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Abstract

DNA methylation is a defining feature of mammalian cellular identity and essential for normal 

development1,2. Most cell types, except germ cells and pre-implantation embryos3–5, display 

relatively stable DNA methylation patterns with 70–80% of all CpGs being methylated6. Despite 

recent advances we still have a too limited understanding of when, where and how many CpGs 

participate in genomic regulation. Here we report the in depth analysis of 42 whole genome 
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bisulfite sequencing (WGBS) data sets across 30 diverse human cell and tissue types. We observe 

dynamic regulation for only 21.8% of autosomal CpGs within a normal developmental context, a 

majority of which are distal to transcription start sites. These dynamic CpGs co-localize with gene 

regulatory elements, particularly enhancers and transcription factor binding sites (TFBS), which 

allow identification of key lineage specific regulators. In addition, differentially methylated 

regions (DMRs) often harbor SNPs associated with cell type related diseases as determined by 

GWAS. The results also highlight the general inefficiency of WGBS as 70–80% of the sequencing 

reads across these data sets provided little or no relevant information regarding CpG methylation. 

To further demonstrate the utility of our DMR set, we use it to classify unknown samples and 

identify representative signature regions that recapitulate major DNA methylation dynamics. In 

summary, although in theory every CpG can change its methylation state, our results suggest that 

only a fraction does so as part of coordinated regulatory programs. Therefore our selected DMRs 

can serve as a starting point to help guide novel, more effective reduced representation approaches 

to capture the most informative fraction of CpGs as well as further pinpoint putative regulatory 

elements.

Changes in DNA methylation (DNAme) patterns and the resulting differentially methylated 

regions (DMR) have been the focus of numerous studies in the context of normal 

development7 and disease8. These studies have characterized many different DMR classes 

including partially methylated domains (PMDs)9, condition specific10, cell type 

specific9,11–13 and tissue specific DMRs14,15 (tDMRs) as well as DMRs arising in disease 

such as cancer15,16. Due to the relatively small fraction of genomic CpGs assayed or small 

sample cohorts, the question of what fraction of genomic CpGs changes its methylation state 

in the context of normal development as well as their regulatory context remains 

underexplored.

In this study, we systematically investigated the DNAme state of most human autosomal 

CpGs to determine those that show dynamic changes and hence may participate in genome 

regulation in a developmental context (dynamic CpGs). In total, we included 42 WGBS 

datasets comprising a range of human cell and tissue types (n=30). The combined 40.4 

billion reads enabled us to assay 25.71 million autosomal CpGs (≥5× coverage in at least 

≥50% of all samples; 96% of all hg19 autosomal CpGs) (Supplementary Table 1). We 

organized the samples into four classes; comprising human embryonic stem cells (hESCs), 

hESC derived cell populations, normal somatic tissues as well as disease conditions (Fig. 1a, 

Supplementary Table 1). On a global scale, hESC and their derivatives exhibit the highest 

DNAme levels, followed by primary tissues (~5% less), which is in sharp contrast to the 

global hypomethylation in colon cancer (~10–15% less) and long-term cultured cell lines 

(10–30% less).

Focusing initially on our developmental sample set (n=24 total, hESCs, in vitro derived cell 

types and somatic tissues, Supplementary Table 1) we identified ~5.6 million dynamic CpGs 

(minimum methylation difference ≥0.3, FDR=10.4%, 21.8% of captured autosomal CpGs; 

Fig. 1b, Supplementary Fig. 1e, see Supplementary Information) distributed across 716,087 

discrete differentially methylated genomic regions (DMRs, 19.2% of the mappable human 

genome). In addition to this moderately stringent cutoff, we also tested thresholds as low as 
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10% methylation difference that may account for DNAme changes arising from relevant 

small subpopulations in heterogeneous tissue samples or noise, but still only find 10.4 

million CpGs to be dynamic.

