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Abstract

Background: Targetrons are gene targeting vectors derived from mobile group II introns. They consist of an autocatalytic
intron RNA (a ‘‘ribozyme’’) and an intron-encoded reverse transcriptase, which use their combined activities to achieve
highly efficient site-specific DNA integration with readily programmable DNA target specificity.

Methodology/Principal Findings: Here, we used a mobile group II intron from the thermophilic cyanobacterium
Thermosynechococcus elongatus to construct a thermotargetron for gene targeting in thermophiles. After determining its
DNA targeting rules by intron mobility assays in Escherichia coli at elevated temperatures, we used this thermotargetron in
Clostridium thermocellum, a thermophile employed in biofuels production, to disrupt six different chromosomal genes (cipA,
hfat, hyd, ldh, pta, and pyrF). High integration efficiencies (67–100% without selection) were achieved, enabling detection of
disruptants by colony PCR screening of a small number of transformants. Because the thermotargetron functions at high
temperatures that promote DNA melting, it can recognize DNA target sequences almost entirely by base pairing of the
intron RNA with less contribution from the intron-encoded protein than for mesophilic targetrons. This feature increases the
number of potential targetron-insertion sites, while only moderately decreasing DNA target specificity. Phenotypic analysis
showed that thermotargetron disruption of the genes encoding lactate dehydrogenase (ldh; Clo1313_1160) and
phosphotransacetylase (pta; Clo1313_1185) increased ethanol production in C. thermocellum by decreasing carbon flux
toward lactate and acetate.

Conclusions/Significance: Thermotargetron provides a new, rapid method for gene targeting and genetic engineering of C.
thermocellum, an industrially important microbe, and should be readily adaptable for gene targeting in other thermophiles.
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Introduction

Renewable fuels like bioethanol are urgently needed due to ever

increasing global energy demands, limited quantities of fossil fuels,

and climate change [1,2]. Thermophiles with optimal growth

temperatures of ,60uC have been proposed as promising

producers of low-cost bioethanol [1–3] because thermophilic

microorganisms: (i) generally have low cellular growth yield and

contain very stable enzyme systems [4]; (ii) usually degrade plant

biomass and ferment many kinds of mono- or oligosaccharides

[5,6]; and (iii) grow at high temperatures, which reduce the risk of

contamination and facilitate the removal of volatile end products,

such as ethanol [3,4]. Clostridium thermocellum is a thermophilic

anaerobic bacterium well known for its robust cellulose-degrading
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system [7]. Hence, it is considered one of the most promising

candidates for consolidated bioprocessing (CBP) of cellulolytic

ethanol [8]. However, natural deficiencies have impeded industrial

applications of C. thermocellum and other thermophiles. For

instance, C. thermocellum is unable to utilize pentose, which is the

main product of hemicelluloses, and its tolerance for ethanol and

other hydrolysates is generally low [6,8]. The recently determined

genome sequences of C. thermocellum strains enable metabolic

engineering by targeting specific genes and pathways to improve

ethanol production. Although a gene disruption method based on

homologous recombination has been developed for C. thermocellum,

it is not widely used due to its requirements for high transforma-

tion frequencies and low gene disruption efficiency [9–12]. Thus,

novel gene targeting methods are required for the efficient

metabolic engineering of C. thermocellum, as well as for other

industrially important thermophiles.

Targetrons are gene targeting vectors derived from mobile

group II introns [13–15]. Their utility for gene targeting stems

from their novel ribozyme-based DNA integration mechanism,

termed ‘‘retrohoming’’, which is mediated by a ribonucleoprotein

(RNP) complex that contains the excised intron lariat RNA and an

intron-encoded protein (IEP) with reverse transcriptase (RT)

activity [16]. After being formed during RNA splicing, group II

intron RNPs recognize DNA target sequences for intron insertion

by using both the IEP and base pairing of the intron RNA [17].

For mesophilic group II introns, the IEP recognizes a small

number of nucleotide bases (typically 4 to 6) in double-stranded

DNA and helps promote DNA melting, enabling the intron RNA

to base pair to the adjacent 11–14 nt region of the DNA strand

encompassing the intron-insertion site [13,15,18,19]. The intron

RNA then uses its ribozyme activity to insert by reverse splicing

directly into the DNA strand to which it is base paired, while the

IEP cuts the opposite strand and uses the cleaved 39 end as a

primer for reverse transcription of the inserted intron RNA. The

resulting intron cDNA is integrated into the genome by host

enzymes [20–22]. Because the DNA target sequence is recognized

largely by base pairing of the intron RNA, group II introns can be

retargeted to insert into desired sites, simply by modifying the

base-pairing sequences in the intron RNA. Gene targeting using

mesophilic group II introns is highly efficient and specific, with

targeting frequencies typically ranging from 1–100% without

selection.

A targetron based on the Lactococcus lactis Ll.LtrB intron, which

belongs to structural subclass IIA, has been widely used for gene

targeting in different bacteria [14,15,23,24], and recently, two

other mobile group II introns, Escherichia coli EcI5 and Sinorhizobium

meliloti RmInt1, which belong to a different intron subclass (IIB),

were similarly adapted for gene targeting [25,26]. In all three

cases, targeted group II intron RNPs are expressed from a donor

plasmid that is introduced into the bacteria by electroporation or

conjugation [24]. Targetron donor plasmids typically use an

inducible or constitutive promoter to express a precursor RNA

containing the ribozyme portion of the intron (deleted for the

intron ORF; denote I-DORF) flanked by 59 and 39 exons (E1 and

E2, respectively), with the IEP expressed separately in tandem

[13,14,26]. The I-DORF RNA splices more efficiently than does

the full-length intron RNA, is resistant to degradation by cellular

nucleases, and integrates stably into the genome, since it cannot be

spliced or re-mobilized in the absence of the IEP. The intron can

be targeted to insert in either the antisense or sense orientation

relative to target gene transcription by selecting target sequences in

opposite DNA strands. Targetrons that insert in the antisense

orientation cannot be spliced and yield unconditional disruptions,

whereas targetrons that insert in the sense orientation can be used

to obtain conditional disruptions by linking their splicing to the

expression of the IEP from a separate construct [23,27]. Targeting

frequencies in bacteria are generally high enough to detect desired

integrations by colony PCR screening without selection [15], but

genetic markers, including retrotransposition-activated markers

(RAMs), can be inserted into the intron to select for desired

integrations [28,29]. Because mismatches between the intron

RNA and DNA target site affect the kcat as well as the Km for the

DNA integration reaction [30], group II intron insertion is highly

specific, with Southern hybridizations generally showing just a

single integration at the desired site [15].

The Ll.LtrB targetron has a broad host range and has been used

for gene targeting in a variety of Gram-negative and Gram-

positive bacteria, including E. coli, Salmonella typhimurium, Shigella

flexneri [14]; Lactococcus lactis [27]; Clostridium spp. [29,31];

Staphylococcus aureus [23,32]; Pseudomonas spp. and Agrobacterium

tumefaciens [24,33]; Azospirillum brasiliense [34]; Francisella tularensis

[35]; Listeria monocytogenes [36]; Paenibacillus alvei [37]; Pasteurella

multocida [38]; Ralstonia eutropha [39]; Staphylococcus saprophyticus [40];

Yersinia pseudotuberculosis [41,42]; Sodalis glossinidius [43]; and Bacillus

anthracis [44]. A number of these bacteria had previously been

intractable to gene targeting by other methods. Published

applications of targetrons include site-specifically inserting a

phage-resistance gene cloned within the intron at a regulatable

chromosomal location in L. lactis [27]; inserting antigens and

inactivating toxin genes in vaccine strains [31]; generating

bacterial strains containing multiple insertions for high-level

protein expression [45]; the identification of virulence factors

and drug targets in pathogenic bacteria [46,47]; and increasing the

level of production of chemicals and biofuels, such as isobutanol

and ethanol [48–50]. The ability to obtain multiple insertions,

disruptions, and conditional disruptions at high frequency without

selection is advantageous for synthetic and systems biology

approaches for bacterial genetic engineering.

