alpha4 mRNA, even though it lacks the mitochondrial targeting sequence.  

2.1.2.2. Stroke/Ischemia/Hypoxia 

Similarly to the OGG1 study [61], He et al. investigated the impact of oxidative DNA damage in 

the secondary remote tissue damage, within the VPN after distal MCA occlusion, in hypertensive rats 

with respect to the MUTYH expression [87]. Immunohistochemical imaging analysis showed a distinct 

nuclear and cytoplasmic distribution of MUTYH in the entire region of the VPN. Compared with the 

sham group, the number of MUTYH positive cells decreased upon surgery. Additionally, treatment 

with ebselen was able to significantly increase the levels of MUTYH compared to the controls. In 

summary, a marked decrease of MUTYH in the VPN after 2 weeks of MCA occlusion was observed, 

and this effect could be counteracted by ebselen.  

The same study that showed an increase of OGG1 levels after ischemia-reperfusion injuries in the 

spinal cord also demonstrated an increase of MUTYH levels after the treatment [67]. This suggested 

that indeed MUTYH levels could be up-regulated in response to spinal cord ischemia and subsequent 

reperfusion. Similarly, Lee et al. demonstrated a strong increase in MUTYH mRNA and protein levels 

upon respiratory hypoxia, accompanied by the formation of 8-oxo-G in vivo in rat brains [88]. In situ 

hybridization analysis revealed expression patterns of MUTYH mRNA in hippocampal, cortical and 

cerebellar regions. The same group demonstrated, that MUTYH is abundantly expressed in the rat 

brain, with isoforms that were exclusive to brain tissue and localized to neuronal mitochondria [89]. In 

addition, removal of 8-oxo-G induced by hypoxia was accompanied by a spatial increase in MUTYH 

immunoreactivity, as well as an increase in of one of the three mitochondrial MUTYH isoforms. Taken 

together, this suggested the existence of inducible and non-inducible MUTYH isoforms in the brain. 

Also, CoCl2, an agent that mimics hypoxia and induces oxidation damage, was found to induce 

damage to mtDNA, but not to nDNA, in rat neuronal PC12 cells [90]. This finding coincided with an 

elevation of MUTYH protein levels, further underlining the idea that mtDNA repair processes 

involving MUTYH can be induced by the presence of mtDNA damage. 

2.1.2.3. Involvement of MUTYH in Other Neurodegenerative Disorders 

Examining changes in the levels of selected DNA repair enzymes and mtDNA damage in retinas 

from the eyes of young and old rodents, Wang et al. found an age-dependent increase in 8-oxo-G that 

co-localized with the mitochondrial enzyme superoxide dismutase, suggesting damage to mtDNA 

primarily in photoreceptors and retinal ganglions [91]. The expression levels of MUTYH seemingly 

decreased with age, consistent with the idea that an age-related increase in mtDNA damage is likely 

due to a decreased repair capacity in aged retinas and thus may contribute to age-related retinal diseases.  

Equine Cerebellar Abiotrophy (CA) is a neurological disease found in Arabian horses caused by 

post-natal degeneration of the Purkinje cells of the cerebellum. A linkage analysis discovered that  

CA-affected horses display reduced expression of MUTYH due to a single nucleotide polymorphism 

(SNP) approximately 1200 bp upstream of the MUTYH gene, which is adjacent to a possible site for 

the transcription factor GATA2 [92]. The authors suggested that this SNP might have a regulatory 

effect on MUTYH by negatively affecting the affinity of GATA2 and thus contributing to the onset of CA. 
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Taken together, the evidences point at a potentially important role of MUTYH in the pathogenesis 

of neurodegenerative diseases such as PD and stroke, as well as age-dependent retinal degeneration 

and equine cerebellar abiotrophy. Given the importance of OGG1 in oxidation damage disorders, it is 

not surprising that MUTYH may also be implicated in some of these diseases, as it acts in a pathway 

that is very much depending on OGG1. It would be interesting to see whether also the entire pathway 

for correction of A: 8-oxo-G mismatches downstream of MUTYH, involving Pol λ and some of the 

LP-BER components, is of similar importance.  

2.1.3. MBD4 

The methyl-CpG binding domain protein MBD4 (also known as MED1) is a DNA glycosylase that 

belongs to the MBD protein family within the HhH domain superfamily. It processes a wide substrate 

range of DNA base lesions mispaired with guanine (G), such as uracil (U), 5-fluorouracil (5-FU),  

3,N4-ethenocytosine (εC) and T ([93–95], and reviewed in [7]), Mbd4 ko mice are viable and show no 

developmental defects [96,97]. Though lack of MBD4 does not lead to defects in mice, it has been 

found that MBD4 mRNA levels are significantly up-regulated in the hippocampus of both 

schizophrenia and bipolar disorders suggesting a potential involvement of this glycosylase in human 

neurodegenerative diseases [98]. To understand the exact mechanism how MBD4 contributes to these 

disorders, future studies are needed. 

2.1.4. NTHL1 

Endonuclease III-like 1 (NTHL1, also known as NTH1) is a DNA glycosylase that belongs to the 

family of endonuclease III-like 1 proteins, a subfamily of HhH DNA glycosylases. It catalyzes 

excision of ring fragmented purines or oxidized pyrimidines like thymine glycol (Tg), 4,6-diamino-5- 

formamidopyrimidine (FaPyA), FaPyG, 5-hydroxycytosine (5-OHC) and 5-hydroxyuracil (5-OHU) 

when paired to G in double stranded DNA ([99–106], and reviewed in [7]). It is assumed that loss of 

NTHL1 function can be compensated for by NEIL glycosylases, because NTHL1 ko mice show no 

abnormalities [107,108] As was the case for NEIL1 and NEIL2, also no association for NTHL1 with 

the risk of developing multiple sclerosis was found [109]. So far, nothing more regarding a possible 

role of NTHL1 in neurodegenerative diseases is known. 

2.2. The Endonuclease VIII-Like Glycosylases 

2.2.1. NEIL1 

NEIL1 is a DNA glycosylase that belongs to the family of endonuclease VIII (Nei)-like proteins. Its 

preferred substrates are damaged pyrimidines and purines, such as Tg, FaPyA, FaPyG and others, but 

also 8-oxo-G and 5-OHU in double stranded DNA and bubble structures ([102,103,105,108,110–119], and 

reviewed in [7,120]), NEIL1 ko mice display a phenotype very close to the metabolic syndrome, and 

harbor increased levels of DNA damage in their mtDNA [121]. NEIL1 mRNA has been detected in 

different mammalian tissues including the brain and both its mRNA and protein levels were shown to 

increase during S-phase [102]. Further, widespread NEIL1 expression was reported at all ages in mice and it 

even increased with age, as did FaPyG lesion (induced by treatment of DNA with N-[3H]methyl-N'-
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nitrosourea) excision activity in all brain regions tested [24]. By investigating the efficiency of 

mitochondrial BER during the murine lifespan in the cortex and hippocampus, Gredilla et al. found 

that, similarly to OGG1; NEIL1 activity reached its maximum at middle-age in cortical mitochondria 

followed by a significant drop at old age, while only minor changes were observed in hippocampal 

mitochondria [31]. In addition, NEIL1 DNA glycosylase activity was lower in hippocampal than in 

cortical mitochondria. These findings indicate that regulation of mitochondrial NEIL1 activity in the 

brain is region and age specific.  

