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Abstract: Cardiac fibroblasts and cardiomyocytes are the main cells involved in the pathophysiology
of myocarditis (MCD). These cells are especially sensitive to changes in iron homeostasis, which is
extremely important for the optimal maintenance of crucial cellular processes. However, the exact
role of iron status in the pathophysiology of MCD remains unknown. We cultured primary human
cardiomyocytes (hCM) and cardiofibroblasts (hCF) with sera from acute MCD patients and healthy
controls to mimic the effects of systemic inflammation on these cells. Next, we performed an initial
small-scale (n = 3 per group) RNA sequencing experiment to investigate the global cellular response
to the exposure on sera. In both cell lines, transcriptomic data analysis revealed many alterations in
gene expression, which are related to disturbed canonical pathways and the progression of cardiac
diseases. Moreover, hCM exhibited changes in the iron homeostasis pathway. To further investigate
these alterations in sera-treated cells, we performed a larger-scale (n = 10 for controls, n = 18 for
MCD) follow-up study and evaluated the expression of genes involved in iron metabolism. In both
cell lines, we demonstrated an increased expression of transferrin receptor 1 (TFR1) and ferritin in
MCD serum-treated cells as compared to controls, suggesting increased iron demand. Furthermore,
we related TFR1 expression with the clinical profile of patients and showed that greater iron demand
in sera-treated cells was associated with higher inflammation score (interleukin 6 (IL-6), C-reactive
protein (CRP)) and advanced neurohormonal activation (NT-proBNP) in patients. Collectively, our
data suggest that the malfunctioning of cardiomyocytes and cardiofibroblasts in the course of MCD
might be related to alterations in the iron homeostasis.

Keywords: myocarditis; iron metabolism; iron deficiency

1. Introduction

Myocarditis (MCD) is defined as an inflammation of cardiac muscle [1]. Some of
the patients with MCD recover spontaneously, but others develop post-myocarditis non-
ischemic cardiomyopathy, which often progresses to the need for mechanical circulatory
support or even heart transplantation [2–4]. MCD is predominantly induced by viruses
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but also by other infectious agents such as bacteria, protozoa, and fungi. Viral infection
may affect the heart directly by the infiltration of myocardium, or it may indirectly induce
cardiac injury by triggering a systemic cytokine storm or a cellular immune response by
molecular mimicry [5]. However, the molecular mechanisms behind the cardiac response
to the systemic inflammation in the course of myocarditis remain largely unexplored.
Investigation of these mechanisms might help understanding why some patients develop
the aforementioned inflammatory cardiomyopathy with a poor prognosis and reveal
efficient therapeutic options.

Iron has been shown to be an important modulator of the myocardial stress re-
sponse [6]. In recent years, the relation between disrupted iron homeostasis and its
consequences for heart has been deeply investigated [7]. Both iron deficiency (ID) and iron
overload are associated with structural and functional abnormalities within cardiac cells
and heart tissue [8–13]. As a cofactor of numerous proteins and enzymes, iron stands at
the crossroads of many essential biological processes such as cellular energy metabolism,
oxygen transport and storage, and importantly—immune response, anti-infectious mech-
anisms, and processes curing inflamed tissues [14–19]. Thus, the optimal availability of
this essential micronutrient is critical for the survival of all types of cells [14,17]. Moreover,
cells with high mitogenic potential and high energy demand are particularly sensitive to
depleted iron supply, excessive iron load, or abnormal iron utilization [14,15,17,20]. The
aforementioned issues could be of particular importance in the context of MCD, as the ma-
jor cells involved in the pathophysiology of this disease are immune cells, cardiomyocytes,
and cardiofibroblasts, and their functioning strongly relies on iron availability.

The goal of this study was to investigate the cellular response to the systemic inflamma-
tion in the course of MCD using an in vitro model. Although the role of iron status in MCD
and its potential progression to non-ischemic cardiomyopathy is not well understood, clini-
cal characterization of the investigated group of MCD patients showed decreased serum
iron levels along with increased serum ferritin. These clinical premises suggest altered
systemic iron homeostasis as a significant modulator of the complex pathophysiology of
MCD. Thus, special emphasis was focused on iron metabolism and its possible link to
cardiac remodeling in MCD.

To mimic the clinical conditions of MCD-related systemic inflammation in our experi-
mental model, we cultured primary human cardiomyocytes (hCM) and cardiofibroblasts
(hCF) with the addition of sera collected from patients: (1) in the acute phase of myocardi-
tis, (2) after 6 weeks of clinical recovery, and (3) healthy controls. First to validate the
correctness of our model, we performed a small-scale RNA sequencing experiment to
observe global effects of the treatment with sera from MCD patients on the gene expression
patterns in hCM and hCF. Next, in a larger-scale experiment, we examined the expression
of genes and proteins involved in intracellular iron metabolism i.e., transferrin receptor
1 (TFR1)—cellular iron importer, whose expression level is an indicator of cellular iron
demand [21–23]; ferritin (light and heavy chains; FTL and FTH), which plays a key role in
iron storage but also is an acute phase protein [24]. Finally, we compared the results of our
in vitro study with a clinical profile of patients whose sera were used to treat the cells. We
hypothesize that cardiac cells exposed to the sera from myocarditis patients will exhibit
pathological changes in the gene expression along with disrupted iron homeostasis.