Focusing on the more stringent set (≥0.3 difference), we find approximately 70% are on 

average highly methylated (>75% methylation ratio) while less than 2% are on average 

unmethylated (<10% methylation ratio) (Supplementary Fig. 1h). In line with this 

observation, we find that hypomethylation of DMRs shows greater sample specificity than 

hypermethylation (Fig. 1c). Interestingly, most of the DMRs are small (>75% are smaller 

than 1kb, Supplementary Fig. 1i) and located distal to transcription start sites (TSS) 

(Supplementary Fig. 1j). However, the average variation in DNAme levels across all RefSeq 

promoters (n=30,090) does still exhibit a clear increase specifically at the TSS with most of 

this variation occurring at intermediate and low CpG density promoters (Fig. 1d). For CpG 

islands in general, we observe distinct dynamic regimes, highlighting that different classes 

of CpG islands are likely subject to different modes of regulation12,17,18 (Fig. 1d bottom). 

Consistent with previous reports15, we find CpG island shores to be among the most 

variable genomic regions (Supplementary Fig. 1o). These observations are exemplified at 

the OCT4 (POU5F1) locus, where the promoter and large parts of the gene body exhibit 

high DNAme dynamics, while the strong downstream CpG island as well as the surrounding 

CTCF binding sites remain static (Fig. 1e). Only 12.2% of our DMR set overlap with at least 

one of 568,430 annotated classic, gene centric genomic features (promoter, exon, CGI, CGI-

shore) (Fig. 1f). To gain insights into the role of the remaining set, we first investigated their 

co-localization with DNase I HS sites across 92 distinct cell types19 as well as a catalog of 

putative enhancer elements for 31 cell and tissue types20. Strikingly, we found that 42.3% of 

our DMRs overlap with at least one DNAse I HS site (Fig. 1f) and 26.1% co-localize with 

enhancer like regions, which cover more than 50% of all H3K27ac regions in our catalog 

(n=285,344) and represents one of the most differentially methylated features (Fig. 1d). 

Next, we examined DMR overlap with transcription factor binding site (TFBS) clusters 

determined by the ENCODE project21 and uncovered a highly significant overlap of the two 

feature classes (jaccard=0.11, p-value<=0.1). Taking into account an even broader set of 

TFBS comprising 165 factors,, we find that more than 50% of all DMRs overlap with at 

least one and 25% with more than 3 TFBS accounting for an additional 13.0% of DMRs 

(Fig. 2a). Consistent with this we find dramatically increased variation in DNAme levels 

specifically across TFBS (Supplementary Fig. 2a). In summary, we were able to readily 

attribute 64.2% of all DMRs to at least one putative gene regulatory element or coding 

sequence (Supplementary Fig. 1e–h) suggesting they demarcate various classes of putative 

regulatory elements.

We determined all cell type specific hypomethylated regions (n=430,250, see 

Supplementary Information) and investigated the enrichment for 161 ENCODE factors 

(excluding MBD4, SETDB1, POL2P, HDAC2 from the prior set). Strikingly, we observe 

significant enrichment of cell type specific TFs that are known to be involved in the 

regulation of the respective cellular states (Fig. 2b). For instance, the top three factors bound 

in HUES64 specific DMRs are OCT4, SOX2, and NANOG (Fig. 2b). Similarly, PU.1 and 

TAL1 are highly enriched in CD34 cells and HNF factors in adult liver (Fig. 2b). In further 
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support of this, motif enrichment analysis revealed many more interesting cell-type-TF-

associations such as enrichment of distinct NKX factors in fetal heart and fetal brain as well 

as ESRRG in fetal adrenal cells (Supplementary Fig. 2b, Supplementary Table 3). 