Group II introns that might be used to construct a thermo-

targetron have been identified in the genomes of a number of

thermophiles [51–54]. Among them, the thermophilic cyanobac-

terium Thermosynechococcus elongatus contains 28 group IIB introns,

which are closely related to each other and are thought to have

evolved from a single ancestral intron that colonized this

bacterium [51,55]. Recently, we characterized the T. elongatus

group II introns by retrohoming assays in E. coli at elevated

temperatures and identified several introns that are actively mobile

and thermophilic with retrohoming efficiencies of near 100% in

plasmid-based assays at 48uC [55]. Here we developed one of

these T. elongatus group II introns into the first thermotargetron

and show that it can be used for efficient chromosomal gene

targeting in C. thermocellum at high temperatures. Further,

thermotargetron recognizes DNA target sites almost entirely by

base pairing of the intron RNA with minimal recognition by the

IEP, whose contribution to DNA melting appears to be largely

dispensable at higher temperatures. This feature is advantageous

for targeting short ORFs and small non-coding RNAs, but

decreases target specificity, thus requiring greater attention to

targetron design to avoid integration into closely matching off-

target sites.

Results

Construction of the TeI3c/4c Thermotargetron
To construct a thermotargetron, we focused initially on the T.

elongatus group II intron TeI4h*, a derivative of TeI4h in which we

had engineered modifications of both the intron RNA and RT

that together increased its retrohoming efficiency to near 100% in

Thermotargetron for Gene Targeting in Thermophiles

PLOS ONE | www.plosone.org 2 July 2013 | Volume 8 | Issue 7 | e69032



an E. coli plasmid assay at 48uC [55]. We found, however, that

TeI4h* is not easily retargetable, likely due to difficulties with its

exon-binding site 2 (EBS2), one of the sequence elements that base

pairs to the DNA target site. Unlike in other group II introns, the

TeI4h EBS2 base pairs unpredictably to DNA target sites in

different registers, possibly a mechanism that enables this intron to

proliferate by inserting into a larger number of DNA sites in its

host genome (unpublished data). We then switched to another T.

elongatus intron TeI3c (Fig. 1A). TeI3c is a naturally ORFless group

II intron that inserted into the RT ORF of another mobile group

II intron (denoted TeI4c), a configuration known as a ‘‘twintron’’.

We found that the TeI4c RT (Fig. 1B) could support independent

retrohoming of both group II introns comprising the twintron and

surprisingly, mobilized the secondary ORFless intron TeI3c more

efficiently than the primary intron TeI4c in which it is encoded

[55].

We evaluated the performance of potential thermotargetron

constructs by using a previously developed E. coli plasmid assay in

which a group II intron with a phage T7 promoter sequence

inserted near its 39 end is expressed from a donor plasmid and

retrohomes into a target site cloned in a recipient plasmid

upstream of a promoterless tetR gene, thereby activating that gene

(Fig. 2A). For thermotargetrons, the assays were done at elevated

temperature in E. coli HMS174(DE3), which is RecA2 and

encodes an isopropyl b-D-1 thiogalactopyranoside (IPTG)-induc-

ible T7 RNA polymerase. The CapR intron-donor plasmid uses a

T7lac promoter (PT7lac) to express the group II intron RNA and

flanking 59 and 39 exons (E1 and E2, respectively) with a T7

promoter sequence (PT7) inserted in domain IV of the intron

RNA, and the intron-encoded RT expressed separately from

downstream of E2, the same configuration used for mesophilic

targetrons [13,14]. The AmpR recipient plasmid contains the

intron target site (the ligated E1–E2 sequence from positions 230

to +15 from the intron-insertion site) cloned upstream of the

promoterless tetR gene. After insertion of the intron containing the

T7 promoter sequence into the DNA target site, bacteria in which

retrohoming occurred are readily selected by tetracycline-resis-

tance, and mobility efficiencies are quantified as the ratio of

(TetR+AmpR)/AmpR colonies.

We used this plasmid assay to compare the retrohoming

efficiencies of the targetron constructs TeI4h*/4h* (TeI4h*-DORF

intron RNA and TeI4h* RT) and TeI3c/4c (TeI3c RNA and

TeI4c RT) at different induction temperatures (Fig. 2B). Both the

native TeI3c intron with its native target site (target 1) and a

retargeted TeI3c intron that inserts into a different target site

(target 2) with higher retrohoming efficiency were tested. Unlike

the mesophilic Ll.LtrB group II intron, whose retrohoming

efficiency decreases at temperatures above 37uC [55], the

retrohoming efficiencies of both the TeI4h*/4h* and TeI3c/4c

targetrons increased at higher temperatures. Notably, while the

retrohoming efficiency of the TeI4h*/4h* targetron increased

progressively from ,20% at 37uC to near 100% at 48uC, the

native and retargeted TeI3c/4c targetrons showed virtually no

retrohoming at 37uC, but a sharp increase in retrohoming

efficiency at temperatures .42uC up to 100% for the retargeted

TeI3c intron at 48uC.

Determination of DNA Targeting Rules and Construction
of Thermotargetron Expression Plasmids

The ability to target group II introns for efficient insertion into

different target sites is based upon their use of both the IEP and

base pairing of the intron RNA to recognize DNA target

sequences, with the base-pairing interactions between the intron

RNA and DNA target site providing most of the DNA target

specificity [13,15,17,18]. In the case of the mesophilic group II

introns Ll.LtrB and EcI5, the IEP critically recognizes three to five

nucleotide bases in the distal 59-exon region of the DNA target site

upstream of IBS2 and a smaller number of nucleotide bases in the

39 exon [16]. For Ll.LtrB, IEP recognition of the distal 59-exon

region has been shown to promote local DNA melting, enabling

the intron RNA to base pair to the adjacent DNA target sequence,

while IEP recognition of the 39 exon is required specifically for IEP

cleavage of the bottom strand to generate the primer for target

DNA-primed reverse transcription of the reverse spliced intron

[18,19].

A model for DNA target site recognition by TeI3c/4c RNPs is

shown in Figure 3A. To identify critical bases recognized by the

IEP component of TeI3c/4c RNPs, we previously carried out an

in vivo selection experiment using the same E. coli plasmid-based

retrohoming assay at 48uC, but with a recipient plasmid that

contains randomized sequences in the regions recognized by the

IEP upstream and downstream of the IBS sequences [55]. We

then isolated a collection of TetR colonies in which the intron had

inserted into the recipient plasmid and sequenced the randomized

regions to determine nucleotide frequencies in active target sites.

The data from these selections, displayed in WebLogo format in

Figure 3B, showed that the IEP strongly recognizes only the two A

residues at positions 214 and 215 upstream of IBS2. The

selections also showed a preference for A/T-rich sequences

upstream of the region recognized by base pairing, presumably

reflecting that such A/T-rich sequences facilitate DNA melting for

intron RNA base pairing to the DNA target site.

TeI3c contains three sequence elements characteristic of

subgroup IIB introns that contribute to DNA target site

recognition by base pairing with sequences in the 59 and 39 exons

flanking the intron-insertion site [16]. These sequence elements

are denoted exon-binding sites 1, 2, and 3 (EBS1, 2, and 3), and

the complementary sequences in the DNA target site are denoted

intron-binding sites 1, 2, and 3 (IBS1, IBS2, and IBS3; Fig. 3A).

The same EBS1, EBS2, and EBS3 sequences in the intron RNA

also base pair with IBS1, IBS2, and IBS3 sequences in the 59 and

39 exons of the precursor RNA to position the exons at the group

II intron RNA active site for RNA splicing (Fig. 1A).

Mesophilic group II introns are retargeted with the aid of a

computer algorithm that scans the target sequence for the best

matches to nucleotide residues recognized by the IEP and then

designs primers for modifying the EBS sequences in the intron

RNA to base pair to the IBS sequences in the DNA target site

[15]. The IBS sequences in the 59 and 39 exons of the donor

plasmid must also be modified to be complementary to the

retargeted EBS sequences for efficient RNA splicing. To facilitate

the retargeting of TeI3c, we constructed donor plasmids that have

a unique SpeI site in exon 1 upstream of IBS2 and a unique BsiWI

site within the intron downstream of EBS1, enabling the swapping

in of a short (,0.4-kb) PCR product containing both the

retargeted EBS1 and EBS2 sequences and complementary IBS1

and IBS2 sequences in the 59 exon of donor plasmid, which are

required for RNA splicing (see Materials and Methods).