2. Materials and Methods
2.1. Experimental Schedule

The cells were maintained according to the manufacturer’s protocol. Primary human
cardiomyocytes (hCM; PromoCell, Heidelberg, Germany) were precultured in Myocyte
Growth Medium supplemented with the recommended Supplemented Mix (PromoCell)
for 60 days in order to induce differentiation toward myotube-like and branch-like struc-
tures. Primary human cardiofibroblasts (hCF, PromoCell) were precultured in Fibroblast
Growth Medium supplemented with the recommended Supplemented Mix (PromoCell)
and passaged 5 times before the experiment. Cells were cultured on Nunc™ Cell-Culture 6



Cells 2021, 10, 818 3 of 16

or 24-well plates (Thermo Fisher Scientific; Waltham, Massachusetts, USA). For passaging,
both cell lines were treated with DetachKit (PromoCell).

For experiments, hCM and hCF were cultured for 48 h with 10% of sera from pa-
tients instead of Supplemented Mix. Sera were sterilized by filtrating on cellulose acetate
0.22 µm centrifuge tube filters (Corning® Costar® Spin-X®, Sigma-Aldrich; Merck KGaA,
Darmstadt, Germany). Two series of experiments were performed (Figure 1)—initial small-
scale RNA sequencing study (n = 3 per group of healthy controls and acute myocarditis)
and a follow-up study with a larger number of patients (n = 10 for controls and n = 18
for myocarditis patients at two time points). After 48 h exposure to patients’ sera, cells
were washed, collected and lysed either with Trizol (for further usage in transcriptome
experiments; Thermo Fisher Scientific; Waltham, MA, USA) or RLT buffer (for RT-qPCR
and Western blotting (WB); Qiagen, Hilden, Germany). Cell culture supernatants collected
from each series of experiments were centrifuged at 15,800× g for 10 min and frozen at
−80 ◦C for several weeks.

Figure 1. Schematic representation of experimental design and study protocol.

2.2. Patients

A total of 18 consecutive male patients hospitalized for acute myocarditis were prospec-
tively enrolled during 2014–2019. Acute myocarditis was diagnosed based on the following
criteria: (1) new onset symptoms suggestive of myocarditis (shortness of breath, effort in-
tolerance, fatigue, palpitations, or chest pain), (2) elevated high sensitivity cardiac troponin
I (hs-cTnI), (3) exclusion of obstructive coronary artery disease in coronary angiography
or coronary computed tomographic angiography, (4) cardiac magnetic resonance image
suggestive of myocarditis, and (5) age ≥ 18 years. We recruited 10 healthy adult volunteers
among collogues and relatives for control group. The study protocol was approved by the
local ethics committee (Bioethics Committee, Wroclaw Medical University), and a written
informed consent at inclusion was obtained from all subjects. The study was conducted in
accordance with the Helsinki Declaration.

The following assessments were performed during both hospitalization and control
ambulatory visit 6 weeks after discharge from hospital. Left ventricular ejection fraction
(LVEF, %) was assessed in cardiac magnetic resonance. Blood was withdrawn in the
morning and collected into Vacutainer tubes with clot activator. Tubes were inverted
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five to six times to mix clot activator and blood and incubated in an upright position
at room temperature for 30–40 min to allow clotting. Tubes were spun at 2000× g for
15 min without brake. Then, serum was removed, aliquoted, and stored at −80 ◦C until
use. The plasma level of N-terminal pro-B-type natriuretic peptide (NT-proBNP; pg/mL)
was measured using an immunoassay based on chemiluminescence with Dimension RxL
system (Siemens, Munich, Germany). Serum level of high-sensitivity C-reactive protein
(hs-CRP; mg/L) was assessed using immunonephelometry with BN II System (Siemens).
The following blood biomarkers/parameters reflecting iron metabolism were measured
directly (from fresh venous blood): serum ferritin (µg/L), iron (mg/dL), and total iron-
binding capacity (TIBC, mg/dL). Transferrin saturation (TSAT) was calculated as the ratio
of serum iron (mg/dL) and TIBC (mg/dL) multiplied by 100 and expressed as a percentage.
Serum iron and TIBC were assessed using a substrate method with the Konelab Prime 60i
system (Thermo Scientific). Serum ferritin was measured using an immunoassay based on
electrochemiluminescence with the Elecsys 2010 system (Roche, Basel, Switzerland).