Moreover, we tested whether the DMR set can be used to gain insights into the 

combinatorial control of cellular states by TFs. To that end, we determined all unmethylated 

(<10% methylation) PAX5 motif instances (±100bp) across the human genome in CD34 or 

fetal brain cells (Fig. 2c). While, both footprint sets show a large overlap (11,031 sites), 

regions exclusively unmethylated in CD34 or fetal brain are enriched for distinct sets of 

other known lineage specific TF motifs; such as PU.1 in CD34 and LMX1A or EN1 in fetal 

brain (Fig. 2c). Taken together, these findings highlight that cell type specific DNAme 

patterns can be used to detect footprints and infer potentially regulatory TFs. In fact, more 

than 60% of all ENCODE TFBS are hypermethylated in most samples, but become 

hypomethylated very specifically in only one or two cell types (Fig. 2d), while 25% are 

constitutively unmethylated and never change (Fig. 2d).

Breaking down this distribution of TFBS reveals distinct patterns of variation for different 

types of TFs (Supplementary Fig. 2e). More generally, we find that DNAme variation across 

TFBS is strongly correlated with its median methylation level and therefore the (hypo-) 

methylation specificity (Supplementary Fig. 2c), as well as the TFs specificity of 

expression22 (Supplementary Fig. 2d). These observations support the notion23 that selective 

TF binding creates spatially highly constrained hypomethylated regions and confers cell 

type specificity.

Based on these findings and previous reports24 we asked whether DMRs are more 

susceptible to point mutations that are functionally consequential. Even with strict filtering 

criteria, we found a significant enrichment of SNPs in DMRs compared to genomic 

background as well as different sets of random control regions (odds ratio 1.06, p-

value<10−16, binomial test, Supplementary Information). We then determined the overlap of 

DMRs with recently evolved human specific CpGs, termed CpG beacons25, which shows a 

striking enrichment (odds ratio 1.37–1.6 compared to genomic background and random 

control regions, p-value<10−16). This suggests overall higher genetic intra-species 

variability specifically at regions that change their DNAme state. In concordance with the 

increased SNP frequency, DMRs are also significantly enriched for GWAS SNPs from the 

GWAS catalog26 (odds ratio 1.16, p-value=3.27×10−10, binomial test). Similar to our 

observations on TFBS, GWAS SNPs exhibit a non-random enrichment distribution across 

cell type specific DMRs (Fig. 3a). For instance, we find DMRs specific to adult liver to be 

enriched for liver and serum metabolite related GWAS SNPs, fetal heart for cardiovascular 

and many of our blood cell types for autoimmune diseases and hematological parameters.

It is well known that many cancers exhibit dramatic DNAme changes27, we therefore 

compared a colon cancer to a matched control and found 532,665 differentially methylated 

CpGs. 40% of these overlapped with the previously identified developmental dynamic set 

(Fig. 4a). Similarly, 36% of differentially methylated CpGs found in Alzheimer Disease 

(AD) samples compared to normal controls (n=12,408) overlapped with our previous set of 

developmental CpGs. The most dramatic change in the number of dynamic CpGs occurs 

when comparing our developmental sample cohort to the long-term cell culture cohort, 
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leading to the identification of 8.4 million additional dynamic CpGs (Fig. 4b). Importantly, 

this expanded set differs notably in terms of their sequence features, with cancer and AD 

dynamic CpGs residing in less conserved regions that also exhibit lower motif complexity 

compared to the developmental and cell culture (Supplementary Fig 4a,b). The cell culture 

specific CpGs exhibit elevated repeat content relative to developmental CpGs, a feature that 

is shared with AD (Fig. 4c). While the disease samples clearly add more dynamic CpGs, our 

analysis suggests a notable overlap with our prior set for CpGs that may participate in actual 

regulatory events.

Finally, we investigated the utility and power of the reduced region set to accurately classify 

unknown samples or help deconvolute a mixture of samples. We first clustered our 

developmental sample set based on the DMRs only (Fig. 4d) and found the result to be in 

excellent agreement with genome-wide 1kb tiling based clustering (Supplementary Fig. 5a). 