Among other BER enzymes, Rolseth et al. investigated the impact of OGD on NEIL1 activity and 

gene expression levels in organotypic rat hippocampal slice cultures (particularly in the regions CA1 

and CA3/fascia dentata) [62]. While base removal of U did not differ between the two hippocampal 

regions, removal of 5-OHU was slightly less efficient in CA3/FD than in CA1. After 30 min of OGD 

an increase in the activity on εA by approximately 25% could be detected in CA1, whereas activities 

for 8-oxo-G, 5-OHU and U remained unchanged. Later, 8 h after OGD, none of the enzyme activities 

differed from control values. As for OGG1, transcription of NEIL1 was not changed in response to 

OGD treatment at time point 0 h.  

Englander et al. measured the expression and activities of BER enzymes during brain development 

where the physiological transition of neuronal cells from the proliferative to the post-mitotic 

differentiated state takes place [122]. Expression of NEIL1 increased during brain development 

concomitant with maintenance of the capacity for excision of 5-OHU from bubble structured DNA in 

the mature rat brain, suggesting a potential role of NEIL1 in the maintenance of the integrity of 

transcribed DNA in the post-mitotic brain. A recent study by Canugovi et al. demonstrates that NEIL1 

ko mice exhibit an impairment in memory retention, as assessed by a water maze test [123]. However, 

these mice did not display abnormalities in motor performance, anxiety or fear conditioning. 

Furthermore, the deficiency in NEIL1 results in an increase in brain damage after ischemia/reperfusion 

due to apoptosis. Also, in these mice the incision activity of 5-OHU in a bubble structure was lower in 

the ipsilateral sides of ischemic brains as well as in mitochondrial lysates of unstressed old ko mice, 

suggesting that NEIL1 is a central player in learning, memory and neuronal protection against ischemia. 

2.2.1.1. Involvement of NEIL1 in Neurodegenerative Disorders 

Several studies have addressed the importance of NEIL1 in neurological conditions, such as CS, 

multiple sclerosis and depression. Hypersensitivity of CSB-deficient cells to oxidative stress hint to a 

defect in oxidative DNA damage repair contributing to the phenotype. A study that examined the role 

of CSB in the repair of FaPyG and FaPyA, both substrates for NEIL1, found that CSB ko mice have a 

higher level of endogenous FaPyG and FaPyA in nDNA from brain, compared to wt mice [115]. 

Furthermore, CSB was co-immunoprecipitated and co-localized with NEIL1 in HeLa cells and 

stimulated NEIL1 activity in vitro. Depletion of CSB and NEIL1 from HeLa cells by short hairpin 

RNA (shRNA) strongly inhibited the repair of induced FaPyG, suggesting that CSB plays a role in 

repair of FaPyG lesions, possibly through the interaction with NEIL1. Further, these findings implicate 

that FaPyG and FaPyA lesions and thus NEIL1 may have a causal role in the pathogenesis of CS.  

No association of NEIL1 with the risk of developing multiple sclerosis could be found [109]. 

Similarly, the study by Teyssier et al., besides no significant changes in the OGG1 expression, did not 
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detect an impact on NEIL1 levels in the prefrontal cortices of the patients suffering from depression [73]. 

Using the HD transgenic R6/1 mouse model, very recently Mollersen et al. demonstrated that the 

deletion of exon 2 of NEIL1 in mice leads to a significant reduction in somatic TNR expansions, when 

compared to their NEIL1 wt littermates [124]. Interestingly, while it could also be detected in female 

mice, the reduction of somatic expansions was more pronounced in male mice. Additionally, the 

authors found that NEIL1 binds and excises 5-OHC much more efficiently in duplex DNA than in 

hairpin substrates, suggesting that NEIL1 initiated BER of cytosine-derived oxidized lesions could be 

involved in the initiation of TNR expansions, additionally to other DNA modifications. 

2.2.1.2. Stroke/Ischemia/Hypoxia 

As already mentioned, NEIL1 has been linked to changes in oxygen levels and pathological 

conditions such as ischemia and stroke [123]. By addressing the effect of hyperoxic reoxygenation and 

therapeutic hypothermia on the development of brain damage after asphyxia in newborn pigs, as 

described in the OGG1 subchapter, transcription of NEIL1 was significantly down-regulated in the 

hippocampus, cortex, striatum and liver upon hypothermia, [68]. However, no effect on the 

accumulation of oxidative DNA damage in genomic DNA could be visualized. Like OGG1, NEIL1 

expression in the brain was unaffected by hyperoxia. Thus, even though NEIL1 was down-regulated 

by hypothermia, this had no effect on the accumulation of oxidative damage in genomic DNA.  

In conclusion, NEIL1 seems to be important for the development of the brain, memory and 

learning, as well as in response to stroke and ischemia and it has been implicated in CS. What the exact 

roles of NEIL1 in the different parts of the brain are still remains unresolved and will be the subject of 

future studies. 

2.2.2. NEIL2 

Like NEIL1, NEIL2 belongs to the family of endonuclease VIII (Nei)-like proteins. Its preferred 

substrates are strongly overlapping with the ones of NEIL1 and include oxidized pyrimidines, such as 

Tg, 5-OHU, 5-OHC, 5,6 dihydrothymine and 5,6 dihydrouracil in double stranded DNA and bubble 

structures ([111,119,125], and reviewed in [7,120]). NEIL2 mRNA has been detected in the brain, but 

unlike NEIL1, the expression of NEIL2 was independent of the cell cycle stage [111]. Analysis of the 

distribution patterns in mouse brains showed widespread expression of NEIL2 at all ages, and the 

excision activity of chemically induced FaPyG lesions increased with age in all brain regions tested [24]. 

