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Abstract
Objectives To develop and validate a pre-transcatheter arterial chemoembolization (TACE) MRI-based radiomics model for
predicting tumor response in intermediate-advanced hepatocellular carcinoma (HCC) patients.
Materials Ninety-nine intermediate-advanced HCC patients (69 for training, 30 for validation) treated with TACEwere enrolled.
MRI examinations were performed before TACE, and the efficacy was evaluated according to the mRECIST criterion 3 months
after TACE. A total of 396 radiomics features were extracted from T2-weighted pre-TACE images, and least absolute shrinkage
and selection operator (LASSO) regression was applied to feature selection and model construction. The performance of the
model was evaluated by receiver operating characteristic (ROC) curves, calibration curves, and decision curves.
Results The AFP value, Child-Pugh score, and BCLC stage showed a significant difference between the TACE response (TR)
and non-TACE response (nTR) patients. Six radiomics features were selected by LASSO and the radiomics score (Rad-score)
was calculated as the sum of each feature multiplied by the non-zero coefficient from LASSO. The AUCs of the ROC curve
based on Rad-score were 0.812 and 0.866 in the training and validation cohorts, respectively. To improve the diagnostic
efficiency, the Rad-score was further integrated with the above clinical indicators to form a novel predictive nomogram.
Results suggested that the AUC increased to 0.861 and 0.884 in the training and validation cohorts, respectively. Decision curve
analysis showed that the radiomics nomogram was clinically useful.
Conclusion The radiomics and clinical indicator-based predictive nomogram can well predict TR in intermediate-advanced HCC
and can further be applied for auxiliary diagnosis of clinical prognosis.
Key Points
• The therapeutic outcome of TACE varies greatly even for patients with the same clinicopathologic features.
• Radiomics showed excellent performance in predicting the TACE response.
• Decision curves demonstrated that the novel predictive model based on the radiomics signature and clinical indicators has
great clinical utility.
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Introduction

Hepatocellular carcinoma (HCC) is the most frequent primary
malignancy of the liver with high lethality, and its incidence is
steadily rising worldwide [1, 2]. Hepatocarcinogenesis is a
complex biological process with multiple steps, in which ge-
nomic changes induce the formation of cellular intermediates
by progressively altering the hepatocellular phenotype, there-
by evolving into HCC [3]. Hepatectomy and liver transplan-
tation are considered the only two options with potentially
curative effects [4]. Unfortunately, most HCC patients are
diagnosed at an intermediate-advanced stage with accompany
of extensive diseases or underlying liver dysfunction and are
often not eligible for curative therapies. According to the
Barcelona Clinic Liver Cancer (BCLC) clinical staging sys-
tem, local therapy represented by transcatheter arterial
chemoembolization (TACE) has become an important therapy
for patients with intermediate-advanced liver cancer [5].

As a globally used approach for effective treatment of inop-
erable HCC, TACE also builds a bridge for connection with
other therapies, such as hepatectomy [6] and targeted therapy
[7]. However, the therapeutic outcome of TACE varies greatly
from patient to patient because the biological behavior of tumor
cells is highly heterogeneous [8]. Recent studies have evi-
denced that the heterogeneity of TACE response also results
in a high incidence of local tumor recurrence, which could
reach to 46%, 58%, and 63% at 2, 3, and 5 years of posttreat-
ment, respectively [9–11]. Previous studies have confirmed that
Cezanne and cytokine signaling 3 methylation are highly relat-
ed to the heterogeneity of TACE response [8, 12]. Although
many efforts have been made, reliable methods related to the
prediction of the response to TACE treatment and the prognosis
of HCC patients are still limited. To revolutionize the treatment
of HCC, an accurate and efficient method for the prediction of
TACE response is needed, which is also the key goal of modern
personalized medicine [13]. Clinically, magnetic resonance
imaging (MRI) plays an essential role in the initial staging,
therapeutic strategy, and treatment response assessment of
HCC [14]. The current MRI-based diagnosis relies on the
experience of radiologists, who make a subjective and qualita-
tive interpretation based on the image. However, it is difficult
for them to make a quantitative assessment of tumor heteroge-
neity [15]. Currently, there is a growing interest in the utiliza-
tion of radiomics for diagnosis, which could characterize the
phenotypes of different diseases by extracting quantitative fea-
tures frommedical images. Previous studies have demonstrated
that features based on radiomics are inextricably linked to clin-
ical prognosis and underlying genomic patterns across a range
of cancer types [16–18]. Therefore, it may be feasible to predict
the TACE response by using radiomics, which could well
establish the link between HCC and medical images [19]. To
our knowledge, MRI-based radiomics is still inadequate for the
prediction of TACE response.