To probe the potential of our DMR set to accurately classify unknown samples, we derived 

signature region sets for different sample groups. These signature regions turned out to be 

excellent classifiers of an unseen sample (fetal brain, Fig. 4e). Next, we tested as a proof of 

principle whether it is possible to utilize our DMR set to infer the different cell populations 

present within a heterogeneous sample. To that end, we deconvoluted an in silico mixture of 

HUES64 and hippocampus WGBS libraries using our DNAme signatures. Notably, the two 

top hits after application of a very simple deconvolution algorithm indeed proved to be 

hippocampus and HUES64 (Fig. 4f).

Our study highlights and defines a relatively small subset of all genomic CpGs that change 

their DNA methylation state across a large number of representative cell types. Although we 

expect that number to somewhat increase with more diverse cell types as more WGBS data 

sets becoming available, our analysis suggests that the rate of newly discovered regulatory 

CpGs will drop rapidly once all major cell and tissue types have been mapped, mostly owed 

to the fact that between tissue variability exceeds within tissue variability by one order of 

magnitude (Supplementary Fig. 3a,b). Future studies are likely to fine map dynamics 

occurring in more specific subpopulations, giving rise to smaller changes in DNAme that we 

were unable to detect or include because of power constraints. Extreme conditions in vitro or 

in vivo such as loss or misregulation of DNMT1 may affect a larger subset including many 

intergenic CpGs that are generally static, but most of these additional CpGs are unlikely to 

overlap with functional elements such as TFBS or enhancers. In combination with the fact 

that sequencing of WGBS libraries is very inefficient, as about 65% of all 101bp reads in 

our set did not even contain any CpGs to begin with, this amounts to an approximate, 

combined loss of around 80% of sequencing depth on non-informative reads and static 

regions. Finally, once defined, it will likely be sufficient in most cases to profile only a 

representative subset of CpGs across a comprehensive set of DMRs using an array28 or 

hybrid capture29 based technology to recover representative dynamics and measure 

regulatory events. Using these results as a guiding principle, we expect further improved 

efficiencies in mapping DNAme and enhance its applicability as a marker for various 

regulatory dynamics in normal and disease phenotypes.
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Methods Summary

Biological materials and sequencing libraries

Genomic DNA was fragmented to 100–500 bp using a Covaris S2 sonicator. DNA 

fragments were cleaned-up, end-repaired, A-tailed, and ligated with methylated paired-end 

adapters (purchased from ATDBio). See Supplementary Information for details.

Data processing and analysis

In house generated WGBS libraries were aligned using MAQ30 in bisulfite mode to the 

hg19/GRCh37 reference assembly. Subsequently, CpG methylation calls were made using 

custom software, excluding duplicate, low quality reads as well as reads with more than 

10% mismatches. Methylation ratios of individual CpGs were modeled using a beta-

binomial model estimating parameters from the number of methylated and total reads 

overlapping a given CpG, incorporating replicates. Only CpGs covered by ≥5× reads were 

considered for further analysis. Differential methylation values of individual CpGs were 

estimated using the beta-difference distributions. CpG cluster differential methylation was 

determined by pooling CpG level methylation differences using a random effects model. 

CpG cluster methylation specificity was determined using the Jensen-Shannon divergence of 

a CpG cluster’s methylation level distribution across all samples and a reference distribution 

representing either of the two extremes: completely unmethylated or fully methylated. In 

silico identified CpG islands were defined by genomic regions of at least 700bp length, an 

CpG observed vs. expected ratio of greater than 0.6 and a GC content greater or equal than 

0.5. For the SNP analysis, we obtained the CEPH SNP set from USCS. GWAS SNPs were 

retrieved from the GWAS catalog, while most of the GWAS SNP grouping was taken from 

Maurano et al.24. For TFBS analysis, we retrieved peak files from the ENCODE projects 

and collapsed replicates. Motif analysis was carried out using FIMO.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Identification and characteristics of differentially methylated regions (DMRs) in the 
human genome
a. Principal component analysis based on CpG methylation levels for 1kb tiles across 30 

diverse human cell and tissue samples. Coloring indicates classification of samples into 

subgroups and group wise mean DNAme. Detailed sample annotations are listed in 

Supplementary Table 1. Gray area indicates Alzheimer’s disease (AD) samples..