The IBS3 residue in the 39 exon of the donor plasmid, which

must also be complementary to EBS3 residue in the precursor

RNA for efficient RNA splicing, is too distant from the other

sequences to change in the same PCR step. Thus, to enable

targeting of DNA sites with different IBS3 residues, we constructed

four different donor plasmids with four different EBS3 residues

and complementary IBS3 residues. These plasmids are named

pACD2-TT1A, C, G, and T according to the identity of the IBS3

residue that can be targeted in the DNA target site. An experiment

in which we compared retrohoming efficiencies of these four

Thermotargetron for Gene Targeting in Thermophiles
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Figure 1. The T. elongatus TeI3c group II intron RNA and TeI4c RT components of the thermotargetron. (A) A secondary structure model
of group II intron TeI3c showing modifications used for retrohoming assays and the construction of the thermotargetron. Nucleotide residues that
differ from wild-type TeI3c are shown in lower case letters, exon sequences are boxed, and restriction sites used in plasmid constructions are in bold.
The T7 promoter sequence inserted in intron domain IV for plasmid-based retrohoming assays in E. coli (Fig. 2) is in italics. Greek letters denote
sequence elements involved in predicted tertiary structure interactions [16]. The loops of two stem-loop structures in subdomain DIVa (shaded
boxes) can potentially base pair to form the pseudoknot shown. (B) Schematic representation of the TeI4c RT, which splices and mobilizes group II
intron TeI3c. Conserved protein domains are: RT, containing conserved amino acid sequence blocks RT1–7 characteristic of the finger and palm
regions of retroviral and other RTs; X/Thumb; D, DNA binding; and En, DNA endonuclease. RT-0 and -2a (hatched) are additional conserved sequence
blocks found in the RT domains of non-LTR-retroelement RTs [16,72,73]. The RT and X/Thumb domains function together in reverse transcription and
specific binding of the intron RNA, which stabilizes the catalytically active RNA structure for RNA splicing and reverse splicing of the intron into the
DNA target site; domain D contributes to DNA target site recognition; and the En domain cleaves the opposite strand of the DNA target site to
generate the primer for reverse transcription of the reverse-spliced intron RNA.
doi:10.1371/journal.pone.0069032.g001
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donor plasmids with target sites containing different IBS3 residues

in every possible combination demonstrated that the EBS3 RNA/

IBS3 DNA pairing contributes substantially to retrohoming

efficiency and provided quantitative information about the relative

efficiencies of different Watson-Crick and wobble pairings at this

position (Fig. 3C).

Figure 2. Temperature profiles of retrohoming by thermophilic
group II introns in E. coli. (A) E. coli plasmid-based retrohoming assay
[13,14,55]. The CapR intron-donor plasmid uses a T7lac promoter (PT7lac)
to express a group II intron RNA with short flanking 59 and 39 exons (E1
and E2, respectively) and the group II RT cloned downstream of E2. The
group II intron, which has a T7 promoter sequence (PT7) inserted near
its 39 end, integrates into a target site (the ligated E1–E2 sequence)
cloned in a compatible AmpR recipient plasmid upstream of a
promoterless tetR gene, thereby introducing the T7 promoter and
activating that gene. The assays are done in E. coli HMS174(DE3), which
contains an IPTG-inducible T7 RNA polymerase. Intron expression is
induced with IPTG, and mobility efficiencies are calculated as the ratio
of (TetR+AmpR)/AmpR colonies. (B) Temperature dependence of intron
retrohoming. Retrohoming assays were done as described in panel (A)
in E. coli HMS174(DE3), using intron-donor plasmids pACD2X-TeI4h*/
4h*, pACD2X-TeI3c/4c, and a derivative of pACD2X-TeI3c/4c that has
been retargeted to insert into a site in the E. coli lacZ gene (see Fig. 4).
Targetron expression was induced with 500 mM IPTG for 1 h at different
temperatures. Recipient plasmids contain the DNA target sites for each
intron from positions 230 to +15 from the intron-insertion site. Target
sites 1 and 2 for TeI3/4c are the native target site for the wild-type
intron and the lacZ site target site for the retargeted intron,
respectively. The figure shows data from a single experiment, which
was repeated with similar results.
doi:10.1371/journal.pone.0069032.g002

Figure 3. DNA target site recognition by thermotargetron
TeI3c/4c. (A) DNA target site for group II intron TeI3c showing
positions recognized by the IEP (blue) and intron RNA base pairing
(red). IBS1, 2, and 3 denote intron-binding sites 1, 2, and 3 in the DNA
target site, and EBS1, 2, and 3 denote exon-binding sites 1, 2, and 3
located in three different regions of the intron RNA. The arrowhead
indicates the intron-insertion site (IS). (B) Target site positions
recognized by the TeI4c RT. Nucleotide residues recognized by the
TeI4c RT were identified in a selection experiment in E. coli
HMS174(DE3) with IPTG induction at 48uC for 1 h using the donor
plasmid pADC2X-TeI3c/4c and a recipient plasmid library with
randomized nucleotide residues at positions 235 to 213 and +2 to
+20. After plating on LB medium containing antibiotics, AmpR+TetR

colonies were analyzed by colony PCR and sequencing of the 59- and
39-integration junctions to identify nucleotide residues in active target
sites. The WebLogo representation [74] depicts nucleotide frequencies
at each randomized position in 105 selected target sites, corrected for
biases in the initial pool based on sequences of 100 randomly chosen
recipient plasmids. The x-axis shows the sequence of the intron-
insertion site in the T. elongatus genome, with blue residues
highlighting the positions recognized by the IEP. The Figure was
redrawn from [55]. (C) Retrohoming efficiency of the TeI3c/4c targetron
with different EBS3/IBS3 pairings between the intron RNA and DNA
target site. Retrohoming assays were done in E. coli HMS174(DE3) with
IPTG induction for 1 h at 48uC with all possible combinations of donor
plasmids pACD-TT1A, pACD-TT1C, pACD-TT1G, or pACD-TT1T
[EBS3(RNA)] and recipient plasmids pBRR-3c (WT, IBS3A), pBRR-3cC,
pBRR-3cG, or pBRR-3cT [IBS3(DNA)]. The grid shows mobility efficiencies
for each combination of nucleotides at the EBS3 position in the intron
RNA and the IBS3 position in the DNA target site. The wild-type U-A
pairing is indicated in bold letters. The data are from a single
experiment, which was repeated with similar results.
doi:10.1371/journal.pone.0069032.g003
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Targeting of the E. coli lacZ Gene
We next tested whether the targeting rules determined above

could be used to target the TeI3c intron to insert into sites within

the E. coli chromosomal lacZ gene, whose disruption can be scored

readily by blue-white screening. To identify potential targetron-

insertion sites, we scanned the lacZ coding sequence using the

simple search sequence WAA, where W is an A or T residue and

the two A residues correspond to DNA target site positions 214

and 215 that are recognized by the IEP. Choosing from 160 such

sites in the lacZ gene, we constructed targetrons LacZ60a, 369a

and 2586a, which are directed to three sites in the antisense strand

to give unconditional disruptions and have an A residue at IBS3

(Fig. 4A). (Targetrons are named according to the 59-nucleotide

residue of their insertion site in the lacZ ORF, with ‘‘a’’ or ‘‘s’’

indicating the antisense/bottom or sense/top strands). The

targetrons were constructed in the intron-donor plasmid pACD-

TT1A by replacing the wild-type SpeI-BsiWI fragment with a

PCR-generated fragment that changed EBS1 positions 21 to 26

and EBS2 positions 29 to 213 to be complementary to the

corresponding positions of the DNA target site (see Materials and

Methods). The retargeted donor plasmids were transformed into

E. coli HMS174(DE3) and induced with IPTG at 48uC for times

ranging from 15 min to 1 h. The cells were then plated at different

dilutions on X-gal plates, and targeting frequencies were

quantified by blue-white screening.

For all three targetrons, the targeting frequencies measured by

the percentage of white colonies increased with longer IPTG

induction times from 0–2% at 15 min to 14–51% at 1 h (Fig. 4B).

Colony PCR and sequencing of the PCR products confirmed that

all tested white colonies contained the full-length targetron

inserted precisely at the expected site in the lacZ gene, while all

tested blue colonies lacked targetron insertions in lacZ (Fig. 4C).