Therefore, the aim of this studywas to develop and validate an
MRI-based radiomics nomogram that could provide individual-
ized pretreatment evaluations of the TACE response of HCC and
to assess the feasibility of its clinical application.

Materials and methods

Patient selection

The study was approved by the Institutional Review Board and
Human Ethics Committee of Lishui Hospital of Zhejiang
University, and the requirement for informed consent was
waived. A total of 403 patients who underwent TACE treatment
in our institution with pathologically confirmed intermediate
(BCLC stage B) or advanced (BCLC stage C) HCC were en-
rolled from March 2016 to December 2019. Other inclusion
criteria for eligible patients includedMRI examination performed
within 2 weeks before TACE and follow-up for more than 3
months after TACE, as well as no other therapies. A total of
304 patients were excluded due to the following factors: (1)
patients who received a combination of other treatments, such
as tumor resection, radiotherapy, or systemic chemotherapy
(n = 264); (2) patients who lacked MR imaging data or poor
image quality (n = 7); (3) patients with a follow-up time after
TACE of less than 3 months (n = 27); and (4) patients with other
malignancies (n = 6). Finally, 99 patients were selected for further
study in the present study. The flow of the case identification
process is shown in Fig. 1.

MR imaging protocol

All MRI scans were performed on a Philips ENGENIA 3.0-T
MR scanner (Philips Medical Systems). All patients underwent
dynamic contrastMRI before and after TACE, and corresponding
standard clinical protocols included (1) spectral presaturation with
inversion recovery T2-weighted sequence (repetition time/echo
time (TE), 3000/200 ms; slice thickness, 7 mm; interslice gap, 1
mm; matrix size, 200 × 195); (2) breath-hold unenhanced and
contrast-enhanced (after injection of 0.1 mmol gadopentetate
dimeglumine (Guangzhou Kangchen Pharmaceutical Co. Ltd.)
per kilogram of body weight) mDIXON-T1WI (water) sequence
(repetition time/TE1/TE2, 3.6/1.31/2.2 ms; field of view, 400–
314 mm; slice thickness, 5 mm; slice gap, −2.5 mm; matrix size,
224 × 166) were scanned, and 4 dynamic phases were scanned,
which were the hepatic arterial phase (15 s), portal venous phase
(50 s), substantial period phase (90 s), and delayed phase (180 s);
and (3) breath-hold diffusion-weighted echo-planar sequence
(field of view, 400–343 mm; matrix size, 116 × 97; repetition
time/TE, 2500/64 ms; section thickness, 7 mm; intersection gap,
1 mm; b value = 0 and 800 s/mm2).
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TACE treatment

All enrolled patients were successfully treated with TACE, in-
cluding conventional TACE (cTACE) and drug-eluting bead
TACE (DEB-TACE). It depends on the physicians to choose
cTACE or DEB-TACE based upon the liver function of the pa-
tients, the size and number of tumors, whether diffuse or discrete,
and their location in the liver. The TACE method recommended
by the physician is approved by the patients. All therapeutic pro-
cedures were performed according to the current practice guide-
lines [20] and conducted by interventional radiologists with more
than 10 years of clinical experience to ensure the standardization
of the treatment process, and successful embolization was deter-
mined when no contrast staining in the tumor was identified on
postembolization angiography.

For cTACE, lipiodol (Guerbet), gelatin sponge particles, and
polyvinyl alcohol were used as embolic agents. The 2.7-Fr
microcatheter (Progreat; Terumo) was applied to inject the em-
bolic agents in the hepatic arterial vasculature under the monitor-
ing of digital subtraction angiography (DSA; AlluraClarity FD
20, Philips). All patients were admitted after the cTACE proce-
dures for post-procedure supportive treatment, and routine man-
agement was conducted, including hydration, antiemetics, pain
control, and monitoring liver function changes.