Rolseth et al. found that transcription of NEIL2 in two different regions of the hippocampus was 

not changed in response to OGD treatment at time point 0 h [62]. As was the case for NEIL1, 

expression of NEIL2 levels increased during the physiological transition of neuronal cells from the 

proliferative to the post-mitotic differentiated state in brain development [122]. This was concomitant 

with the maintenance of the capacity for excision of 5-OHU from bubble structured DNA in the 

mature rat brain, suggesting a role for NEIL1 and NEIL2 in the maintenance of the integrity of 

transcribed DNA in the post-mitotic brain. Similarly to NEIL1, no association between NEIL2 and the 

risk of developing multiple sclerosis was found [109]. Future studies are needed to completely 

understand if and how NEIL2 could be associated with different neurodegenerative diseases. 
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2.2.3. NEIL3 

Similarly to NEIL1 and NEIL2, NEIL3 also belongs to the family of endonuclease VIII (Nei)-like 

proteins. In contrast to the two former glycosylases, NEIL3 excises FaPyG and FaPyA lesions but is 

inactive on 8-oxo-G ([126,127] and reviewed in [7]). Additionally, the mouse ortholog was shown to 

remove a broad spectrum of DNA base lesions on single-stranded DNA substrates, including 

secondary oxidation products of 8-oxo-G, such as spiroiminodihydantoin and guanidinohydantoin, 

suggesting that NEIL3 prevents the accumulation of these cytotoxic and mutagenic lesions in 

mammalian cells [127]. Though NEIL3 ko mice are viable and fertile, NEIL3 has been implicated to 

play a role in hematopoiesis or the immune system, since it is preferentially expressed in 

hematopoietic tissues [128]. In brains of newborn mice, NEIL3 revealed a discrete expression pattern 

in the subventricular zone, the rostral migratory stream, and the hilar region of the hippocampal 

formation, all of which are brain regions known to harbor stem cell populations [24]. Expression of 

NEIL3 decreased with age, and in brains of old mice it could be only detected in layer V of the 

neocortex. The distribution of NEIL3 thus indicates a potentially specific role of this enzyme in stem 

cell differentiation. Along with this study, expression pattern analysis of NEIL3 in the brain during 

mouse embryonic development revealed a tight regulation at both temporal and spatial levels. High 

expression of NEIL3 was observed at embryonic days 12–13, which coincides with the start of 

neurogenesis [129]. Subsequently, the expression of NEIL3 decreased gradually, and it could not be 

detected anymore in adult brains by RT-qPCR. Interestingly, expression during embryogenesis and in 

newborn mice was observed in areas with neural stem and progenitor cells, such as the subventricular 

zone and the dentate gyrus, suggesting that brain areas with neurogenesis and a high proliferative 

potential specifically express NEIL3. Subsequently, Sejersted et al. demonstrated a profound 

neuropathology in NEIL3 ko mice, which was characterized by a reduced number of microglia and a 

loss of proliferating neuronal progenitors in the striatum after hypoxia-ischemia [130]. Furthermore, 

NEIL3 ko neural stem/progenitor cells displayed an inability to increase neurogenesis and a reduced 

capacity to repair oxidized base lesions in single stranded DNA, indicating that NEIL3 could occupy a 

highly specialized role to accurately repair DNA in rapidly proliferating cells. Another study also 

demonstrated that, similarly to OGG1, siRNA-mediated kd of NEIL3 decreased NSC differentiation 

ability, resulting in a decrease of both neuronal and astrocytic gene expression after mitogen 

withdrawal as well as a decrease in the stem cell marker Musashi-1 [37]. Furthermore, a deficiency in 

NEIL3 led to a decrease in cell proliferation along with an increase in heterochromatin protein 1γ 

immunoreactivity, a sign of premature senescence, while cell survival remained unaffected. This 

potentially suggests that OGG1 and NEIL3 play a role in governing essential neural stem  

cell characteristics.  

2.2.3.1. Stroke/Ischemia/Hypoxia 

Newborn pigs that were subject to hypoxia and in the following treated by either normothermia or 

total body cooling showed a significant decrease in transcription of NEIL3 in the hippocampus and 

cerebellum by hypothermia, but without effect on the accumulation of oxidative DNA damage in genomic 

DNA [68]. Like for OGG1 and NEIL1, NEIL3 expression in the brain was unaffected by hyperoxia.  
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Taken together, NEIL3 seems to predominantly play a role in neuronal stem cells and in the 

proliferation stages of neurons, whereas it rather is down-regulated during later stages of life. Future 

studies designed to address the role of NEIL3 in neuronal tissue will shed more light on this issue. 

2.3. The Alkyladenine DNA Glycosylase 

The alkyladenine DNA glycosylase (AAG, also named MPG and APNG) is the repair protein that 

efficiently recognizes and removes different methylated DNA base lesions is [131]. AAG acts on 

several structurally diverse DNA damages such as 3-methyladenine, hypoxanthine (Hx), εA,  

7-methyguanine, 1-methylguanine, 1,N2-ethenoguanine and U [132–136]. Because of the lack of both 

an alpha-beta fold characteristic to uracil DNA glycosylases (UDGs), as well as a HhH, AAG forms a 

separate class of DNA glycosylases [7]. Human AAG is present in three different isoforms: A, B and 

C. The AAG protein levels vary throughout different human tissues, being especially high in the brain, 

lymph nodes, tonsils, testis and adrenal glands [137]. Strong AAG expression has been reported in the 

following brain regions: cerebral cortex, hippocampus, lateral ventricle and cerebellum [137].  

2.3.1. Involvement of AAG in Neurodegenerative Disorders 

AAG mouse models, such as AAG ko and AAG transgenic (AAG-Tg) mice, provided valuable tools to 

study the influence of AAG-initiated BER on brain development and neurodegeneration [138–141]. 

Treatment with the alkylating agents methylazoxymethanol (MAM) and methyl methanesulfonate 

(MMS) induced extreme cerebellar toxicity and dramatically impaired motor function in AAG-Tg 

mice, while these effects were suppressed in AAG ko animals [131,142]. These findings support the 

idea that AAG activity, induced by alkylation treatment, promotes accumulation of toxic BER 

intermediates, while loss of AAG prevents their formation, thus ensuring resistance. Though several 

lines of evidence strongly indicate that a lack of AAG-initiated BER prevents induction of alkylation 

induced cell death in different tissues [131,138,142,143], it is important to note that the impact of BER 

absence on cellular survival largely depends on the type of DNA lesions induced by alkylating 

treatment, as well as the affected cell type. One such example is the treatment of neuronal and 

astrocyte cell cultures, obtained from the cerebellum of wt or Aag ko mice, with either 

chloroacetaldehyde (CAA) or the alkylating agent 3-methyllexitropsin (Me-Lex). Treatment with both 

CAA and Me-Lex resulted in increased sensitivity of AAG ko neurons, while the sensitivity of AAG 

ko astrocytes did not differ from the wt cells [144]. Present studies clearly imply an essential and 

specific role of AAG-mediated BER in alkylation-mediated neurodegeneration.  

2.4. The Uracil DNA Glycosylases 

2.4.1. UNG 

The UDG family in eukaryotes can be divided into three subfamilies: the uracil N-glycosylase 

(UNG), the single-strand-specific monofunctional uracil DNA glycosylases (SMUGs) and the 

mismatch-specific uracil DNA glycosylases (MUGs). Although members of the UDG family have 

very diverse amino-acid sequences, they share a common alpha-beta fold present in the catalytic active 

site. Humans and mice have two different UNG isoforms, UNG1 and UNG2 localized in the 
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mitochondria and the nucleus, respectively [145]. UNG protein levels vary in different tissues and cell 

types. In the human brain UNG levels are (i) extremely high in cerebellar Purkinje cells and neuronal 

cells of the cerebral cortex; (ii) moderate expression is observed in neuronal cells of the lateral 

ventricle, and in cerebellar cells of the granular and molecular layer as well as in glial cells; while (iii) 

very low levels or no UNG is detected in glial cells of both the hippocampus and the lateral ventricle [137]. 