Southern blots of genomic DNA hybridized with a 32P-labeled

intron probe identified disruptants with a single targetron insertion

at the desired site for LacZ60a after a 15- or 30-min IPTG

induction; for LacZ369a after a 15-min IPTG induction; and for

LacZ2586a after a 60-min IPTG induction (Fig. 4D). However,

while targetron LacZ2586a gave only single insertions at the

expected site even after the longest induction time (1 h), an

increasing proportion of the disruptants obtained with the

LacZ60a and LacZ369a targetrons at longer induction times

showed an additional 1 or 2 bands that hybridized with the intron

probe, indicating off-target insertions. Such off-target insertions

are rarely seen for the Ll.LtrB or EcI5 targetrons (cf., [15,25]) and

likely reflect the smaller number of target site positions recognized

by the TeI4c IEP (see above). Thus, additional precautions may be

necessary to obtain desired single insertions with thermotargetrons

(see Discussion).

Targeting of C. thermocellum Chromosomal Genes
To test the function of the thermotargetron in a thermophile, we

targeted chromosomal genes in Clostridium thermocellum, an organ-

ism that is used in biofuels production and has an optimal

temperature range of 50–69uC [56,57]. For these experiments, we

constructed the thermotargetron donor plasmid pHK-TT1A in

which the thermotargetron is expressed by using the constitutive

promoter of the C. thermocellum groEL gene (Fig. 5) [58]. The

thermotargetron expression cassette with the groEL promoter was

cloned in an E. coli/C. thermocellum shuttle vector denoted pHK, a

derivative of pNW33N (BGSC) containing replication origins from

Escherichia coli plasmid pUC19 (ColE1) and Geobacillus stearothermo-

philus plasmid pTHT15 (RepB), as well as a chloramphenicol

acetyltransferase (cat) gene, which was derived from Staphylococcus

aureus plasmid pC194 and has been used for selections in

thermophiles at temperatures of 50–55uC [59,60].

For gene targeting in C. thermocellum, pHK-TT1A plasmids

expressing the thermotargetrons were electroporated into wild-

type strain DSM 1313, and transformants were selected by plating

on GS-2 medium containing thiamphenicol, a derivative of

chloramphenicol. In successful experiments, after incubating the

plates for 5 days at 51uC, we obtained 1 to 100 thiamphenicol-

resistant colonies for each thermotargetron construct, with most

constructs giving 20 to 50 transformants. The transformants were

then screened for thermotargetron insertion at the desired site by

colony PCR and precise insertion was confirmed by sequencing

across the 59- or 39-integration junction. Targeting efficiencies

were calculated as the percentage of transformants containing the

insertion.

By using the above procedures, we obtained seven thermo-

targetrons (CipA1827s, Hfat165s, Hyd1525a, Ldh309s, Ldh508s,

Pta318a, and PyrF281s) that inserted into the desired site in six

different C. thermocellum genes [cipA (Clo1313_0627), hfat

(Clo1313_2343), hyd (Clo1313_0554), ldh (Clo1313_1160), pta

(Clo1313_1185), and pyrF (Clo1313_1266)] with targeting fre-

quencies ranging from 67 to 100% without selection (Fig. 6). For

six of these thermotargetrons (the exception was Hfat165s), the

initial colony PCR screening showed bands derived from both the

wild-type and disrupted alleles, indicating mixed populations of

cells. Thus, the colonies were restreaked on fresh GS-2 solid

medium containing thiamphenicol to isolate pure populations of

the desired disruptant (Fig. 7). Southern hybridizations after curing

the targetron expression plasmid showed that four of the

disruptants (those obtained with CipA1827s, Pta318a, Ldh508s

and Hfat165s) contained a single thermotargetron insertion at the

desired site, but the remaining disruptants (Ldh309s, PyrF281s

and Hyd1525a) had one or more additional bands, indicating off-

target integrations (Fig. 8). In one case (Ldh508s), it was necessary

to restreak multiple times to obtain the desired single disruptant.

We failed to obtain disruptants for 18 additional thermotarge-

trons that were tested in parallel. In two cases, thermotargetrons

targeted to different sites in gly3 (Clo1313_0396), ,30 thiamphe-

nocol-resistant transformants were obtained after electroporation

of the targetron donor plasmid, but none were found to have the

desired disruptions by colony PCR. In the remaining 16 cases [2

targetrons for ldh (Clo1313_1878), 1 for pta (Clo1313_1185), 2 for

fat (Clo1313_1717), 2 for ack (Clo1313_1186), 1 for hfat

(Clo1313_2343), 2 for hyd (Clo1313_1881), 2 for hyd

(Clo1313_1791), 2 for hyd (Clo1313_0571), 2 for hyd

(Clo1313_0573), and 1 for fur (Clo1313_1691)], we obtained no

thiamphenicol-resistant transformants in at least three separate

electroporations of the targetron donor plasmid. The failure to

obtain thiamphenicol-resistant transformants for these thermo-

targetrons could reflect the low, variable transformation efficiency

of C. thermocellum or that the thermotargetron is deleterious, either

because of harmful off-target integrations or because the target

gene is essential. Hydrogenases, which catalyze the reversible

oxidation of molecular hydrogen, play a vital role in anaerobic

metabolism by controlling excessive reducing equivalents [61].

Although we constructed thermotargtrons for all five putative

hydrogenases genes in C. thermocellum DSM 1313, only Hyd1525a

targeted to Clo1313_0554 gave disruptants (Fig. 6), and these

showed no obvious growth changes compared to the wild-type

strain in a preliminary fermentation test with cellobiose as the

carbon source, indicating that this gene is not essential. In more

recent experiments, we were successful in obtaining thermotarge-

tron disruptions at two additional sites in the cipA gene and in
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disrupting a secondary scaffoldin-encoding gene (Clo1313_1487)

in C. thermocellum DSM 1313 (unpublished data).

Fermentation Analysis of C. thermocellum with Single and
Double Disruptions in the Genes Encoding Lactate
Dehydrogenase and Phosphotransacetylase

Ethanol, acetate and lactate are three main fermentation end-

products of C. thermocellum. Lactate dehydrogenase (Ldh) catalyzes

the reduction of pyruvate to lactate, and phosphotransacetylase

(Pta) participates in the production of acetate. Metabolic

engineering was previously performed in C. thermocellum to enhance

the production of ethanol by deleting the ldh (Clo1313_1160) and

pta (Clo1313_1185) genes via homologous recombination, requir-

ing complex plasmid constructions, specific selection markers, and

laborious screening [59]. Here, we tested how thermotargetron

disruption of these genes affects carbon metabolism and ethanol

production.

Besides the Ldh mutant (DSM 1313 ldh::Ldh309s) and Pta

mutant (DSM 1313 pta::Pta318a), a double mutant DSM

1313 ldh::Ldh309s, pta::Pta318a was constructed by introducing

thermotargetron Pta318a into the C. thermocellum Ldh mutant after

curing the plasmid expressing the Ldh targetron. This double

Figure 4. Targeted disruption of the E. coli lacZ gene at 486C. (A) DNA target sequences and EBS/IBS interactions for thermotargetrons
designed to insert into the E. coli lacZ gene. The wild-type target sequence and EBS/IBS interactions are shown above for comparison. The arrowhead
indicates the intron-insertion site (IS), and gray shading highlights nucleotide residues in the lacZ target sites that match those in the wild-type target
site. The schematic of the lacZ gene below shows the location of the targetron-insertion sites and the flanking ApaI and EcoRI sites used for Southern
hybridizations. (B) Time course of lacZ targeting. After inducing thermotargetron expression in E. coli HMS174(DE3) with 500 mM IPTG at 48uC, lacZ
targeting frequencies were determined by blue-white screening on LB+X-Gal agar plates. The Table shows the fraction of white colonies found by
Southern hybridization to contain a single targetron insertion at the desired site. (C) PCR analysis. Eight colonies (two blue (B) and six white (W)) were
picked for each targetron and compared to the parental E. coli HMS174(DE3) strain (P) in three PCRs with primers that flank the targetron-insertion
site to detect the targetron insert or amplify the 59- or 39-integration junctions (Materials and Methods). (D) Southern hybridization analysis of two
blue (B) and six white (W) colonies after induction of targetron expression for 15 or 30 min (LacZ60a and LacZ369a) or 1 h (LacZ2586a) at 48uC The
blots show ApaI+EcoRI-digested chromosomal DNA hybridized with 32P-labeled probes for the TeI3c intron (nucleotides 1–342) or lacZ gene
(nucleotides 30–1850). The lacZ probe hybridizes to a 3.7-kb band containing the wild-type lacZ gene in blue colonies and to a 4.5-kb band
containing the lacZ gene with the inserted targetron in white colonies. The intron probe hybridizes to the same 4.5-kb band in the white colonies.
Additional bands due to off-target integrations are observed in some white colonies.
doi:10.1371/journal.pone.0069032.g004
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disruptant contains an additional off-target integration that was

identified by PCR and sequencing as being in Clo1313_2042,

which is annotated as encoding a proteinase inhibitor and is not

expected to affect carbon metabolism. Growth curves of the wild-

type and mutant strains using cellobiose as the carbon source

showed that the growth of the Ldh mutant was enhanced, while

the Pta mutant and the Ldh Pta double mutant exhibited a

prolonged lag phase and depressed growth compared to the wild-

type strain (Fig. S1).