For DEB-TACE, CalliSpheres® Beads (CB; Jiangsu Hengrui
Medicine Co., Ltd.) with a diameter of 100–300μmwere used as
carriers and loaded with 60–80mg epirubicin, pirubicin, or doxo-
rubicin. The treatment process of TACE was similar to that of
cTACE, with complete blockage of the tumor-supplying artery as
the treatment endpoint.

Evaluation of TACE response based on the modified
Response Evaluation Criteria in Solid Tumors
(mRECIST) criterion

We evaluated the modified Response Evaluation Criteria in
Solid Tumors (mRECIST)–based tumor response in patients
who underwent TACE treatment by postoperativeMRI within
3–4 months. Briefly, the corresponding response of
mRECIST [21] included (1) complete response (CR): com-
plete disappearance of the tumor; (2) partial response (PR): a
minimum 30% decrease in the sum of diameters of viable
target lesions (enhancement in the arterial phase); (3) progres-
sive disease (PD): at least 20% increase in the sum of the
diameters of viable (enhancing) target lesions; and (4) stable
disease (SD): neither PR nor PD. In the present study, the
patients were divided into two groups: the TACE response
(TR) group (CR and PR patients) and the non-TACE response

Fig. 1 Flowchart of study
enrollment
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(nTR) group (PD and SD patients). Representative MR im-
ages for nTR and TR patients are shown in Fig. 2.

The TACE response of patients in this study was determined
by two experienced radiologists based on the follow-up MR im-
ages. Of the 99 enrolled patients, 46 patients were assigned to the
nTR group and 53 patients were assigned to the TR group. Then,
the patients were randomly divided into a training cohort (69
patients; nTR = 32, TR = 37) and a validation cohort (30 patients;
nTR = 14, TR = 16) by setting seed points.

Texture feature extraction

All preoperative T2-weighted images were imported into
ITK-SNAP (www.itk-snap.org) to delineate the volume of
interest (VOI) of tumor areas, which was independently con-
ducted by two radiologists with more than 15 years of expe-
rience in clinical diagnosis to secure the reproducibility of the
intra-observer and inter-observer segmentation.

Then, the quantitative features of VOIs were calculated by
Artificial Intelligence Kit software (A.K. software; GE
Healthcare), and a total of 396 radiomics features were extracted
for further analysis, which were divided into five categories, in-
cluding histogram, form factors, gray-level size zone matrix

(GLSZM), gray-level co-occurrence matrix (GLCM), and run-
length matrix (RLM).

Selection of radiomics features and construction of
the radiomics signature

All extracted radiomics features were further processed for
dimension reduction, and the Z-score method was first used
to standardize the features before feature dimension reduction,
which could remove the unit limits on the data of each feature.
Then, the abnormal values were replaced with the median of
the parameter in all cases, and the training cohort was used to
build the radiomics model, which was further verified by the
validation cohort. Feature selection was performed with the
least absolute shrinkage and selection operator (LASSO) lo-
gistic regression algorithm, and finally, the highly correlated
features were screened. Then, the radiomics score (Rad-score)
for each patient was calculated by using a linear combination
of the cluster of the selected features, which were weighted by
their corresponding LASSO coefficients. The predictive accu-
racy of the radiomics signature was quantified by the area
under the receiver operating characteristic curve (AUC) in
both the training and validation cohorts.

Fig. 2 Representative MR images for nTR and TR of HCC patients
according to mRECIST criterion. aA 73-year-old male HCC patient with
a lesion diameter of 69.82 mm underwent MR scanning 1 week before
TACE, followed by MR scanning 42 days after TACE. T1WI, T2WI,
DCE-MRI, and DWI images were collected, and the results showed that
the tumor presented with nTR, with the lesion diameter increasing to
98.79 mm. b An 80-year-old male HCC patient, with a lesion diameter

of 69.20 mm.MR scanning was performed 1 week before TACE, follow-
ed byMR scanning 42 days after TACE, and the results showed the lesion
presented with partial response (TR), with the lesion diameter decreasing
to 64.32 mm and 85% necrosis. MR, magnetic resonance; TACE, trans-
catheter arterial chemoembolization; TR, TACE response; nTR, non-
TACE response; HCC, hepatocellular carcinoma; mRECIST, modified
Response Evaluation Criteria in Solid Tumors
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Furthermore, to improve the prediction performance of the
current Rad-score-based model, we further introduced the clinical
indicators that were highly correlated with TACE response into
our predictive model. Univariate analysis and multivariate analy-
sis were applied to select the highly correlated indicators for each
potential clinical indicator, and then combinedwith the Rad-score
to construct a radiomics nomogram as the predictive model for
TACE response. The receiver operating characteristic (ROC)
curves were plotted to evaluate the predictive ability of themodel.
Furthermore, to assess the calibration and clinical utility of the
nomogram, calibration curves and decision curves were devel-
oped. Finally, the model was validated in the validation cohort
by using the formula constructed in the training cohort to calculate
the AUC and develop the calibration curve.