Several studies clearly demonstrated variations in the activity and levels of UNG with  

age [25,26,31,146,147]. Neuronal extracts prepared from the cerebral cortex of young (7 days), adult 

(180 days) and old (720 days) rats showed a dramatic decrease with age in the ability to remove U 

from the DNA [26]. Supplementation of these extracts with recombinant purified UNG, Pol β  

and T4 DNA ligase significantly restored the loss of BER in aging neurons [26]. Single cell gel 

electrophoresis experiments of neurons and astrocytes from the cortex of young, adult and old rats 

revealed a marked increase in the number of UNG sensitive sites with age; further indicating  

age-dependent decrease in UNG activity [25]. Additionally, analysis of nuclear and mitochondrial 

UNG activities in different brain regions (the caudate nucleus, frontal cortex, hippocampus, cerebellum 

and brain stem) of young and adult mice revealed an age-dependent decrease in mitochondrial  

UNG-initiated BER [146]. In contrast to mitochondria, no region- or age-specific differences were 

detectable in the UNG nuclear activity, with exception of the cerebellum where uracil incision capacity 

was reduced with age [146]. Gredilla et al. similarly reported reduced UNG1 action in cortical 

mitochondria, however they did not detect any age-dependent change in the U removal ability in 

hippocampal mitochondria, while in cerebellar mitochondria UNG1 activity reached its maximum at 

old age [31]. Taken together, present findings clearly indicate an important role of UNG in different 

brain regions and suggest that an age-dependent increase in damage to mtDNA might contribute to the 

normal aging process. 

2.4.1.1. Involvement of UNG in Neurodegenerative Disorders 

The impact of UNG-mediated repair on mtDNA stability and its role in neurodegeneration were 

clearly demonstrated through a recent study using a mutated UNG1 (mutUNG1) transgenic mouse 

model [148]. MutUNG1 removed in addition to U also T from mtDNA, thus promoting mitochondrial 

instability. Targeted hippocampal expression of mutUNG1 resulted in mtDNA toxicity, decreased 

mitochondrial respiratory activity, apoptosis, neurodegeneration and impaired behavior [148]. Absence 

of UNG also strongly influenced mitochondrial stability, with a significant increase in the frequency of 

the D-1 mtDNA deletion in UNG ko mice [149]. Exposure of UNG ko mice to a folate-deficient diet 

(FD), a condition frequently associated with stroke, dementia and certain psychiatric disorders, 

increased mitochondrial mutagenesis in the aged brain and induced a compensatory increase in 

mtDNA content [149]. Consequences of FD in UNG ko animals were cognitive defects and enhanced 

mood alterations, such as anxiety and desperation [150]. As a consequence of induced mitochondrial 

instability and accumulation of DNA damage in general, a lack of UNG in cultured hippocampal 

neurons directly promoted apoptosis coinciding with p53 up-regulation [151]. This is of particular 

importance during tissue repair after brain ischemia, where a major increase in infarct size was 

observed in UNG ko mice when compared to wt animals [152]. Besides its impact on neuronal 

survival and brain integrity in general, several findings clearly suggested an important role of UNG in 
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neurodegenerative disorders. Total protein analysis of temporal lobe autopsies from four tauopathies 

indicated a significant change in UNG protein levels [153]. Further, both the activity of  

UNG-mediated BER as well as UNG protein levels were decreased in the inferior parietal lobule (IPL) 

of 10 sporadic AD patients [154]. Changes in BER capacity were not only detectable in disease-affected 

regions such as the IPL, but were also present in unaffected regions like the cerebellum [154]. 

Interestingly, while total BER capacity decreased with age in the brain of healthy individuals as 

expected, most AD patients had low BER levels independently of their age [154]. Impaired  

UNG-mediated BER was also detected in brains of amnestic mild cognitive impaired patients and this 

defect correlated with the abundance of neurofibrillary tangles [154]. Current studies suggested that 

the balance of UNG-mediated BER is potentially important to prevent premature aging and the onset 

of neurodegenerative disorders.  

2.4.2. TDG 

The thymine DNA glycosylase (TDG) is a member of the MUG subfamily. Besides T, TDG 

recognizes and excises U, 5-FU, εC, 5-hydroxymethyluracil, 5-formylcytosine and 5-carboxylcytosine 

when base paired with G [155–163]. TDG ko in mice is embryonically lethal, suggesting an essential 

function of TDG during development [164,165]. While the expression of TDG in human brain is 

documented in detail, studies in rat brains indicated that similar to UNG, TDG levels were inversely 

correlated with age [166,167]. Future studies are needed to reveal a role of this unique glycosylase in 

brain integrity and consequentially in neurodegeneration. 

So far not much is known about the role of the remaining two members of the UDG family in brain 

development and homeostasis. 

3. BER Proteins other than DNA Glycosylases 

3.1. Apurinic/Apyrimidinic Endonuclease 1 

APE1 is a multifunctional enzyme with a pivotal role in BER, by processing AP sites, and in the 

regulation of transcriptional activity by redox activation of transcription factors (such as Fos and Jun) 

([168–176], and reviewed in [177]). Depletion of APE1 in cultured hippocampal and sensory neurons 

sensitized the cells markedly to oxidative DNA damage induced by H2O2, reflected in reduced cell 

viability, increased caspase-3 activity and histone H2AX phosphorylation (γH2AX) [178]. In contrast 

to depletion, APE1 overexpression was neuroprotective in dorsal root ganglion neurons exposed to 

cisplatin [179]. In addition, it has been shown that it is the DNA repair function of APE1 that is crucial 

for cell survival of post-mitotic cells exposed to oxidative stress [180]. Determining the APE1 activity 

in cortical astrocytic and neuronal extracts derived from young (7 days), adult (6 months) and old (2 years) 

rats revealed an age-dependent decrease in the activity in adult compared to the young animals [25]. 