The extracellular metabolites resulting from fermentation by the

wild-type and mutant strains after curing of the targetron plasmid

were analyzed by HPLC (Fig. 9, Fig. S2). With cellobiose as the

carbon source, lactate production by the Ldh disruptant

(ldh::Ldh309s) was decreased to 4% of the wild-type level, while

acetate and ethanol production increased by 37% and 45%,

respectively (Fig. 9). By contrast, in the Pta mutant (pta::Pta318a),

lactate and acetate production were decreased to 81.5 and 13.5%

of the wild-type levels, respectively, while ethanol production was

increased by 42%. The double mutant showed strong decreases in

both lactate and acetate production (8.6 and 11.3% wild-type,

respectively), while ethanol production was increased by 56%

(Fig. 9). Fermentation with Avicel as the carbon source showed

similar patterns of metabolite production, but with smaller percent

increases in ethanol production in the mutants (Fig. S2).

The extracellular metabolites of the wild-type and double

mutant strains were further analyzed by nuclear magnetic

resonance (NMR) spectroscopy, which showed that pyruvate

production of the double mutant was six times higher than that of

the wild-type strain (Fig. 10). This finding, which is in agreement

with previous results for the C. thermocellum ldh and pta deletions

obtained by homologous recombination [59], suggests that

accelerating the carbon flux from pyruvate to ethanol will be

required to further enhance ethanol production.

Discussion

Here, we describe the construction of a thermotargetron derived

from a mobile group II intron found in the thermophilic

cyanobacterium T. elongatus. After determining DNA-target site

recognition rules for this thermotargetron in E. coli at 48uC, we

used it in C. thermocellum to disrupt six different chromosomal genes

at high efficiency (67–100% without selection). Like mesophilic

targetrons, the thermotargetron integrates site-specifically at

efficiencies that are high enough to detect by colony PCR without

selection, even among a small number of transformants; can be

used in RecA+ or RecA2 bacterial strains; and has a broad host

range, with the ability to function in both Gram-negative (E. coli,

T. elongatus) and Gram-positive (C. thermocellum) bacteria. Thus, we

anticipate that it will be useful for gene targeting in a variety of

thermophiles, as well as mesophiles that can tolerate short periods

at elevated temperatures.

For use in C. thermocellum, we constructed a thermotargetron

expression cassette that uses the promoter of the C. thermocellum

groEL gene to express the thermotargetron group II intron RNA

and RT and cloned it to an E. coli/C. thermocellum shuttle vector

derived from pNW33N. The resulting thermotargetron expression

vector, denoted pHK-TT1A, contains a ColE1 replication origin

that functions in Gram-negative bacteria, a RepB replication

origin that functions in thermophilic Gram-positive bacteria, and a

chloramphenicol-resistance gene from S. aureus plasmid pC194,

which has been used previously for selection in thermophiles at

50–55uC [59,60] (Fig. 5). The very high targeting efficiencies of

the thermotargetron make it possible to identify disruptants by

colony PCR without including a selectable marker in the intron,

thereby facilitating the construction of strains with multiple gene

disruptions. In principle, thermotargetrons could also be used to

site-specifically insert cargo genes cloned within the intron,

although such insertions decrease targeting efficiency, sometimes

substantially [27,62]. In mesophiles, targetrons can be used to site-

specifically position short recombinase sites (e.g., Cre/LoxP) that

can then be used to integrate separately transformed DNAs by

recombination (http://www.sigmaaldrich.com/targetron), and a

future step will be to construct such a system for thermophiles.

The mobile group II intron that we used to construct the

thermotargetron evolved to retrohome in T. elongatus, an organism

that has an optimal growth temperature of 50–60uC [63]. Here,

we find that the thermotargetron is active in E. coli at temperatures

.42uC with activity increasing with increasing temperature up to

48uC, above which cells lose viability. Gene targeting in C.

thermocellum was done at 51uC, but further experiments showed

that the thermotargetron remains active in C. thermocellum at higher

temperatures (tested up to 65uC; unpublished data). Both the

intron RNA and IEP components of the thermotargetron evolved

to function at high temperature, and elsewhere we show that the

TeI4c IEP has thermostable RT activity that is capable of

synthesizing cDNAs at temperatures up to 81uC [64].

Our success rate in obtaining targeted gene disruptions in C.

thermocellum was 7 of 25 targetron constructs tested. In most cases,

however, the failures were due to inability to obtain thiampheni-

col-resistant transformants after electroporation of the targetron

donor plasmid. In addition to inefficient transformation, such

Figure 5. Map of plasmid pHK-TT1A used for thermotargtetron
expression in C. thermocellum. The plasmid uses a C. thermocellum
groEL promoter to express a thermotargetron cassette consisting of the
T. elongatus TeI3c group II intron and flanking exon sequences followed
by an ORF encoding the TeI4c RT. The targetron expression cassette is
cloned in the E. coli/C. thermocellum shuttle vector pHK, which was
derived from pNW33N (BGSC) and contains replication origins from E.
coli plasmid pUC19 (ColE1) and Geobacillus stearothermophilus plasmid
pTHT15 (RepB), as well as a chloramphenicol acetyltransferase (cat)
gene from Staphylococcus aureus plasmid pC194 that has been used for
selections in thermophiles at temperatures of 50–55uC [59,60].
doi:10.1371/journal.pone.0069032.g005
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failures could reflect that the target genes are essential or that these

thermotargetrons gave deleterious off-target integrations. In the

future, the proportion of successful thermotargetrons may be

improved by: (i) incorporating genetic markers, including RAM

markers constructed for thermophiles, enabling the detection of

disruptions by less efficient thermotargetrons; (ii) the further

refinement of DNA targeting rules for base-pairing interactions,

which assume greater importance for thermotargetron at higher

temperatures; and (iii) selecting targetrons that have the most

unique integration sites in the C. thermocellum genome to minimize

the possibility of off-target integrations (see below). The seven

targetrons validated here could now be used to obtain the same

disruptions in any strain of C. thermocellum in which the target site is

sufficiently conserved.