Intra-observer and inter-observer agreement

The intra-observer agreement and inter-observer agreement of
feature extraction were evaluated by correlation coefficients
(ICCs). To compute the intra-observer ICC, 40 T2WMR images
were selected randomly and segmented twice in 1 month by
reader A. To compute the inter-observer ICC, the selected images
were segmented by two radiologists independently (reader A and
reader B). Segmentationwas performed to further obtain indepen-
dent feature extraction to compute the intra-observer and inter-
observer ICCs. When the ICC was greater than 0.75, it was con-
sidered good agreement, and the remaining segmentation was
performed by reader A.

Statistical analysis

All quantitative features were analyzed with R software (version
3.6.1). The differences in clinical indicators between the training
and validation cohorts were assessed by using the Kolmogorov-
Smirnov test, and Student’s t test. The LASSO logistic regression
model was performed using the “glmnet” package. The “pROC”
package was used to plot ROC curves. The nomogram and cal-
ibration curve were depicted using the “rms” package. The cor-
relation analysis between radiomics features was performed using
the “pheatmap” package. The clinical utility of our model was
evaluated by a decision curve, which was plotted using the
“rmda” package [22]. The reported statistical significance levels
were all two-sided, with statistical significance set at 0.05.

Results

Clinical features of patients and logistic regression
analysis of factors related to TR

In this study, a total of 99 patients who received TACE treat-
ment with different responsiveness levels were enrolled ac-
cording to the inclusion and exclusion criteria. The baseline

characteristics of the nTR and TR patients are listed in
Table 1. Among them, 50 patients received cTACE treatment,
49 patients received DEB-TACE treatment, and 53 patients
had responding, but 46 patients had no responding. Forty
males (87.0%) and 6 females (13.0%) were included in the
nTR group, with a median age of 54.5 years, and 44 males
(83.0%) and 9 females (17.0%) were included in the TR
group, with a median age of 65 years. At the initial diagnosis,
the median diameter of the tumor was 5.3 cm (range from 3.60
to 9.15 cm) and 5.1 cm (range from 2.825 to 8.175 cm) in the
nTR and TR groups, respectively. No significant difference
was found in terms of sex, hepatitis B surface antigen
(HBsAg), total bilirubin, carcinoembryonic antigen (CEA),
tumor diameter, or therapy method between the nTR and TR
groups (p > 0.05). Meanwhile, there were large differences be-
tween the two groups in Child-Pugh class (p = 0.009), BCLC
stage (p = 0.007), and alpha-fetoprotein (AFP) level (p = 0.003).

Multivariate logistic regression analysis revealed that the
Child-Pugh class, BCLC stage, and AFP level could be used
as predictive factors for TR, as shown in Table 1. The ORs for
Child-Pugh class, BCLC stage, and AFP level were 2.846
(95% CI: 1.054–7.680; p = 0.039), 2.904 (95% CI: 1.136–
7.426; p = 0.036), and 1.001 (95% CI: 1.000–1.002; p =
0.006), respectively. All the factors remained significant in
both univariate analysis and multivariate analysis.

Intra-observer and inter-observer reproducibility of
radiomics feature extraction

There was no statistically significant difference between the
measurements of the two readers for each selected feature,
with p values ranging from 0.712 to 0.861. The intra-
observer ICC calculated based on two measurements obtained
by reader A ranged from 0.821 to 0.946. The inter-observer
agreement between the two readers ranged from 0.767 to
0.910. The results indicated favorable intra- and inter-
observer feature extraction reproducibility. Finally, all out-
comes were based on the measurement of reader A.