This reduction remained with age and was therefore also apparent in old rats. Exposing young (3 months) 

and aged (30 months) rats to 100% oxygen, Edwards et al. showed in young animals a reflective 

increase of APE1 protein levels in the hippocampus and basal forebrain, whereas no significant 

changes were detected in aged rats, suggesting an impaired responsiveness to oxidative stress [181]. 
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3.1.1. Alzheimer’s Disease 

A study of the APE1 hippocampal expression in human AD brains revealed elevated APE1 levels 

both in senile plaques, a histopathological hallmark of AD, and in injured neurons [182]. This increase 

was further found to be localized to the nuclear fractions of AD brains [183], which was confirmed in a 

immunohistochemical analysis of the cerebral cortex, where an intensive nuclear APE1 signal in all 

cortical layers was detected [184]. Aβ, a major contributor to AD development, is known to induce 

oxidative stress in neurons [185]. Tan et al. investigated the impact of various Aβ concentrations on 

APE1 levels and cell survival in isolated rat hippocampal neurons [186]. Interestingly, treatment with 

high concentrations of Aβ (5 μM) caused a reduction in cellular APE1 levels and activity, which 

correlated with extensive neuronal degeneration of the cultured hippocampal neurons. In contrast, 

lower concentrations of Aβ (1 μM) induced APE1 expression and activity, resulting in no substantial 

loss of the neurons [186]. The cyclin-dependent kinase 5 (Cdk5) was shown to regulate APE1 through 

phosphorylation, leading to a reduction of its endonuclease activity [187]. Subsequent accumulation of 

DNA damage, together with the finding that levels of phosphorylated APE1 were increased in brain 

tissue from AD and PD patients, might implicate Cdk5-mediated APE1 phosphorylation in the 

development of these neurodegenerative disorders. Independently of the endonuclease activity, but 

through its redox function, APE1 was found to mediate neuroprotection against Aβ and H2O2 via 

induction of the glial cell-derived neurotropic factor (GDNF) receptor α1 transcription, thereby 

increasing the GDNF responsiveness [188]. In a very recent proteomic study, where neuronal cells 

were challenged with an Aβ peptide fragment (25–35), novel interaction partners of APE1 were 

identified [189]. Among them, (i) tropomodulin 3, involved in the synaptic activity; (ii) heterogeneous 

nuclear ribonucleoprotein-H1, a regulator of alternative splicing and (iii) the pyruvate kinase 3 isoform 

2, a key enzyme in the glycolysis; all of these factors might have a functional relevance for neuronal 

cell survival and Aβ resistance. In addition, a potential association between the APE1-D148E SNP and 

the onset of AD was investigated, however no significant correlation was found [190].  

3.1.2. Involvement of APE1 in other Neurodegenerative Disorders 

Decreased APE1 levels were found in patient cells affected by Ataxia with Oculomotor Apraxia 

Type 1 (AOA1) [191], a neurodegenerative disorder originating in mutations of the APTX  

gene [192,193], which results in a cellular aprataxin deficiency [194]. Comparable findings were also 

obtained in ALS patients, where frontal cortical APE1 levels, as well as activity were significantly 

reduced [195], and in some cases missense mutations within the APE gene were identified [196]. ALS 

manifests in the progressive loss of motor neurons [197] and appears in a sporadic as well as a familial 

form [198]. For the sporadic form, a significant association with the D148E APE1 polymorphism was 

shown [199]. In contrast to the analysis of frontal cortical levels, a study by Shaikh et al. indicated 

increased APE1 levels in the spinal cord and motor cortex of ALS patients and showed that protein 

extracts from this tissue samples were more proficient in in vitro processing of AP sites [200]. 

Hyperactivity of APE1 potentially also contributes to the genomic instability by resulting in an 

increased number of extremely harmful DNA breaks. 
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In a rat model where epileptic-like seizures were induced by the application of kainic acid (KA), a 

subsequent induction of APE1 expression was observed in KA-vulnerable brain regions (CA1, CA3 

and hilar subregions of hippocampus, pyriform cortex, amygdala and thalamus) [201]. Furthermore, 

APE1 colocalized with the BER protein XRCC1, the oxidative DNA damage marker 8-oxo-G, the 

tumor suppressor p53 and also with fragmented DNA, as assessed by TUNEL staining [201]. These 

findings thus indicate that BER is activated but not sufficient to counteract excitotoxicity-mediated 

neuronal cell death. 

3.1.3. Stroke/Ischemia/Hypoxia 

A cold injury-induced brain trauma (CIBT) mouse model revealed an early post-traumatic decrease 

of APE1 levels within the lesion, which preceded later DNA fragmentation [202]. Similar observations 

were made after severe traumatic cortical brain injury [203]. However, the outer boundary area that 

survived CIBT showed a significant increase in APE1 immunoreactivity [202]. Transient focal 

cerebral ischemia (FCI) [204] or a defined hypoxic-ischemic insult [205] resulted in decreased APE1 

protein levels, a reduction exclusively detected in the hippocampus. In addition, APE1 levels 

selectively decreased in the hippocampal CA1 neurons 2 days after transient global cerebral ischemia 

(GCI), which was followed by DNA fragmentation after 3 days [206]. Intra cerebral application of the 

pituitary adenylate cyclase-activating polypeptide (PACAP) in the context of transient GCI reversed 

the effect, by inducing APE1 expression in hippocampal CA1 neurons, which correlated with 

improved cell survival [207]. This neuroprotective effect of PACAP was dependent on the DNA repair 

activity of APE1, as was shown through a loss-of-function rescue attempt of APE1 deficient cells, by 

overexpressing DNA repair-incompetent APE1. Upon transient spinal cord ischemia, spinal APE1 

levels decreased while oxidative DNA damage increased [208]. Interestingly, an ischemic tolerance 

could be established by sub-lethal ischemic preconditioning, which resulted in subsequent  

up-regulation of APE1 levels and other BER proteins and therefore better neuroprotection in the case 

of severe ischemia [63]. On the other hand, APE1 overexpression was shown to increase cell viability 

of cultured hippocampal and sensory neurons after ionizing radiation-induced DNA damage [209]. 

Glutamate-induced oxidative DNA damage was found to cause an increase in APE1 expression in rat 

cerebral cortical neurons via a pathway involving the cAMP-response element-binding protein, thereby 

improving the DNA repair activity of oxidized lesions [210].  

In summary, the multifunctional enzyme APE1 is implicated in a broad spectrum of 

neuropathologies via both, its endonuclease and redox activity. However, the exact regulation of APE1 

in this context and the underlying mechanisms remain to be investigated. 

3.2. Polynucleotide Kinase 

The polynucleotide kinase (PNK) is a bifunctional enzyme exhibiting a 5'-DNA kinase and a  

3'-phosphatase activity [211]. The removal of 3'-phosphate groups renders DNA ends accessible for 

Pols, an important step for promoting BER upon base excision by either NEIL1, NEIL2 or NEIL3 

(reviewed in [212]). Highest expression in human tissues of PNK was observed in the spleen, testis, 

heart and pancreas, whereas brain levels were rather low [211,213]. PNK is known to interact during 

DNA repair with the scaffold protein XRCC1 [214]. Disruption of this interaction impairs the DNA 
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repair capacity following oxidative stress [215]. In order to rescue this phenotype, overexpression of 

3'-phosphatase-proficient PNK was needed, indicating the 3'-phosphatse activity to be critical for 

efficient repair of oxidative DNA damage. 

3.2.1. Involvement of PNK in Neurodegenerative Disorders 

A recent study by Shen et al. linked four mutations in the PNKP gene to an autosomal recessive disease 

characterized by microcephaly, early-onset, severe seizures and developmental delay (MCSZ) [216]. 