Like mesophilic targetrons, the thermotargetron recognizes

DNA target sequences by using both the IEP and base pairing of

the intron RNA, with the latter providing most of the DNA target

specificity. Thermotargetron differs, however, in that the number

of nucleobases recognized by the IEP is smaller than commonly

found for mesophilic targetrons. This difference appears to reflect

that the thermotargetron operates at high temperatures that help

promote DNA melting and is thus less dependent upon energy

derived from IEP binding for DNA strand separation [55]. The

more limited protein recognition increases the number of potential

insertion sites, thereby increasing the number of thermotargetrons

that can be tested for each target gene. The E. coli lacZ gene, for

example, contains 160 potential insertion sites that match the short

IEP recognition sequence for thermotargetron (WAA; see Results),

compared to 13 and 5 target sites that match the five nucleotide

residues most stringently recognized by the IEP for the Ll.LtrB

and EcI5 targetrons (Ll.LtrB: 221G, 220A, 219T, 217A, and

+5T; EcI5: 218C, 217C, 215A, 214A, and +5T [25,28]). The

more relaxed protein recognition of thermotargetron should

facilitate the targeting of short ORFs and small non-coding RNAs

Figure 6. Validated thermotargetrons for C. thermocellum. The Figure shows target sites, EBS/IBS base-pairing interactions, and targeting
efficiencies for seven targetrons that gave site-specific gene disruptions in C. thermocellum. The targeted genes and their gene products were: cipA
(Clo1313_0627), cellulosome scaffoldin protein; hfat (Clo1313_2343), hypothetical formate acetyltransferase; hyd (Clo1313_0554), hydrogenase; ldh
(Clo1313_1160), lactate dehydrogenase; pta (Clo1313_1185), phosphotransacetylase; pyrF (Clo1313_1266), orotidine 59-phosphate decarboxylase.
Gray shading highlights nucleotide residues in the C. thermocellum target sites that match those in the wild-type target site, which is shown above for
comparison. The arrowhead indicates the intron-insertion site (IS). The targeting efficiency was calculated as the percentage of thiamphenicol-
resistant transformants in which the disruption of the target gene was detected by colony PCR and confirmed by sequencing across the 59- or 39-
intron integration junction (see Fig. 7).
doi:10.1371/journal.pone.0069032.g006
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not only in thermophiles, but also in mesophiles at moderately

elevated temperature.

A drawback of more limited IEP recognition by thermotarge-

tron is that it decreases target specificity leading to a greater

number of off-target integrations than are typically observed for

mesophilic targetrons. Despite this drawback, we could obtain

single insertions by further restreaking and rescreening when

attempted in the majority of cases. Further precautions and

improvements that may decease off-target integrations include the

use of a more readily curable donor plasmid and/or an inducible

promoter to avoid continuous targetron expression, and scanning

the host genome for close matches to potential target sites, which

was not done for the thermotargetrons tested here.

Because C. thermocellum is a promising candidate for CBP

production of cellulosic ethanol, we demonstrated the application

of thermotargetron in this organism by targeting chromosomal

Figure 7. PCR analysis of thermotargetron insertions in chromosomal genes of C. thermocellum DSM 1313. (A) Schematic representation
of the insertion of seven targetrons into chromosomal genes of C. thermocellum DSM 1313. Genomic DNA is indicated by a double line, and the ORF
of the target gene is indicated by an open arrow, whose direction indicates whether the ORF is located on the positive (59 to 39) or negative (39 to 59)
DNA strand. Inserted targetrons are indicated by black boxes, with the insertion junctions indicated by arrowheads with nucleotide position numbers
in the target gene. PCR-primer binding sites and primer orientations are indicated by horizontal arrows. The binding sites for the external primer sets
are located within the target genes upstream or downstream of the targetron-insertion site. The internal primer Te680rc base pairs to the sense
strand of the intron (nucleotide positions 658–675; Table S3). The expected sizes (kb) of the PCR products obtained with the external primers for the
wild-type (WT) and disrupted genes are indicated to the right. (B) Colony PCR analysis of seven targetron insertions in chromosomal genes. Three
PCRs were performed for each targetron. Lane 1, using the external primers and wild-type DNA as the template; lane 2, using the external primers
and the disruptant DNA as the template; lane 3, using the external forward or reverse primer and internal primer Te680rc with the mutant DNA as the
template; M, DNA markers.
doi:10.1371/journal.pone.0069032.g007
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genes that play important roles in cellulose utilization and

metabolism (Fig. 6). For example, cipA encodes a major scaffoldin

protein of the cellulosome, a multi-enzyme complex that functions

in cellulose degradation; the hyd genes encode hydrogenases, which

are important in maintaining redox balance; and hfat encodes a

putative formate acetyltransferase, which may participate in

formate production from pyruvate, the major intermediate in

the ethanol producing pathway. We then focused on the ldh and

pta genes, which encode enzymes involved in the production of

lactate and acetate, respectively, the major by-products of

cellulosic ethanol production in C. thermocellum. Fermentation

analysis showed that the disruption of either ldh or pta by

thermotargetrons in C. thermocellum strain DSM 1313 increased

ethanol production by 37 and 42%, respectively. Although the

double mutant showed strong decreases in both lactate and acetate

production, its ethanol production was increased by only 56%

(Fig. 9, Fig. S2), while pyruvate production measured by NMR

was increased by six-fold (Fig. 10). These results are consistent with

previous analysis of ldh and pta deletions obtained by homologous

recombination in C. thermocellum strain DSM 1313 [59] and suggest

that additional genetic engineering of pyruvate metabolism will be

needed to further increase ethanol production. In addition to C.

thermocellum, a variety of other thermophiles have been used as

microbial factories for the production of chemicals or thermostable

proteins [65,66]. Given its broad host range, we anticipate that

thermotargetron will be generally useful for increasing the

efficiency of chemical and protein production in these organisms.

Materials and Methods

Bacterial Strains and Growth Conditions
E. coli HMS174(DE3) (Novagen) was used for retrohoming

assays and DH5a (Life Technologies) was used for cloning (Table

S1). Strains were grown in Luria-Bertani (LB) medium with

shaking at 200 rpm under conditions described for individual

experiments. Antibiotics were added at the following concentra-

tions when needed: ampicillin, 100 mg/ml; chloramphenicol, 25–

50 mg/ml; tetracycline, 25 mg/ml.

C. thermocellum DSM 1313 (Table S1) was cultured at 55uC
anaerobically in modified GS-2 medium (KH2PO4 1.5 g,

K2HPO4?3H2O 2.1 g, urea 2.1 g, MgCl2?6H2O 1.0 g,

CaCl2?2H2O 150 mg, FeSO4?6H2O 1.25 mg, cysteine-HCl 1 g,

MOPS-Na 10 g, yeast extract 6.0 g, trisodium citrate?2H2O 3.0 g,

resazurin 0.1 mg per liter, pH 7.4) [57], unless otherwise noted.

Cellobiose (6–10 g/l) or Avicel (10 g/l) were used as the carbon

source. 0.8% agar was added for solid medium, and thiamphenicol

was added at 3–6 mg/ml, when needed. All media were purged with

high purity nitrogen gas for at least 5 min to maintain anoxic

conditions.

Recombinant Plasmids
The plasmids used in this study are listed in Table S2. The

intron-donor plasmids pACD2X-TeI4h*/4h* and pACD2X-

TeI3c/4c and the recipient plasmids pBRR-3c and pBRR-4h

used for retrohoming assays in E. coli were described previously

[55]. Recipient plasmids containing different DNA target sites

were constructed by swapping in a synthetic double-stranded

DNA oligonucleotide containing target site positions 230 to +15

between the PstI and EcoRI sites of pBRR-tet, as described

[13,55].

The thermotargetron donor plasmid pACD2-TT1A was

derived from pACD2X-TeI3c/4c by introducing an SpeI site

upstream of IBS2 in the 59 exon and a BsiWI site between EBS1

and EBS3 within the intron, thereby enabling the swapping in of a

short (357-bp) SpeI+BsiWI fragment containing retargeted IBS1

and 2 and EBS1 and 2 sequences. It was constructed in two steps

via PCRs with primers that introduce the mutations. First, the

Figure 8. Southern hybridization analysis of thermotargetron
insertions in chromosomal genes of C. thermocellum DSM 1313.
After curing the targetron expression plasmid, genomic DNAs of wild-
type or disruptant strains were digested with EcoRI and BamHI, run in a
0.8% agarose gel, and blotted to a Nylon membrane (Hybond-NX, GE
Healthcare). The blots were hybridized with a DIG-labeled probe for the
TeI3c intron (nucleotide positions 539–710) and visualized by immu-
nological detection according to the manufactor’s protocol (DIG-High
Prime DNA Labeling and Detection Starter Kit I, Roche). M, DNA
markers.
doi:10.1371/journal.pone.0069032.g008

Figure 9. HPLC analysis of extracellular metabolites produced
by C. thermocellum wild-type DSM 1313 and mutant strains with
cellobiose as the sole carbon source. The strains were: WT, C.
thermocellum wild-type DSM 1313; DSM 1313 ldh::Ldh309s; DSM
1313 pta::Pta318a; and double mutant DSM 1313 ldh::Ldh309s, pta::P-
ta318a. The fermentation time was 110 h, and the values are the mean
for three independent fermentations with the error bars indicating the
standard deviation.
doi:10.1371/journal.pone.0069032.g009
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mutation T-20A was introduced into the 59 exon to create the

SpeI site and then the mutations T319A, A321G, T337C, and

A339T were introduced into the intron to create the BsiWI site

and maintain base pairing in stem ID(ii) (Fig. 1A). Finally, the T7

promoter sequence in DIV was deleted by replacing the 516-bp

BsiWI+PstI fragment with one generated by PCR from the native

TeI3c intron cloned in pUC18 [55].

pACD2-TT1C, G, and T are derivatives of pACD2-TT1A that

have the indicated nucleotide residue at IBS3 in the 39 exon and

the complementary nucleotide residue at EBS3 in the intron to

maintain the EBS3/IBS3 pairing in the unspliced precursor RNA.