2.3. Cell Viability Tetrazolium Reduction Assay (MTS)

MTS assays were performed, according to the manufacturer’s protocol (CellTiter 96®

AQueous One Solution Cell Proliferation Assay; Promega Corporation, Madison, WI, USA).
Briefly, hCM or hCF cells were seeded into each well of 96-well plates and were treated for
48 h with patients’ sera or PBS (control), as described above. A total of 20 µL CellTiter 96®

AQueous One Solution reagent was added to each well, and the absorbance at 490 nm was
measured after 2 h incubation in 37 ◦C (KCjunior™; BioTek Instruments, Inc., Winooski,
VT, USA). The viability of the untreated cells was treated as 100%.

2.4. RNA Extraction and Library Preparation for mRNA Sequencing

For mRNA sequencing, total RNA extraction from Trizol was performed according
to the manufacturer’s instructions. RNA concentration was measured using Qubit® RNA
Assay Kit in Qubit® 2.0 Flurometer (Life Technologies, Carlsbad, CA, USA). RNA integrity
was assessed using the RNA Nano 6000 Assay Kit of the Bioanalyzer 2100 system (Agilent
Technologies, Santa Clara, CA, USA).

A total amount of 1 µg RNA per sample was used as input material for the RNA sam-
ple preparations. mRNA from eukaryotic organisms was enriched using oligo (dT) beads
from NEBNext® Poly (A) mRNA Magnetic Isolation Module (NEB, USA). Subsequently,
sequencing libraries were generated using a NEBNext Ultra II Directional RNA Library
Prep Kit for Illumina® (NEB, USA) following the manufacturer’s recommendations. Briefly,
fragmentation was carried out using divalent cations under elevated temperature in NEB-
Next First Strand Synthesis Reaction Buffer (5X). First-strand cDNA was synthesized using
random hexamer primer and M-MuLV Reverse Transcriptase (RNaseH). Second-strand
cDNA synthesis was subsequently performed using DNA Polymerase I and RNase H. In
the reaction buffer, dNTPs with dTTP were replaced by dUTP. Remaining overhangs were
converted into blunt ends via exonuclease/polymerase activities. After the adenylation of
3′ ends of DNA fragments, NEBNext Adaptors with hairpin loop structure were ligated for
hybridization. In order to select cDNA fragments of preferentially 250~300 bp in length,
the library fragments were purified with AMPure XP beads (Beckman Coulter, Beverly,
USA). Then, 3 µL USER Enzyme (NEB, USA) was used with size-selected, adaptor-ligated
cDNA at 37 ◦C for 15 min followed by 5 min at 95 ◦C. Then, PCR was performed with
Phusion High-Fidelity DNA polymerase, Universal PCR primers and Index (X) Primer. At
last, products were purified (AMPure XP beads), and library quality was assessed using
the Agilent High Sensitivity DNA Kit (Agilent Technologies) on the Agilent Bioanalyzer
2100 system (Agilent Technologies).

2.5. RNA Sequencing and Transcriptome Analysis

Strand-specific cDNA libraries were sequenced on an Illumina Novaseq6000 NGS
sequencer with the following parameters: PE150, minimum of 40 million reads (40M),
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which gave at least 12 gigabases (12Gb) per sample of raw data. Sequencing was performed
on 12 RNA samples: hCM and hCF cells treated with sera from representative healthy
controls (n = 3 per each group); hCM and hCF cells treated with sera from representative
acute myocarditis patients (n = 3 per each group). Raw data were aligned to the reference
genome GRCh38 Homo sapiens (GRCh38; Ensembl, v. 97) using Hisat2 [25], v. 2.1.0. For
transcript abundance, Cuffquant and Cuffmerge (v. 2.2.1) tools were used [26]. Out of the
226,658 transcripts identified in the database, 95,090 were filtered out due to the very low
expression level (the average expression level was less than 0.001 FPKM, Fragments Per
Kilobase Million). Significant changes in gene expression were determined by separated
comparison of hCM and hCF to control, using the Student’s t-test. The false discovery
rate (FDR) was estimated using the Benjamini–Hochberg method [27]. Protein-coding
transcripts that changed significantly based on unadjusted p-value < 0.05 and fold change
>2 in both directions were subjected to pathway analysis by Ingenuity Pathway Anal-
ysis software (IPA; Qiagen). Canonical molecular pathways, biological processes, and
toxicity functions databases were used by IPA to test their association with differentially
regulated genes.