The mutations were either frame-shift mutations (T424Gfs48X and exon15Δfs4X) due to small 

deletions or duplications within the kinase domain, resulting in truncated PNK proteins or point 

mutations (L176F and E326K) within the phosphatase domain. Assessing the DNA repair capacity by 

comet assay in patient-derived lymphocytes after H2O2 or camptothecin treatment, revealed a 

significant impairment in the case of MCSZ cells compare to healthy controls and in addition, PNK 

protein levels were found reduced in these patient cells[216]. Interestingly, a further study showed  

in vitro that PNKT424Gfs48X, PNKexon15Δfs4X and PNKL176F mutant proteins exhibit a markedly decreased 

5'-DNA kinase activity [217]. However, a moderate reduction in the 3'-DNA phosphatase activity was 

only observed in the case of recombinant PNKL176F. Analysis of phosphatase and kinase activities in 

MCSZ patient cells with decreased mutant PNK levels [216], revealed an overall marked reduction [2,17]. 

Furthermore, alkaline comet assay analysis of cells from affected individuals exhibiting the 

PNKT424Gfs48X and PNKexon15Δfs4X mutations as well as of cells homozygous for PNKE326K, revealed 

inefficient repair of DNA strand breaks upon γ-irradiation, whereas camptothecin treatment only led to 

an accumulation of DNA damage in cells containing both, mutated PNKT424Gfs48X and PNKexon15Δfs4X [217]. 

Even though PNK appears to be crucial for proper neurodevelopment, further mechanistical studies 

will be needed to unravel the potential link between impaired DNA repair capacity and the 

development of MCSZ. 

3.3. DNA Polymerase β 

The DNA repair enzyme Pol β belongs to the X family of DNA Pols. In addition to the polymerase 

activity, exhibited particularly on short gaps, it also possesses a dRPlyase activity and associates with 

BER proteins such as XRCC1 and DNA ligase III [218–235]. Thereby, Pol β is considered to be the 

major BER Pol (reviewed in [236]). It is constitutively expressed in most tissues, with the highest 

levels found in testis and brain [237]. The generation of a Pol β ko mouse model revealed that, besides 

growth retardation and insufficient lung ventilation leading to immediate postnatal death, these mice 

also displayed altered neurogenesis [238]. The defect in neurogenesis was reflected in vast apoptotic 

cell death in the developing cortex, hindbrain and dorsal root ganglion. Additional ko of p53 in Pol β 

deficient mice (Pol β ko and p53 ko) abolished the neuronal cell death, thus proving the  

p53-dependency of this apoptotic pathway [239]. However, neonatal lethality remained even in the 

absence of p53. Ko of the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), an enzyme 

involved in the non-homologous end-joining (NHEJ), in a Pol β deficient background exhibited even 

more pronounced growth retardation and neuronal apoptosis as well as earlier lethality compared to 

Pol β ko [240].  
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The fact that Pol β activity changes with aging was demonstrated in a study, where incubation of rat 

neuronal extracts from young, adult and old animals with synthetic 1 and 4 nucleotide gap constructs 

resulted in reduced BER capacity with age [241]. Though the gap repair activity was markedly 

impaired with age, complementation with rat liver Pol β rescued the activity. A further study by 

Cabelof et al. confirmed these findings by showing that Pol β activity, protein and mRNA levels 

decreased significantly in brain tissue with age by comparing young (4 months) and old (24 months) 

C57BL/6 mice [242]. The biological relevance of this age-associated decrease in Pol β was further 

underlined by the observed increased mutation frequency in old animals. Interestingly, caloric 

restriction was able to largely reverse this age-dependent decline [243]. 

3.3.1. Alzheimer’s and Parkinson Disease 

AD cell culture models demonstrated that the application of Aβ to cortical neurons induces cell 

cycle reentrance followed by DNA replication resulting in reflective apoptosis of these cells [244]. Pol β 

was shown to be a leading Pol mediating de novo DNA synthesis after Aβ-induced cell cycle 

reentrance and thereby to play a role in the neuronal loss [245]. Consequently, in Aβ-treated cortical 

neurons, Pol β was also found to co-immunoprecipitate with cell division cycle 45 (Cdc45) and the 

DNA primase in nucleoprotein fragments, implicating its association with the DNA replication fork [246]. 

Aβ treatment of neural progenitor cells induced Pol β expression, with the consequence of cell 

differentiation along the neuronal lineage [247]. However, Weissman et al. showed overall decreased 

Pol β protein levels in AD brain tissue accompanied by reduced single nucleotide gap-filling activity [154]. 

Cell cycle re-entry was also observed in cultured cerebellar granule cells treated with the neurotoxin  

1-methyl-4-phenylpyridinium (MPP+), which is known to mimic PD by selective toxicity against 

dopaminergic neurons [248]. MPP+-mediated cell death was accompanied by increased Pol β 

expression. Interestingly, reduction of Pol β activity by either inhibition with dideoxycitidine or the 

expression of a dominant negative Pol β variant in these cells attenuated the neuronal loss [248].  

3.3.2. Triplet Repeat Expansion Diseases 

Several studies addressed the role of Pol β in the CAG triplet repeat expansion associated with HD. 

Kovtun et al. showed in an in vitro OGG1-initiated BER assay, that Pol β tends to perform strand 

displacement DNA synthesis within CAG repeats instead of single-nucleotide incorporation, resulting 

in longer DNA products [53]. Thus indicating that the initiation of BER by OGG1 in a CAG sequence 

contributes to the TNR expansion by Pol β-mediated strand displacement. Supporting this finding, a 

further study showed that multinucleotide incorporation by Pol β results in strand displacement and the 

formation of CAG hairpins that become stabilized and promote repeat expansion [249]. Pol β was also 

shown to accumulate along CAG repeats in the striatum of HD mice, the brain region most susceptible 

to degeneration in HD patients (for more details see Chapter 3.6.) [57]. Furthermore, Goula et al. 

recently determined the protein levels of the major BER proteins in the striatum, as well as the  

HD-spared cerebellum of HD transgenic mice [250]. While it was previously shown that Pol β protein 

levels were not significantly changed in these tissues, DNA ligase I, FEN1, APE1 and XRCC1 levels 

were increased by at least 2-fold in cerebellum [57,250]. In addition, in vitro repair of AP-sites with 

either (i) purified BER proteins in the striatum-specific stoichiometry or (ii) with wt and HD mice 
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striatum extracts, was shown to be less proficient than cerebellar repair regardless of the sequence context 

[250]. The same study demonstrated that lesions within CAG repeats tend to be repaired via LP-BER 

and that this process is more efficient under cerebellar conditions compared to the striatal ones. 

Moreover, a lesion closer to the 3' end of the repeat sequence was more efficiently repaired than a 5' 

lesion, most probably due to the fact that the formation of stable hairpins becomes impaired the closer 

a lesion is to the 3' end of the repeat tract [250]. Taken together these findings suggest a potentially 

important role of Pol β mediated repair in the onset of triplet repeat expansion diseases, such as HD. 