These additions enable targeting of DNA sites with the indicated

nucleotide residues at the IBS3 position. The plasmids were

constructed by PCR of pACD2X-TeI3c/4c with primers

TeI3cEBS3mutA, C, or G and TeI3cIBS3T, G or C-3Pst that

introduce the EBS3 and IBS3 changes, respectively (Table S3).

The resulting PCR products were digested with BsiWI and PstI

and swapped for the corresponding fragment of pADC2-TT1A.

Plasmid pIKM1-TT1A contains the C. thermocellum groEL

promoter followed by the TeI3c intron/TeI4c RT cassette from

pACD2-TT1A cloned between the BamHI and EcoRI sites of the

vector pIKM1 [67]. pIKM1 contains a thermostable kanR marker,

a gram-negative ColE1 replication origin, an ampR marker, a

Gram-positive pIM13 (ORF2) origin, and a MLS (Macrolide

Lincosamine Streptogramin) marker [67]. pIKM1-TT1A was

constructed in two cloning steps. In the first step, the C. thermocellum

groEL promoter was amplified from plasmid pJIR750ai_GroEL_-

promoter-CelS [58] by PCR with primers Ct_PgroEL5, which

introduces a BamHI site, and Ct_PgroEL3, which introduces

SpeI, XhoI and EcoRI sites (Table S3), and the resulting PCR

product was digested with EcoRI and BamHI and cloned between

the corresponding sites of pIKM1 to generate the intermediate

plasmid pIMK1PgroEL. In the second step, the TeI3c/TeI4c

cassette from pADC2-TT1A was reconstituted from two gel-

purified DNA fragments (a 897-nt SpeI/PstI fragment containing

TeI3c and a 1716-nt PstI/XhoI fragment containing the TeI4c

RT ORF) and cloned downstream of the GroEL promoter in

pIMK1PgroEL via a three-fragment ligation.

Plasmid pHK-TT1A, used for thermotargetron expression in C.

thermocellum, is a derivative of pNW33N (Genbank AY237122;

BGSC). To minimize the size of the final plasmid [12], a 760-bp

fragment of pNW33N between the E. coli replication origin

(ColE1) and chloramphenicol-resistance gene (cat) of pNW33N

was deleted by reverse PCR of pNW33N using primers Phk-F and

Phk-R (Table S3), followed by digestion with EcoRI and self-

ligation. The resulting plasmid, denoted pHK, contains a multiple

cloning site region with eleven single restriction sites (PstI, NarI,

SmaI, BamHI, XhoI, EcoRI, XbaI, HindIII, KpnI, NdeI, and

NheI) in place of the deleted DNA segment. To generate the

thermotargetron expression plasmid pHK-TT1A, pIMK1-TT1A

(see above) was digested with EcoRI and BamHI, and the 2.8-kb

fragment containing the groEL promoter and Tel3c/4c targetron

cassette was cloned between the EcoRI and BamHI sites of pHK.

Except for the CipA1827s and pyrF281s thermotargetrons, which

were transferred by cloning EcoRI+BamHI fragments of

pIMK1P-TT1A into pHK, as described above, thermotargetrons

were constructed directly in pHK-TT1A by replacing the 357-bp

SpeI+BsiWI fragment with one containing modified IBS1, IBS2,

EBS1, and EBS2 sequences generated by SOEing PCRs [68] (see

below).

Targeting of Thermotargetron to Desired Sites
Thermotargetrons are targeted to insert into desired sites by: (i)

searching the DNA target sequence for matches to the sequence

WAA (where W is A or T) at positions 216 to 214 from the

intron-insertion site; (ii) generating a 357-bp PCR product in

which the EBS1 and EBS2 sequence in the intron RNA are

modified to base pair to IBS1 positions 21 to 26 and IBS2

positions 28 to 213 of the DNA target site, and the IBS1 and

IBS2 sequences in the 59 exon of the donor plasmid are modified

to base pair to the retargeted EBS1 and EBS2 sequences for

efficient RNA splicing; and (iii) swapping the PCR product

containing the modified IBS1 and 2 and EBS1 and 2 sequences

into one of four different targetron donor plasmids that enable

recognition of different nucleotide residues at IBS3 (position +1).

The 357-bp PCR product with retargeted EBS1, EBS2, IBS1, and

IBS2 sequences was generated in two PCR steps. In the first step,

Figure 10. H1NMR spectra of the extracellular metabolites of C. thermocellum DSM 1313 strains cultured with cellobiose as the sole
carbon source. The strains were WT, C. thermocellum wild-type DSM 1313 and the double mutant DMS 1313 ldh::Ldh309s, pta::Pta318a. Peaks for
lactate, acetate, ethanol, and pyruvate are marked. The ratios of the integrals of representative metabolite peaks and internal reference (0.5 mM DSS)
were used to calculate the metabolite concentrations against standard curves, as described in Materials and Methods. The concentrations of pyruvate
produced by the wild-type and double mutant strains were calculated to be 0.73 and 4.12 mM, respectively.
doi:10.1371/journal.pone.0069032.g010

Thermotargetron for Gene Targeting in Thermophiles

PLOS ONE | www.plosone.org 12 July 2013 | Volume 8 | Issue 7 | e69032



two PCRs were done with overlapping primers to amplify two

overlapping segments of the intron. The upstream segment was

amplified with a 59 primer that changes IBS1 and IBS2 and has a

59 terminal SpeI site (primers denoted xxxxIBS1/2, where xxxx

indicates the target gene and the position of the insertion site in the

bottom/antisense (‘‘a’’) or sense/top (‘‘s’’) strands), and a universal

39 primer (TeI3cUNI) that is complementary to the 59 primer of

the second PCR. The downstream segment was amplified with a

59 primer (xxxxEBS2) that is partially complementary to the

universal primer and changes EBS2, and a 39 primer (xxxxEBS1a)

that changes the EBS1 sequence and has a 59 terminal BsiWI site

(Table S3). In the second step, the two PCR products were gel-

purified and used in a second PCR with the xxxxIBS1/2 and

xxxxEBS1a outside primers to generate a 357-bp product with the

modified IBS1, IBS2, EBS1, and EBS2 sequences and terminal

SpeI and BsiWI sites that was then swapped for the corresponding

segment of the targetron expression plasmid. The resulting

targetrons are denoted by a number that corresponds to the

nucleotide residue 59 to the intron-insertion site within the target

gene, followed by ‘‘a’’ or ‘‘s’’ indicating the antisense/bottom or

sense/top strands, respectively.

Intron Retrohoming Assays and Gene Targeting
Experiments in E. coli

For intron retrohoming assays, E. coli HMS174(DE3) was co-

transformed with the CapR-donor and AmpR-recipient plasmids,

inoculated into 5 ml of LB medium containing ampicillin and

chloramphenicol, and grown overnight with shaking (200 rpm) at

37uC. A small portion (50 ml) of the overnight culture was

inoculated into 5-ml of fresh LB containing the same antibiotics

and grown for 1 h as above. The cells were then induced by

adding 1 ml of additional LB containing ampicillin, chloram-

phenicol and 3 mM IPTG (500 mM final) and incubating for times

and at temperatures indicated in Figures for individual experi-

ments. After induction, the culture was placed on ice, diluted with

ice-cold LB, plated at different dilutions onto LB agar medium

containing ampicillin or ampicillin+tetracycline, and incubated

overnight at 37uC. Retrohoming efficiencies in these plasmid-

based assays were quantified as the ratio of (TetR+AmpR)/AmpR

colonies. For determination of temperature dependence, the initial

5-ml log-phase cultures grown at 37uC were mixed with an equal

volume of fresh LB medium containing antibiotics and 1 mM

IPTG (500 mM final) that had been pre-warmed to achieve the

desired temperature.