2.6. Reverse Transcription-Quantitative Polymerase Chain Reaction (RT-qPCR)

For RT-qPCR, total RNA extraction was performed according to the manufacturer’s
instructions (AllPrep DNA/RNA/Protein Mini Kit, Qiagen). For the synthesis of the first-
strand cDNA, the SuperScript III First-Strand Synthesis System with oligo(dT)20 primer
(Invitrogen, Carlsbad, CA, USA) was applied. PCR primers were supplied by BioRad
(PrimePCR™, Bio-Rad Laboratories, Inc., Hercules, CA, USA) or designed with Beacon
Designer Software (version 2.0, Bio-Rad Laboratories). Primer sequences and reference
numbers are listed in Table 1. In order to prevent the amplification of genomic DNA,
the primers were designed from specified exon–exon junctions of genes of interest. The
selection of reference genes was carried out by means of geNorm analysis (geNorm kit,
ge-SY-12; PrimerDesign, Ltd., Southampton, UK), as a result of which the combination
of two reference gene, UBC and ATP5B (both Homo sapiens), was identified as the most
stable reference value across all experimental conditions. RNA quality was determined
using PrimePCR™ RNA Quality SYBR® Green Assay (Bio-Rad Laboratories)—samples
with unsatisfying quality were excluded from analysis. RT-qPCR was carried out using the
CFX ConnectTM Real-Time PCR Detection System (Bio-Rad Laboratories) and SsoFastTM
EvaGreen® Supermix reagent (Bio-Rad Laboratories,). For each reaction, a melt curve
analysis was performed in order to determine the specificity of PCR. The amplification
efficiency was estimated by running serial dilutions of a template or provided by manufac-
turer. For the target amplicons, UBC and ATP5B, the relative expression was calculated
using ∆∆Cq method in Bio-Rad CFX Manager (version 3.1, Bio-Rad Laboratories).

Table 1. Primers and sequences used for qPCR.

Gene Reference

TfR1 qHsaCID0022106 (Bio-Rad PrimePCR™)
UBC ge-SY-12 (PrimerDesign)

ATP5B ge-SY-12; PrimerDesign
RQ1/RQ2 qHsaCtlD0001002 (Bio-Rad PrimePCR™)

Gene Sequence forward (5′–3′) Sequence reverse (5′–3′)

FTH GCTCTACGCCTCCTACGTTT GAAGATTCGGCCACCTCGTT
FTL ATTTCGACCGCGATGATGTG CATGGCGTCTGGGGTTTTAC

2.7. Western Blotting (WB)

hCM and hCF were homogenized in RLT buffer (Qiagen), and total protein isolation
was performed according to the manufacturer’s instructions (AllPrep DNA/RNA/Protein
Mini Kit, Qiagen). The protein concentration was estimated by bicinchoninic acid (BCA)
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assay [28]. In order to determine protein levels of TFR1, FTH, FTL, and actin (as a loading
control), 10 µg of appropriate protein lysates were added on 26 well 4–20% Criterion™
TGX Stain-Free™ Protein Gels (Bio-Rad Laboratories). Proteins were electro-transferred on
polyvinylidene fluoride (PVDF) membranes using a Trans-Blot® Turbo™ System (Bio-Rad
Laboratories) using an RTA Midi PVDF Transfer Kit (Bio-Rad Laboratories) according to
the manufacturer’s instructions.

The membranes were blocked with 5% skimmed milk for 1 h and incubated with
primary antibodies overnight (Table 2). After washing, membranes were incubated with
secondary horseradish-conjugated anti-rabbit antibodies and developed with the Femto
detection system (Pierce Biotechnology, Rockford, IL, USA). Western blots were visualized
and analyzed using film and ChemiDoc XRS+ System (Bio-Rad Laboratories).

Table 2. Antibodies and dilutions used for Western blotting.

Antigen Dilution Manufacturer Ref. Number

TFR1 1:500 Abcam ab84036
FTH 1:500 Abcam ab81444
FTL 1:5000 Abcam ab186871

Actin HRP 1:5000 Santa Cruz Biotechnology sc-1616 HRP
Rabbit IgG HRP 1:40,000 Jackson ImmunoResearch 111-035-045

2.8. Statistical Analysis

Most continuous variables had a normal distribution and were expressed as a mean ±
standard deviation of the mean. NT-proBNP, CRP, interleukin 6 (IL-6), soluble transferrin
receptor (sTfR), and ferritin had a skewed distribution and were log-transformed (a natural
logarithm, ln) before further inclusion in linear regression analyses. These variables were
expressed as a median with an interquartile range. Differences in values between healthy
controls and acute MCD patients were analyzed with unpaired Student’ t-test or Mann–
Whitney test. Differences in values between 3 groups of sera-treated cells were analyzed
with the one-way ordinary ANOVA test followed by Dunnett’s multiple comparisons
test or Kruskal–Wallis test followed by Dunn’s multiple comparisons test. Spearman’s
rank correlation coefficient (R) reflects the relationship between the protein expression of
TFR1 in hCM or hCF and iron status, and other laboratory measurements in peripheral
blood. p < 0.05 was used to indicate a statistically significant difference. Statistical analyses
were performed using the GraphPad Prism Software (GraphPad Software Inc., San Diego,
CA, USA).

3. Results
3.1. Cell Viability in hCM and hCF Treated with Patients’ Sera

Cell MTS assay did not show any relevant changes in hCM viability when treated with
both myocarditis (acute phase and 6 weeks follow up) and control sera as compared with
hCM cultured in dedicated media. In hCF, treatment with patients or control sera caused 25%
lower viability of cells, independently from the type of serum donor (data not shown).