Radiomics model based on the Rad-score and clinical
predictive factors

The workflow of radiomics in this study is shown in Fig. 3 and
Figure S1. Ultimately, six features that were most strongly asso-
ciated with the TR were selected by LASSO logistic regression:
variance, InverseDifferenceMoment_angle90_offset7,
L o n g R u n E m p h a s i s _ a n g l e 9 0 _ o f f s e t 7 ,
Sho r tRunEmpha s i s _A l lD i r e c t i o n_o f f s e t 4_SD ,
S h o r t R u n Em p h a s i s _ a n g l e 1 3 5 _ o f f s e t 1 , a n d
HighIntensityLargeAreaEmphasis (Table 2 and Figure S1C).
The ROC curves for the selected features are presented in Fig.
4a and b, and the corresponding AUC, sensitivity, and specificity
are shown in Table 2.
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Then, all six selected features were combined to generate
the Rad-score for each case to construct a prediction model for
TR. The model showed excellent predictive performance in
the training and validation cohorts (Fig. 4c, d). In the training
cohort, the AUC of the prediction model was 0.812 (95% CI:
0.711 to 0.914), and the specificity and sensitivity were 0.676
and 0.844, respectively. In the validation cohort, the AUC,
specificity, and sensitivity were 0.866 (95% CI: 0.739 to
0.993), 0.812, and 0.786, respectively.

To improve the prediction efficiency of the above model
based on the Rad-score, we further integrated the screened clin-
ical indicators (Child-Pugh class, BCLC stage, and AFP level)
into the prediction model to form a novel model, and the perfor-
mance of the model was improved significantly (Fig. 5 and
Table 3). The AUC of the training cohort was 0.861 (95% CI:
0.774 to 0.949), and the specificity and sensitivitywere as high as
0.811 and 0.844, respectively. The AUC of the validation cohort
was 0.884 (95% CI: 0.764 to 1.000), and the specificity and
sensitivity were 0.75 and 1.00, respectively.

Construction of the predictive nomogram

A radiomics nomogram was constructed on the basis of
the above novel prediction model, which effectively

incorporated both the Rad-score and selected clinical
predictors (Fig. 6a). The calibration plot also indicated
good agreement between the nomogram prediction and
actual observation for patients in both the training and
validation cohorts (Fig. 6b, c).

Clinical utility of the predictive nomogram

The decision curve analysis for the radiomics nomogram
is presented in Figure S2. The decision curve showed
that if the threshold probability of a patient was > 7%,
using the radiomics nomogram to predict nTR adds
more benefit than either the treat-none scheme or the
treat-all-patients scheme. Within this range, on the basis
of the above radiomics nomogram, the net benefit was
comparable, with several overlaps.

Discussion

TACE is a widely used locoregional palliative interventional
therapy, and it plays a pivotal role in the management of HCC
patients due to the blockage of the blood-supplying artery of
tumors, which could cause extensive necrosis and inhibit tumor

Table 1 Baseline characteristics
of the patients in the nTR and TR
groups

Variables Univariate analysis Multivariate analysis

nTR (n = 46) TR (n = 53) p value OR (95% CI) p value

Age 54.5 (50, 65.25) 65.0 (50.0, 71.5) 0.054
Sex 0.586
Male 40 (87.0%) 44 (83.0%)
Female 6 (13.0%) 9 (17.0%)
Child-Pugh 0.009 2.846 (1.054, 7.680) 0.039
A 23 (50.0%) 40 (75.5%)
B 23 (50.0%) 13 (24.5%)
BCLC stage 0.007 2.904 (1.136, 7.426) 0.026
B 18 (39.1%) 35 (66.0%)
C 28 (60.9%) 18 (34.0%)
HBsAg 0.492
Positive 36 (81.8%) 38 (76.0%)
Negative 8 (18.2%) 12 (24.0%)
AFP (ng/ml) 134.1 (18.9, 2000) 21.7 (5.2, 75.275) 0.003 1.001 (1.000, 1.002) 0.006
TBIL (μmol/L) 19.15 (11.05, 27.475) 15.7 (11.7, 19.7) 0.059
CEA (U/ml) 2.9 (2.0, 4.25) 3.0 (2.1, 4.5) 0.911
TD (cm) 5.3 (3.6, 9.15) 5.1 (2.825, 8.175) 0.458
Therapy method 0.476
cTACE 25 (54.3%) 25 (47.2%)
DEB-TACE 21 (45.7%) 28 (52.8%)