b. Density scatterplot of CpG wise DNAme level differences (x-axis, p≤0.01) and CpG 

median methylation (y-axis) across the 24 developmental samples (excluding cancer and 
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long-term culture). Coloring indicates CpG density from low (blue) to high (red). The red 

box highlights dynamic CpGs (≥0.3).

c. Cumulative distribution of DMR specificity. High hypo/hypermethylation specificity 

indicates that particular region is methylated/unmethylated in most tissues and deviates from 

this default state in only one or few cases.

d. Top: Composite plot of mean DNAme differences across various genomic features. Black 

line indicates the median of the average DNAme difference across each feature. Grey areas 

mark 25th and 75th percentile. Bottom: Distribution of mean DNAme difference for each 

genomic feature. Black bar indicates 25th and 75th percentile while white dot marks the 

median. For CGI islands, a smaller, experimentally determined set (eCGI; n=25,490) is 

shown as well. Promoters are broken down into high CpG content (HCP, n=24,899), 

intermediate CpG content (ICP, n=10,920) and low CpG content (LCP, n=7,946) regions 

(n=43,765 total).

e. Methylation level variation across the OCT4 locus (chr6:31,119,000–31,162,000) (top). 

Blue boxes indicate DMRs significant at p≤0.01 and exhibit a minimum difference ≥0.3 

across the 24 developmental samples. For reference, ENCODE TFBS cluster track, DNAse I 

hypersensitive sites, CpG islands and RefSeq genes are shown.

f. Distribution of DMRs across various genomic features. Each region is assigned only to 

one of these genomic feature according the ranking promoter, CGI, CGI shore, exon, intron, 

putative enhancers, DNAse I hypersensitive site or other.
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Figure 2. Dynamic CpG methylation regions frequently co-localize with transcription factor 
binding sites (TFBS)
a. Overlap of DMRs with ENCODE TFBS.

b. Enrichment of the top four TFBSs significantly overrepresented (p<0.01, empirical test) 

in DMRs specific to the cell type indicated (specificity >0.15). Color code quantifies median 

enrichment odds ratio compared to size matched random control regions.

c. Overlap of PAX5 motifs (±100bp top) unmethylated in CD34 cells or fetal brain across 

the entire human genome. Regions specifically unmethylated in CD34 or fetal brain were 

subjected to motif analysis and top differentially co-occurring motifs are highlighted on the 

left for CD34 and on the right for fetal brain.

d. Density scatterplot of maximum DNAme difference across 24 developmental samples for 

TFBS cluster track (n=2.7 million) and median methylation level across all samples. Color 

code indicates density of TFBS from low (blue) to high (red)..
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Figure 3. DMRs exhibit elevated SNP frequency and show non-random GWAS SNP enrichment
a. Odds ratio of significantly overrepresented (p<0.05, empirical test, see Supplementary 

Information) GWAS SNPs grouped into 16 categories in regions specifically 

hypomethylated within the sample indicated on the left. Asterisk indicates p-value <0.1.
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Figure 4. Effective classification and sample deconvolution using only the DMR set
a. Overlap of dynamic CpGs (p≤0.01 Δ≥0.3) in normal samples and between colon cancer 

and matching control CpG numbers (in million).

b. Distribution of autosomal CpGs across three conditions. Class name indicates sample 

group where a CpG was observed dynamic (developmental (n=24), cell culture (n=3), 

cancer (n=2)) or remained unchanged over the entire sample set (n=30).

c. Repeat content distribution of DMRs (sets as in b).

d. Hierarchical clustering using pearson correlation coefficient (PCC) of the DMR values 

across the entire sample set (n=30).

e. Distance of the fetal brain sample to different sets of signature regions defined for sample 

classes or individual samples, but excluding regions identified by means of the fetal brain 

sample.
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f. Contribution of individual sample signature region sets to an in silico generated hybrid 

sample (HUES64 and hippocampus).
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