3.3.3. Stroke/Ischemia/Hypoxia 

Pol β activity was observed to be up-regulated in cerebral cortical neurons of newborn piglets exposed 

to hypoxia, and this was suggested to be beneficial to reduce hypoxia-induced DNA damage [251]. 

Upon transient FCI in rats, an increase in markers for oxidative DNA damage, namely 8-oxo-G and 

AP sites could be detected [252]. These lesions were efficiently repaired during reperfusion in the 

surviving cortex, which was proposed to be at least partially due to a protective long-lasting  

up-regulation of Pol β expression as well as its activity. As already described for APE1, ischemic 

preconditioning also elevated the protein levels of Pol β as well as XRCC1 and DNA ligase III [253]. 

This up-regulation in particular of SP-BER proteins was implicated to play a pivotal role in the 

neuroprotection observed in subsequent severe ischemic episodes. 

Summarizing, Pol β was shown to be crucial for proper neurodevelopment, whereas later on Pol β 

levels decline in an age-dependent manner. In the context with AD, spurious de novo DNA synthesis 

contributes to neuronal loss. However, upon hypoxic insults, Pol β activity mediates neuroprotection. 

3.4. DNA Polymerases δ and ε 

The Pols δ and ε belong together with Pol α to the B-family of DNA Pols and are the main Pols 

involved in lagging and leading strand replication [254–257]. Due to this function as replicative Pols, 

their DNA synthesis accuracy is high on undamaged DNA templates (reviewed in [258]). Besides 

DNA replication, the role of Pol δ and ε in LP-BER is supposed to be the accurate elongation after 

repair synthesis initiated by Pol β [259].  

Even though Pol β was for a long time assumed to be the only Pol present in the brain, Pol δ and ε 

activities were reported in developing as well as aging rat cerebral cortical neurons [260]. Analyzing 

TNR expansions in Saccharomyces cerevisiae revealed an involvement of yeast Pol δ together with the 

DNA helicase Srs2 in blocking TNR expansion [261]. Also, Pol δ has been found together with the 

DNA helicase Werner syndrome protein (WRN) to be important in resolving TNR-based hairpin 

structures in HeLa nuclear fractions complemented with recombinant proteins [262]. 

3.5. X-Ray Repair Cross Complementing 1 Protein 

The XRCC1 protein represents a crucial scaffold protein in the BER [222,263]. Among other roles, 

its interaction with the Pol β and DNA ligase III contributes to the 1nt-gap filling reaction and 

subsequent DNA ligation especially in the context of SP-BER ([227,264–266], and reviewed in [267]).  
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In 1999, Fang-Kircher et al. analyzed for the first time mRNA levels of different DNA repair 

proteins in human brain tissue of deceased Down’s syndrome patients [268]. Interestingly, a significant 

up-regulation of XRCC1 mRNA was found in the temporal, parietal and occipital lobes of these 

patients. Increased XRCC1 expression might be explained by the higher levels of ROS detected in 

Down’s syndrome neurons [269]. However, frontal lobe and cerebellar levels of XRCC1 were equal or 

even significantly lower in comparison to those observed in control brains [268].  

That XRCC1 is particularly important in differentiated neurons for the repair of oxidative DNA 

damage has been shown in differentiated human SH-SY5Y neuroblastoma cells [270]. SH-SY5Y 

XRCC1 kd cells displayed lower survival upon treatment with the oxidizing agents menadione or 

paraquat compared to control cells. No differences between proficient and deficient backgrounds were 

detected in dividing (non-differentiated) SH-SY5Y cells. In contrast, treatment of dividing SH-SY5Y 

XRCC1 kd cells with Hx, an additional inducer of oxidative damage by generating extracellular H2O2, 

resulted in increased sensitivity [270]. Taken together, these results support the general idea that 

requirements for the DNA repair proteins largely depend on the type of oxidative damaged that is 

induced. Consistent with these findings, XRCC1 heterozygous primary mouse cerebellar granule cells 

as well as XRCC1 kd human fetal brain neurons displayed a higher sensitivity towards menadione 

treatment [270]. 

Isolated granule cells from a neuronal-specific XRCC1 ko mouse model (XRCC1Nes−Cre) exhibited 

impaired DNA repair capacity after exposure to H2O2, as assessed by comet assay [271]. Furthermore, 

neurons in different brain regions of XRCC1Nes−Cre mice accumulated DNA damage in an  

age-dependent manner, shown by increased amounts of persistent γH2AX foci, a known marker of 

DNA double-strand breaks (DSB) and most likely DNA single-strand breaks (SSB). Interestingly, 

histological analysis of the cerebellum revealed a marked p53-dependent loss of basket, stellate and 

Golgi interneurons, all of which are important for fine-tuning of the cerebellar output [271]. 

Furthermore, accumulation of γH2AX foci associated with gliosis and increased c-Fos staining within 

distinct hippocampal regions indicated altered hippocampal homeostasis [271]. These features closely 

resemble the neuropathological characteristics found in temporal lobe epilepsy [272]. In a rat model 

where epileptic-like seizures were induced by KA, an induction of XRCC1 was observed after 16 h of 

seizure-onset in KA-vulnerable brain regions (CA1, CA3 and hilar subregions of hippocampus, 

pyriform cortex, amygdala and thalamus) [201]. As KA is known to cause oxidative stress [273],  

up-regulation of XRCC1 was thought to happen as a compensatory mechanism for the increased levels 

of DNA damage. 

3.5.1. Alzheimer’s and Parkinson Disease 

The discovery of XRCC1 polymorphisms gave raise to studies investigating a potential 

predisposition to diseases [274]. AD belongs to the most common diagnosed age-related 

neurodegenerative disorders resulting in dementia and it is often histologically characterized by the 

presence of Aβ plaques, neurofibrillary tangles and severe neuronal loss (reviewed in [275]). Since the 

R194W XRCC1 polymorphism lies within a conserved amino acid residue sequence [274], its 

potential functional relevance for neurodegeneration was addressed in a case-control study focusing on 

the late-onset AD in a Turkish population [276]. An increased risk for late-onset AD in the presence of 
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the R194W polymorphism was proposed [276]. However, the risk estimates did not reach a 

statistically significant level and were not confirmed in a later comparable study among Han Chinese 

people [277]. It therefore remains under debate, whether the R194W XRCC1 polymorphism promotes 

the onset of AD. The analysis of two additional XRCC1 polymorphisms, namely R280H and R399Q 

revealed no dependency between allele frequency and the onset of AD [190]. However, an increased 

risk was found for the development of PD in the presence of XRCC1 R399Q [278].  

3.5.2. Stroke/Ischemia/Hypoxia 

XRCC1 is not only implicated in chronic neurodegeneration, but also in neuronal loss after acute 

central nervous system injuries, including the cerebral ischemia-reperfusion phenomenon [279]. It is 

well established, that brain ischemia/reperfusion, a condition that resembles a stroke, goes along with 

an excessive production of ROS (reviewed [280,281]). In mice subjected to transient FCI by occlusion 

of the MCA, it was shown that XRCC1 levels decreased shortly after reperfusion and remained low 

until 24 h in the total MCA territory [279]. The loss of XRCC1 coincided with a positive TUNEL 

staining, corresponding to fragmented DNA arising 24 h later. A CIBT mouse model further supported 

this observation, where a similar early decline in XRCC1 levels within the injured region preceded 

later DNA fragmentation [282]. Thus, these studies indicated a potential role of the early XRCC1 

decrease in the DNA damage-mediated neuronal cell death in traumatic brain regions [279,282].  