Skewness and kurtosis test was used to test the normality of continuous variables. Independent sample t test was
used to compare continuous variables with normal distribution. Mann-Whitney U-test was used to compare
continuous variables with abnormal distribution. Chi-square test was used for the comparisons of categorical
variables. p value < 0.05 indicates a significant difference in patients’ characteristics between the nTR and TR
patients

TACE, transcatheter arterial chemoembolization; nTR, non-TACE response; TR, TACE response; Child-Pugh,
Child-Pugh-Turcotte score; BCLC, Barcelona Clinic Liver Cancer; HBsAg, hepatitis B surface antigen; AFP,
alpha-fetoprotein; TBIL, total bilirubin; CEA, carcinoembryonic antigen; TD, tumor diameter; cTACE, conven-
tional TACE; DEB-TACE, drug-eluting bead TACE
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Fig. 3 Flowchart of the study. The flowchart shows the overall
operational process. First, VOIs were manually depicted based on raw
MR imaging with ITK-SNAP software. Second, 396 features were ex-
tracted from the VOI of each patient by using the A.K. software, which
had high correlation, as shown by the correlation matrix. Third, the
LASSO method was applied for data dimension reduction, feature

selection, and model construction. Finally, the performance of the
radiomics featuresmodel, clinical featuresmodel, and the combinedmod-
el were evaluated by the AUCs of the ROC curves, calibration curves, and
decision curves. VOI, volume of interest; MR, magnetic resonance;
LASSO, least absolute shrinkage and selection operator; AUC, area under
the curve; ROC, receiver operating characteristic

Table 2 Predictive performance of each feature selected by LASSO in the training and validation cohorts

Category Feature selected Coefficient AUC Sensitivity Specificity

Training Validation Training Validation Training Validation

GLSZM Variance −0.4574 0.613 0.728 93.8% 57.1% 29.7% 93.8%

GLCM InverseDifferenceMoment_angle90_offset7 0.3763 0.610 0.522 37.5% 50.0% 83.8% 75.0%

RLM LongRunEmphasis_angle90_offset7 0.9905 0.761 0.688 65.6% 100% 81.1% 43.8%

RLM ShortRunEmphasis_AllDirection_offset4_SD −0.9054 0.612 0.661 43.8% 42.9% 81.1% 100%

RLM ShortRunEmphasis_angle135_offset1 −0.4763 0.694 0.701 62.5% 92.9% 73.0% 56.2%

Histogram HighIntensityLargeAreaEmphasis −0.0684 0.687 0.812 53.1% 64.3% 78.4% 93.8%

Constant −0.1068

LASSO, least absolute shrinkage and selection operator; AUC, the area under the operating characteristic curve; GLSZM, gray-level size zone matrix;
GLCM, gray-level co-occurrence matrix; RLM, run-length matrix
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progression [23]. However, the clinical response of HCC pa-
tients to TACE tends to present large individual differences [8,
24]. Therefore, it is particularly important to accurately assess
the tumor response before TACE, which is also essential for the
further management of HCC. The present study developed and
validated a novel predictive, radiomics signature and clinical
predictor-based radiomics nomogram for predicting the respon-
siveness of TACE candidates with HCC. The model could
successfully stratify patients into nTR and TR patients accord-
ing to their pre-TACE Rad-scores and clinical characteristics.

In the present study, radiomics technology was applied to
extract texture features in T2WI of HCC patients, and 396

candidate radiomics features were applied for further study.
Among these 396 radiomics features, there are 42 histogram-
based features, 9 form factor-based features, 11 GLSZM-based
features, 180 RLM-based features, and 154 GLCM-based fea-
tures. The histogram-based features were calculated using the
intensity (HU) distribution of a given ROI and reflect the inten-
sity information of tumors [25]. The form factor-based parame-
ters can describe the three-dimensional size and shape of the
tumor region. The GLSZM-based features compute the number
of times a pixel with a specific gray-level occurs with another
pixel with a gray value jointly. It represents the joint probability
of specific pixels having certain gray-level values [26]. The
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Fig. 4 The predictive performance of each of the selected features and the
Rad-score-based model. a, b ROC curves of each of the selected imaging
features in the training and validation cohorts, respectively. c, d The
predictive performance of the Rad-score-based model, as presented by

ROC curves in the training cohort (AUC = 0.812, 95% CI: 0.711 to
0.914) and validation cohort (AUC = 0.866, 95% CI: 0.739 to 0.993).
ROC, receiver operating characteristic; AUC, area under the curve; 95%
CI, 95% confidence interval
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RLM-based features were defined as the number of runs with
pixels of different gray levels and run lengths for a given direc-
tion such as those defined by GLCM [27].