3.2. Transcriptome Profiling Indicates Alterations in the Gene Expression in hCM and hCF Treated
with Acute Myocarditis Serum

To observe the complex effect of treatment and validate the correctness of model,
next-generation RNA sequencing on a subset of sera-treated hCM and hCF (acute MCD vs.
healthy control; n = 3 for each group) identified >226,000 transcripts. After the removal
of low counts, 131,568 transcripts remained. RNAseq analysis revealed 2297 and 2017
transcripts that were significantly differentially expressed between MCD vs. healthy
control serum-treated groups for hCM and for hCF, respectively (fold change >2; p < 0.05).
Among them, for hCM, 436 unique genes were upregulated and 538 unique genes were
downregulated. For hCF, the number of up- and downregulated unique genes was 424
and 457, respectively. Then, we compared the sets of altered genes between two cell types
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using Venn diagrams. The results displayed an overwhelmingly unique response of each
cell type to the MCD serum treatment. Thus, only 22 common genes were upregulated and
24 common genes were downregulated in both cell types (Figure 2A).

Figure 2. Venn diagram (A) of overlapped up- and downregulated genes detected between two cell types (hCF and hCM).
Significantly changed genes in hCM (B) and hCF (C) treated with sera from acute MCD patients vs. healthy controls.
Student’ t-test, pFDR < 0.1, n = 3 per group. Abbreviations: hCM, human cardiomyocytes; hCF, human cardiofibroblasts.

To avoid false-positive scores, the results were corrected by FDR, revealing 38 genes
that were significantly different in hCM (30 downregulated; 8 upregulated; Figure 2B)
and 8 genes that were significantly different in hCF (4 downregulated; 4 upregulated;
Figure 2C) compared to control.

To further investigate the alterations in canonical molecular pathways and to better
understand biological processes and cardiotoxicity functions caused by the treatment
with MCD patients’ sera, Ingenuity Pathway Analysis (IPA) was performed. Significantly
altered (unadjusted p-value < 0.05, and fold change >2) protein-coding genes were used for
further pathway analysis (1043 and 956 detected transcripts for hCM and hCF, respectively).
The analysis revealed multiple dysregulated canonical pathways associated with MCD
serum treatment in both hCM and hCF as compared with cells treated with serum from
healthy controls. Thus, among others, inflammation, endocytosis, virus entry via endocytic
pathways, cholesterol biosynthesis, and apoptosis as well as iron homeostasis-related
pathways were significantly dysregulated in hCM (p < 0.05; Figure 3A). In hCF, endocytosis
and virus entry via endocytic pathways as well as apoptosis and inflammation (IL-6, IL-7)
pathways were also altered. Interestingly, significant changes in the acute phase response
pathways in MCD serum-treated were observed only in hCF (p < 0.05; Figure 3B). A list of
all significantly altered pathways is given in Table S1A,B in the Supplementary Materials.
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Figure 3. Selected hints of the significantly dysregulated canonical pathways in hCM (A) and hCF (B) treated with sera from
acute MCD patients vs. healthy controls. Selected hints of the significantly dysregulated cardiotoxicity functions in hCM (C)
and hCF (D) treated with sera from acute MCD patients vs. healthy controls. Identified with Ingenuity Pathway Analysis
(IPA) using respectively 1138 and 1050 protein-coding transcripts that changed significantly. Fisher’s exact test, p < 0.05.
Abbreviations: hCM, human cardiomyocytes; hCF, human cardiofibroblasts; ERK5, extracellular-signal-regulated kinase 5;
iNOS, inducible nitric oxide synthase; PAK, p21-activated kinases; GM-CSF, granulocyte-macrophage colony-stimulating
factor; IL-7, interleukin 7; STAT3, signal transducer and activator of transcription 3; IL-6, interleukin 6.

Detailed IPA analysis of cardiac-specific functions showed significant dysregulations
in pathways related to cardiac enlargement, cardiac dilation, heart failure, cardiac dys-
function, and cardiac inflammation in both hCM and hCF (both p < 0.05; Figure 3C,D). In
addition to changes in cardiac-specific functions, we observed significant alterations in
pathways related to 22 and 24 different diseases in hCM and hCF, respectively (Supple-
mentary Materials; Supplementary Figure S1A,B).

3.3. Increased Expression of TFR1 Indicates an Iron Depletion in Cells Treated with Sera from
Myocarditis Patients

To further investigate the effect of serum treatment on cells in the context of iron
metabolism, hCM and hCF were treated with sera from 18 patients in two timepoints
(hospitalization for the acute phase of MCD and after 6 weeks of clinical recovery) and
from 10 healthy controls (without any cardiovascular disease). The baseline characteristics
of all examined patients are presented in Table 3.
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Table 3. Baseline characteristics of acute myocarditis patients and healthy controls. Data are presented as a mean ±
standard deviation of the mean, a median (with an interquartile range), where appropriate. Abbreviations: N, number of
patients for whom the parameter was available; LVEF, left ventricular ejection fraction; CRP, C-reactive protein; ALT, alanine
transaminase; NT-proBNP, N-terminal pro-B-type natriuretic peptide; IL-6, interleukin 6; Student’ t-test or Mann–Whitney
test (depending on data normaility).* p < 0.05; ** p < 0.01; *** p < 0.001.