Taken together, the scaffold protein XRCC1 was shown to be particularly important for DNA repair 

in post-mitotic neurons. Further association with the Down’s syndrome, seizure episodes and ischemic 

insults render XRCC1 a critical player in CNS homeostasis. 

3.6. Flap Endonuclease 1 

The multifunctional enzyme FEN1 possesses a 5'→3'-exonuclease and a 5'-endonuclease  

activity [283–288]. The latter function is of special importance in the context of LP-BER, as FEN1 

removes the arising 5'-flap structures after strand displacement DNA synthesis, thereby allowing 

subsequent DNA ligation (reviewed in [289]). 

3.6.1. Triplet Repeat Expansion Diseases 

In the severe neurodegenerative disorder HD, BER initiated by OGG1 has already been implicated 

to contribute to the CAG trinucleotide expansion in somatic cells, as discussed above [53]. In addition, 

a study in HD mice showed, that oxidative damage specifically accumulates along CAG repeats in a 

length-dependent manner [57]. This event is specifically taking place in the striatum, the brain region 

most prone to degeneration in HD patients, when compared to the disease-spared cerebellum. Even 

though gap-filling activity is reduced in the striatum several factors, such as: (i) pronounced 

accumulation of Pol β at CAG repeats; (ii) promoted Pol β-mediated strand displacement activity; and 

(iii) low 5'-flap endonuclease activity by FEN1, contribute to the somatic instability in the context of 

LP-BER [57]. This is further in line with model of HD which suggests that the Pol β generated 

displaced strand, when not efficiently removed by FEN1, forms a hairpin structure that can become 

stably integrated leading to trinucleotide expansion. The stoichiometry between BER proteins seems to 
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be an important factor for tissue-specific trinucleotide expansion-vulnerability [57]. Elevated levels of 

FEN1 in the cerebellum were implicated to significantly contribute to the increased BER efficiency on 

CAG substrates observed by measuring the repair capacity with BER proteins in the cerebellar 

stoichiometry (discussed in more detail under 3.3.) [57,250]. This effect was not observed when BER 

efficiency was addressed under the striatum-specific conditions [250]. Liu et al. similarly reported that 

FEN1 might facilitate TNR expansion, however through a slightly different mechanism by alternate 

cleavage of hairpin structures arising during Pol β multinucleotide DNA synthesis and strand 

displacement during LP-BER [249]. As FEN1 is unable to process 3' ends of stable hairpins, it rather 

tends to cleave lose 5'-flaps of the hairpin, thereby providing ligatable nicks and potential TNR 

expansion. A comprehensive overview of the FEN1 involvement in the TNR expansion is presented in 

a recent review by Liu and Wilson [290]. 

3.7. DNA Ligase I/III 

The DNA ligase I in association with PCNA is targeted to the replication machinery where it is 

important for Okazaki fragment joining [291]. In the context of BER it acts in the final step of LP-BER 

by sealing nicked DNA (reviewed in [292]). The DNA ligase III, on the other hand, is mainly 

implicated in DNA ligation during SP-BER where it is in complex with the scaffold protein  

XRCC1 [265,266]. Both, the DNA ligase I and III are shown to be essential for proper embryonic 

development, as studied in mice (reviewed in [292]). Moderate expression of the DNA ligase I was 

found in the cerebellum, lateral ventricle and cerebral cortex, whereas levels in the hippocampus were 

rather low [137]. However, in comparison to cerebellar levels, DNA ligase I is markedly reduced in the 

striatum where it might be involved in the observed less efficient BER of lesions within CAG repeats, 

thus potentially contributing to TNR instability [250]. High levels of DNA ligase III were observed in 

the cerebellum and the cerebral cortex decreasing to moderate levels in the hippocampus and lateral 

ventricle [137]. A DNA ligase I deficiency described in a female patient was accompanied with 

continuous infections due to a compromised immune response, sensitivity towards sunlight, growth 

retardation and delayed development [292]. The neurodegenerative disorder spinocerebellar ataxia 

with axonal neuropathy-1 (SCAN1) originates from mutated tyrosyl phosphodiesterase 1 (TDP1), a 

protein involved in the repair of DNA SSB [293]. Interestingly, the DNA ligase III was found to 

directly interact with mutated TDP1 in SCAN1, forming a catalytically inactive complex, thereby 

potentially contributing to a defective SSB repair [294]. A further link between DNA ligases and 

neurodegeneration is given in the neurological disorder AOA1, where aprataxin, a protein important 

for the removal of adenylate groups at single-strand nicks [295], is mutated [192,193]. Therefore, 

deficiency in the processing of adenylate groups by aprataxin results in abortive ligation attempts by 

the DNA ligase III, which might result in the accumulation of DNA SSB [295].  

3.7.1. Stroke/Ischemia/Hypoxia 

As already observed for other BER proteins, ischemic preconditioning resulted in an induction of 

the DNA ligase III in neuronal and glial cells [253]. This up-regulation of the BER pathways was 

further reflected in the increased BER activity in nuclear brain extracts from preconditioned animals [253]. 
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In summary, even though not much is known so far about DNA ligases in the physiology and 

pathology of the CNS, initial hints point towards an involvement in distinct neurodegenerative disorders. 

4. Conclusions and Future Perspectives 

As a consequence of high oxygen metabolism, an efficient BER pathway is needed to ensure 

genomic stability and brain homeostasis. The majority of BER proteins are highly expressed in the 

brain, however present data clearly indicate that the expression pattern is not homogenous and that it 

differs from one brain region to another. In addition, levels of BER proteins change with age, resulting 

in accumulation of DNA lesions and genomic instability. Tissue-specific and age-dependent 

expression of major BER proteins suggests the existence of a very complex and highly regulated DDR 

in the CNS. This complexity is most probably also a reason why studies addressing the role of BER 

proteins in brain physiology and pathology, using various different models, resulted in different and 

sometimes contradictory observations. However, changes in BER protein levels and the DNA repair 

capacity have been correlated with some of the most common neurodegenerative disorders (Table 1), 

thus indicating the importance of understanding the mechanisms that ensure tight regulation of BER 

protein expression and activity. Though numerous studies compared the BER status between different 

brain regions during development, as well as between tissues of healthy individuals and patients 

suffering from various neurodegenerative disorders; still very little is known about the means by which 

BER is regulated in the brain. By revealing pathways important for balancing BER, we might be able 

to understand how changes in the BER capacity during lifetime, as well as neurodegeneration, 

contribute to aging and disease onset/progression, respectively.  
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