For targeting of the E. coli lacZ gene, donor plasmids expressing

the retargeted intron were transformed into E. coli HMS174(DE3)

and grown overnight in LB medium containing chloramphenicol.

An aliquot of the overnight culture was diluted 100-fold into fresh

LB supplemented with chloramphenicol, incubated for 1 h at

37uC, and induced with 500 mM IPTG at 48uC for times specified

in figure legends for individual experiments. Cells were plated at

different dilutions onto LB+X-Gal agar, and the plates were

incubated overnight at 37uC for counting of blue and white

colonies. Colonies were picked, restreaked and analyzed by colony

PCR using primers that amplify the region of the lacZ gene

containing the targetron insert (primers lacZ30s+lacZ1850a or

lacZ1850s+lacZ3060a) or the 59- and 39-integration junctions

(primers lacZ1850a or lacZ3060a+TeI3c680rc and lacZ30s or

lacZ1850s+TeI3c420s, respectively) (Table S3). The targetron-

insertion sites were confirmed by sequencing the PCR products

with either the Te420f or Te680rc primers (Table S3). For

Southern hybridizations, strains were cured of the targetron

expression plasmid, and chromosomal DNA was isolated by the

CTAB/NaCl method [69], digested with ApaI and EcoRI, run in

a 0.9% agarose gel, blotted to Nylon membrane (Hybond-NX, GE

Healthcare), and hybridized with 32P-labeled DNA probes (High

prime labeling kit, Roche) for the lacZ gene (nucleotides 30–1850)

or the TeI3c intron (nucleotides 1–342), as described [28]. The

blots were scanned with a Typhoon Trio PhosphorImager (GE

Healthcare).

Use of Thermotargetron for Gene Targeting in
Clostridium thermocellum

Transformation of C. thermocellum DSM 1313 was performed

according to the reported protocol in an anaerobic chamber with

slight modifications [11,12]. C. thermocellum competent cells were

prepared by cultivation at 55uC anaerobically with cellobiose (5 g/

l) as the carbon source until the O.D.600 was 0.5–0.8. Cells were

collected by centrifugation (4uC, 25006g, 10 min) and washed

twice in 15% ice cold, sterile, and oxygen-free glycerol. 50 ml of

the cell suspension was added to a 0.1-cm electroporation

cuvettete (BioRad) with 1–10 ml of DNA (10–2,000 ng) in sterile

distilled water. A series of 40 square pulses was applied, each with

an amplitude of 1.5 kV and duration of 50 ms at 500 ms intervals.

After electroporation, cells were allowed to recover for 15–20 h at

51uC in 4 ml of antibiotic-free GS-2 medium, and then plated on

solid medium containing thiamphenicol (Tm) at a final concen-

tration of 3–6 mg/ml. The plates were incubated at 51uC for 5

days, then colonies were picked and inoculated into 4 ml of fresh

GS-2 medium supplemented with thiamphenicol. A portion of the

cell suspension was used for colony PCRs to screen for targetron

insertions in the desired genes. Colony PCR was done with

forward and reverse primers flanking the target gene to check for

full-length (0.8-kb) targetron insertion and with an internal primer

(Te680rc) and the flanking forward or reverse primer to PCR

across the 59- or 39-integration junction, respectively (Figure 7,

Table S3). The integration junctions were verified by sequencing.

Targetron expression plasmids were cured by growing cells in

the absence of antibiotic. A 10-ml portion of a cell suspension was

inoculated into 4 ml of fresh GS-2 medium without thiamphenicol

and incubated at 51uC for 2 days. Then 500 ml of the culture was

inoculated into 4 ml of fresh GS-2 medium containing thiamphe-

nicol, and curing of the plasmid was verified by inability of the cells

to grow in the presence of the antibiotic. The process was repeated

once or twice as needed to cure the plasmid.

Southern hybridization to check the targetron insertion in C.

thermocellum chromosomal DNA was performed as described [70],

after curing the targetron expression plasmid. To isolate genomic

DNAs for Southern hybridizations, wild-type and mutant cells

were cultivated at 51uC in 5 ml GS-2 medium with cellobiose as

carbon source until late exponential phase (O.D.600 < 1.0), and

then collected by centrifugation at 50006g for 5 min. Genomic

DNA was isolated by using a Bacterial Mini Preparation Kit

(BioMed technology) and digested with BamHI and EcoRI at

37uC overnight. The digests were run in a 0.8% agarose gel at low

voltage and blotted to a Nylon membrane (Hybond-NX, GE

Healthcare). The blots were hybridized with DIG-labeled TeI3c

intron probe (nucleotides 539–710) generated by PCR of TeI3c

with primers Probe172-F and Probe172-R and visualized by

immunological detection according to the manufacturer’s protocol

(DIG-High Prime DNA Labeling and Detection Starter Kit I,

Roche).

Fermentation Analysis via HPLC and NMR
C. thermocellum strains were incubated at 55uC in 100 ml GS-2

medium anaerobically with cellobiose or Avicel (10 g/l) as the sole

carbon source for 110–120 h. Samples were taken every 5 to 10 h

with a 2.5-ml syringe, and O.D.600 was measured immediately
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with a UV-VIS spectrophotometer. At the end point, samples

were centrifuged (12 0006g, 5 min), and the supernatants were

micro-filtered (0.22-mm pore diameter) and used as extracellular

metabolites samples for analysis of fermentation products. Both

high performance liquid chromatography (HPLC) and nuclear

magnetic resonance (NMR) were employed to analyze extracel-

lular compounds, including cellobiose, lactate, acetate, pyruvate

and ethanol. 20 ml of extracellular metabolites samples were

analyzed by HPLC (Agilent 1200 series, Agilent Technologies)

equipped with an Aminex HPX-87H column (Bio-Rad) and a

refractive index detector (Agilent 1260 infinity RID). 5 mM

H2SO4 was used as the mobile phase at 55uC with a flow rate of

0.5 ml per min [5]. For NMR, 450 ml of sample was mixed with

50 ml of D2O, which contained 5 mM 4,4-dimethyl-4-silapentane-

1-sulfonic acid (DSS) as an internal reference, and transferred into

a 5-mm NMR tube for NMR analysis using a Bruker AVIII

600 MHz NMR spectrometer equipped with a 5-mm cryogenic

probe (Bruker Biospin GmbH). Standard 1D 1H NMR spectra

were recorded and processed using TopSpin software (Bruker

Biospin GmbH). Metabolite peaks were assigned by the chemical

shifts from Madison-Qingdao Metabolomics Consortium Data-

base [MMCD, http://mmcd.nmrfam.wisc.edu/ [71]]. Metabolite

standards (0.01 to 2 g/l) were prepared for both HPLC and NMR

analyses. The concentrations of metabolites were calculated based

on corresponding standard curves.

Supporting Information

Figure S1 Growth curves of C. thermocellum wild-type
DSM 1313 and mutant strains with cellobiose as the
carbon source. The strains were: WT, C. thermocellum wild-type

DSM 1313; DSM 1313 ldh::Ldh309s; DSM 1313 pta::Pta318a;

and double mutant DSM 1313 ldh::Ldh309s, pta::Pta318a. The

error bars show standard deviations based on three independent

experiments.

(TIF)

Figure S2 HPLC analysis of extracellular metabolites
produced by C. thermocellum wild-type DSM 1313 and
mutant strains with Avicel as the sole carbon source. The

strains were: WT, C. thermocellum wild-type DSM 1313; DSM

1313 ldh::Ldh309s; DSM 1313 pta::Pta318a; and double mutant

DSM 1313 ldh::Ldh309s, pta::Pta318a. The fermentation time was

120 h, and the values are the mean for three independent

fermentations with the error bars indicating the standard

deviation.

(TIF)

Table S1 Bacterial strains used in this study.

(DOCX)

Table S2 Plasmids used in this study.
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Table S3 DNA oligonucleotides used in this study.
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