Parameter N Healthy
Controls N Myocarditis

(Acute Phase)

Acute Phase
vs. Healthy

p-Value
N

Myocarditis
(After 6 Weeks of
Clinical Recovery)

Age (years) 10 46 ± 13 18 33 ± 8.8 0.005 18 33 ± 8.8

Sex (% Male) 10 100% 18 100% - 18 100%

LVEF (%) 10 65 ± 4.7 18 58 ± 9.4 0.027 17 58 ± 7.8

CRP (mg/L) 10 0.63(0.43–1.50) 18 17(6.8–63.0) <0.0001 17 1(0.6–3.8)

ALT (IU/L) 10 29(21–37) 18 30(25–55) 0.23 17 22(17–39)

Troponin 10 0.01 (0.01–0.01) 18 0.87(0.26–5.7) <0.0001 17 0.01(0.01–0.01)

Serum creatinine (mg/dL) 10 0.88(0.86–0.97) 0.94(0.82–1.00) 0.99 17 0.90(0.82–0.98)

NT-proBNP (pg/mL) 10 40(16–77) 18 315(98–939) 0.0005 16 32(26–62)

IL-6 (pg/mL) 10 0.73(0.2–1.9) 16 4.5(1.7–7.9) 0.0003 17 0.69(0.1–0.69)

Hematological Parameters and Indices of Iron Status

Hemoglobin
concentration (g/dL) 10 15.2 ± 1.2 18 15 ± 1.1 0.29 17 15 ± 0.94

Serum iron (µg/dL) 10 102 ± 47 18 69 ± 29 0.029 16 88 ± 20

Serum ferritin (µg/L) 10 154(78–213) 18 234(150–418) 0.026 16 160(112–187)

Soluble transferrin receptor
(mg/L) 8 1.2(1.0–1.6) 18 1.2(1.0–1.4) 0.81 17 1.2(1.1–1.3)

Transferrin
saturation (%) 10 30 ± 13 18 21 ± 8.4 0.052 17 25 ± 5.3

hCM exposed to sera from acute MCD patients showed a significant increase in an
expression of TFR1 both at the mRNA (p < 0.01; Figure 4A) and protein level (p < 0.001,
Figure 4B) in comparison to those treated with sera from healthy controls. This observation
suggests an increased iron demand in cardiomyocytes cultured in myocarditis-serum
treatment conditions. While in hCF treated with acute MCD sera, the overexpression of
TFR1 was observed only at the protein level (p < 0.05 Figure 4E). Interestingly, the level of
TFR1 protein was also increased when cells (both hCM and hCF) were treated with MCD
patients’ sera collected after 6 weeks of clinical recovery, indicating that the iron depletive
effect of sera from MCD patients on cells is continuous.

Additionally, the expression of TFR1 protein in hCM was correlated with systemic
iron status in patients (controls + acute MCD) measured in peripheral blood i.e., transferrin
saturation (TSAT, R =−0.38; p < 0.05; Figure 4G), serum iron (R =−0.41; p < 0.05; Figure 4H)
and serum ferritin (R = 0.43; p < 0.05; Figure 4I).

3.4. Increased Expression of Ferritin in the Course of Myocarditis

Serum ferritin level was higher in acute myocarditis patients as compared to healthy
controls and got normalized after 6 weeks of clinical recovery (p < 0.05; Figure 5A). Both
hCM and hCF treated with acute myocarditis patients’ sera exhibited an increase in FTL
and FTH expression at the mRNA (all p < 0.05; Figure 5B–D) but not at the intracellular
protein level (data not shown). Additionally, we measured the level of extracellular ferritin
secreted to culture media where we also did not observe any significant differences (data
not shown).
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Figure 4. The expression of TFR1 in human cardiomyocytes (A–C) and in human cardiofibroblasts (D–F) treated with
patients’ sera at the mRNA and protein level, together with representative immunoblots (C, F). ANNOVA test followed by
Dunnett’s multiple comparisons test or Kruskal–Wallis test followed by Dunn’s multiple comparisons test (depending on data
normality). *p < 0.05; ** p < 0.01; *** p < 0.001. The association between the protein level of TFR1 in human cardiac myocytes
treated with patient sera and markers of iron status in patients’ peripheral blood i.e., transferrin saturation (G), serum iron
(H), and serum ferritin (I). Gene and protein expressions were normalized to mean value in control group. Spearman’s rank
correlation. * p < 0.05; ** p < 0.01; *** p < 0.001. Abbreviations: AU, arbitrary units; C, healthy controls, H, hospitalization
(acute phase); 6wk, after 6 weeks of clinical recovery; TFR1, transferrin receptor 1; TSAT, transferrin saturation.

Figure 5. The levels of ferritin in patient sera (A) and the mRNA expression of FTL and FTH in human cardiac myocytes
(B,C) and human cardiac fibroblasts (D,E) treated with patients’ sera. Gene expression was normalized to mean value in
control group. ANOVA test followed by Dunnett’s multiple comparisons test or Kruskal–Wallis test followed by Dunn’s
multiple comparisons test (depending on data normality). * p < 0.05; ** p < 0.01; *** p < 0.001. Abbreviations: U, arbitrary
units; C, healthy controls, H, hospitalization (acute phase); 6wk, after 6 weeks of clinical recovery; FTL, ferritin light chain;
FTH, ferritin heavy chain.
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3.5. Disturbed Iron Metabolism in Cells Is Related to Inflammation and Outcome Parameters of Patients

Higher expression of TFR1 in both hCM and hCF treated with sera was associated
with elevated levels of CRP in subjects (R = 0.63 and R = 0.49 respectively; Figure 6B,D).
Moreover, in hCM, we observed a significant correlation between cellular TFR1 expression
and the level of NT-proBNP (R = 0.55; p < 0.01; Figure 6A) in subjects’ sera. Additionally, in
hCF, the higher expression of TfR1 protein was also correlated with the augmented level of
IL-6 in subjects’ sera (R = 0.52; p < 0.01; Figure 6C). These data suggest that escalating iron
demand in both cell lines increases with advanced neurohormonal activation in patients
(NT-proBNP) and augmented inflammation (CRP, IL-6).

Figure 6. The association between the protein level of TFR1 in sera-treated hCM or hCF and serum levels of CRP (A,B), IL-6
(C) and NT-proBNP (D). Protein expression was normalized to mean value in control group. Spearman’s rank correlation.
* p < 0.05; ** p < 0.01; *** p < 0.001. Abbreviations: CRP, C-reactive protein; NT-proBNP, N-terminal pro-B-type natriuretic
peptide; IL6, interleukin 6.

4. Discussion

In this study, we investigated the effects of sera collected from myocarditis patients on
human cardiac myocytes and cardiofibroblasts. Treatment with sera from patients with
various cardiac diseases has been shown to induce changes in many different processes
in cultured cells. Recently, Garcia et al. showed that the treatment with single ventricle
heart disease sera results in detrimental gene expression changes in cultured neonatal rat
ventricular myocytes [29]. Furthermore, treatment with serum from heart failure (HF)
patients or acute myocardial infraction (MI) has been shown to induce apoptosis and
enhanced sprouting angiogenesis of cultured endothelial cells [30,31]. We used a similar
approach to mimic the cardiac cellular response to systemic inflammation in the course
of MCD. By the exposure of human cardiomyocytes and cardiofibroblasts to serum from
acute MCD patients, we established the effects of this treatment on complex changes in the
gene expression (small-scale RNA sequencing experiment). Based on clinical premises and
observations from our initial RNA sequencing study, we also performed larger-scale exper-
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iment to further investigate the effects of MCD serum treatment on the genes associated
with cellular iron homeostasis.

Our initial transcriptomic study showed that hCM and hCF treated with acute MCD
patients’ sera exhibit the pathological changes in the gene expression, as compared with
treatment with sera from healthy controls. Interestingly, very few genes were up- or
downregulated in both cell lines simultaneously, suggesting unique cell-specific response
in both cell types. Canonical pathway analysis revealed disturbances in the expression
of genes involved in inflammation, endocytosis, virus entry via endocytic pathways, and
apoptosis in both cell lines. Importantly, exclusively in hCM, we noticed a significant
change in the iron homeostasis signaling pathway. Whereas, in hCF, a dysregulation of
pathways involved in acute phase response was present. Additionally, observed alterations
in the pathways such as HIPPO signaling, iNOS signaling, or Myc-mediated apoptosis
are particularly interesting and have been shown to be involved in the pathophysiology
of different heart diseases [32–35]. Interestingly, iron availability has been shown to
be a significant modulator of HIPPO [36], iNOS [37], and Myc-mediated [38] signaling
pathways, justifying our special interest in iron homeostasis. Moreover, both acute MCD
sera-treated cell lines exhibited significantly dysregulated cardiotoxicity functions defined
by IPA such as involvement in cardiac enlargement, cardiac dilation, cardiac inflammation,
and heart failure. At this point, it is important to acknowledge that the unadjusted p-value
(p < 0.05) used in our pathway analysis may result in false positives. However, the goal
of this transcriptomic experiment was to identify the changes in a larger subset of genes
to get a more complex view and to generate hypotheses on the alterations in pathways
that are relevant in the course of myocarditis. Even after FDR correction, we still have
found 38 and 8 significantly different genes in hCM and hCF, respectively. We have not
found any particular relation between them; however, some of them might play a role in
processes such as protein synthesis regulation in cardiomyocytes (PABPC1 [39]), cardiac
differentiation and development (FURIN [40]; ADAR [41]), or cellular response to viral
infection (TMED2 [42]). Complex response of both cell lines to the acute MCD serum
treatment, especially in the context of disturbed canonical pathways and cardiac disease-
related genes, suggest our model as efficient way to investigate the effects of systemic
inflammation on cardiac cells in the course of MCD.

To further investigate the role of dysregulated iron homeostasis in course of MCD,
we performed a larger-scale experiment where we treated hCM and hCF with sera from
18 MCD patients collected in two timepoints (acute phase and after 6 weeks of clinical
recovery) and compared with 10 healthy controls. In support of our clinical observations
and transcriptomic evidence for alterations in the iron homeostasis signaling pathway, we
demonstrated that the expression of transferrin receptor 1 (TFR1) in both cell lines treated
with MCD patient’s serum is increased. Ubiquitously expressed TFR1 is a membrane
glycoprotein that serves as a gatekeeper in regulating the cellular uptake of iron from
transferrin, and its overexpression is correlated with higher iron demand in cells [24,43]. In
our previous studies on intracellular iron deficiency, we implied that TFR1 is upregulated in
cardiomyocytes cultured in iron-deficient conditions and strongly correlates with decreased
intracellular iron concentration [22]. Furthermore, the upregulated expression of TFR1
is associated with impaired cardiomyocytes viability and increased apoptosis [22,23].
Finally, due to an important role of iron in energy metabolism as a cofactor of four of five
mitochondrial complexes, iron deficiency has been shown to directly affect cardiomyocyte
function, impairing mitochondrial respiration and reducing contractility and relaxation [9].
At the tissue level, numerous studies have shown that iron deficiency (ID) in cardiac muscle
results in cardiomegaly, left ventricular (LV) dilation, LV hypertrophy, cardiac fibrosis,
and symptomatic HF [7,21,44,45]. The correlation between increased expression of TFR1
in our in vitro model and the diagnostic parameters of iron status of patients whose sera
were used for treatment indicates that cells adapt to patient-specific iron availability and
confirms the rationale of this in vitro model. Moreover, an increase observed in TFR1
expression was also observed in hCM and hCF treated with patients’ sera collected after
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6 weeks of clinical recovery, showing that the iron-depletive effect of serum-treatment is
continuous and persists at least several weeks after acute phase of myocarditis.

Moreover, we measured the expression of intracellular iron storage protein i.e., ferritin.
However, we only observed an increase at the mRNA level in cells treated with acute
MCD patient’s serum, without any effect at the protein level. This is partially in agreement
with our observation of highly elevated serum ferritin in patients during the acute phase
of MCD. At this point, it is important to emphasize that the assessment of iron status
during concomitant inflammation is difficult because of its confounding effects on the
interpretation of iron indicators [46]. Broadly used ferritin, which is a positive acute-phase
protein, is highly elevated during states of inflammation, which is most likely in response
to increasing amounts of cytokines [47]. Thus, the increase of ferritin mRNA in MCD-sera
treated hCM and hCF may be rather related to its role as the acute phase protein than
the increase of iron storage. Additionally, a lack of changes in ferritin protein expression
(both cellular and extracellular) might be due to relatively short time of serum treatment
(48 h)—it may be enough to induce the gene expression but not enough to increase the
expression of protein.

Finally, in both cell lines treated with sera from MCD patients, we observed that
the increased iron demand reflected by upregulated expression of TFR1 correlates with
higher markers of systemic inflammation (CRP, IL-6) and advanced neurohormonal activa-
tion (NT-proBNP). Notably, extra and intracellular iron homeostasis is intimately tied to
the inflammatory response and has been elucidated in numerous review studies [48,49].
Acute phase proteins such as ferritin, transferrin, haptoglobin, and hepcidin are acti-
vated by the acute phase response and may affect the distribution of iron to cells [48].
Additionally, inflammation can also affect the iron status by the reduction of intestinal
absorption [50]. Therefore, observed changes in iron homeostasis seem to be important
in the pathophysiology of MCD, while the major pathomechanisms of MCD and devel-
opment of post-myocarditis non-ischemic CM are based on the action of immune cells,
cardiomyocytes and cardiofibroblasts, which are very sensitive for changes in iron status.

Study Limitations

The control group was slightly older than MCD patients. However, we did not observe
any significant age-related associations in all measured parameters. Any age-related effects
on systemic inflammation were not expected due to this relatively small difference in
age [51]. Furthermore, we examined 18 consecutive patients with MCD, which were men
only, and there are no data regarding women. However, it is worth emphasizing that a
predominancy of male sex is a known feature of MCD [52,53].

5. Conclusions

This study showed that the treatment of primary cardiomyocytes and cardiofibroblasts
with sera from MCD patients may represent an effective model for future studies on the
mechanisms involved in this disease. Our results suggest that systemic inflammation occur-
ring in the course of myocarditis results in the alterations in the cardiac iron homeostasis
and may be involved in the pathological changes in cardiac cells. Further investigation on
the molecular mechanisms of iron metabolism in MCD might reveal efficient therapeutic
options to prevent its progression to inflammatory cardiomyopathy.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cells10040818/s1, Table S1: IPA data analysis: Alterations in Ingenuity Canonical Pathways
in cells treated with sera from healthy controls vs. myocarditis patients. Figure S1: IPA data
analysis: Alterations in disease-related pathways in cells treated with sera from healthy controls vs.
myocarditis patients.
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