In our study, the potential 396 candidate radiomics features
were finally reduced to six potential predictors by shrinking
the regression coefficients with the LASSOmethod for further
integration to form the Rad-score, which contains effective
biological information and could reflect the heterogeneity of
the tumor [18]. Several previous studies have demonstrated
that the Rad-score could effectively predict the prognosis of
patients due to its high correlation with tumor biological char-
acteristics [28, 29]. For TACE response, a recent study
showed that the computed tomography–based radiomics sig-
nature was closely associated with the early recurrence of
HCC after TACE [30]. These preliminary studies have further
confirmed that the texture feature–based radiomics method is
feasible for predicting TACE responsiveness.

The BCLC staging system and Child-Pugh class have
been endorsed and recommended by multiple guidelines for
prognosis and treatment stratification of HCC patients [31,
32], and plenty of studies have also demonstrated that
BCLC stage and Child-Pugh class could be used as important

indicators for the prognosis of HCC [33–35]. In addition,
some studies have focused on the relationship between labo-
ratory indicators (such as AFP, CEA, or HBsAg) and the
prognosis of HCC [36–38]. In our study, univariate and mul-
tivariate analyses were also used to select the clinical predic-
tors. The obtained results showed that BCLC stage, Child-
Pugh class, and AFP level were highly correlated with TR
and could be used as independent predictors. Then, the above
three clinical predictors were combined with the radiomics
signature to construct a novel TR prediction nomogram,
which could effectively improve the predictive performance
of the model based on the Rad-score.

The constructed novel TR prediction nomogram was further
evaluated by a decision curve to clarify the clinical utility, which
could offer insight into clinical outcomes on the basis of thresh-
old probability, from which the net benefit could be derived (net
benefit is defined as the differential value of true positives pro-
portion and false positives proportion, weighted by the relative
harm of false positive and false negative results) [39, 40]. The
results showed that if the threshold probability of a patient is
> 7%, using the radiomics nomogram in this study to predict
poor tumor response of patients treated with TACE adds more

Fig. 5 The predictive performance of the model based on the Rad-score
and clinical indicators. a, b ROC curves of the combined model in the

training and validation cohorts, respectively. ROC, receiver operating
characteristic

Table 3 Comparison of the
predictive performance for tumor
response of each model in the
training and validation cohorts

Models Training cohort Validation cohort

AUC Sensitivity Specificity AUC Sensitivity Specificity

Radiomics model 0.812 84.4% 67.6% 0.866 78.6% 81.2%
Clinical model 0.733 62.5% 73.0% 0.667 42.9% 93.8%
Combined model 0.861 84.4% 81.1% 0.884 100% 68.8%

AUC, the area under the operating characteristic curve
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benefit than either the treat-all-patients scheme or the treat-none
scheme. The present novel nomogram provides an important
quantitative indicator and reference for the decision-making and
management of treatment regimens for clinical HCC patients.

The GIDEON study showed that cTACE and DEB-TACE
comprise 74% and 16% of TACE procedures, respectively [41].
In clinic, the physicians chose cTACE or DEB-TACE for the
treatment of HCC patients based upon the liver function of the
patients, the number and size of tumors, whether discrete or
diffuse, and their location in the livers. In order to obtain a

universally applicable prognostic model for TACE, patients re-
ceiving cTACE or DEB-TACE were all enrolled in this study.
The results showed that the TACE techniques were not an inde-
pendent predictor for tumor response. The result is consistent
with a recent study, which shows that there has been no statistical
difference in efficacy (tumor response and overall survival) be-
tween cTACE and DEB-TACE [42]. Doxorubicin, epirubicin,
and pirubicin are the most commonly used anticancer drugs in
TACE treatment. A randomized controlled trial showed that
there is no significant difference in survival among doxorubicin,

Fig. 6 The nomogram and calibration curves of the model based on the
radiomics signature and clinical predictors. a The radiomics nomogram
integrated the radiomics signature with the AFP level, Child-Pugh class,
and BCLC stage in the training cohort. The probability value of each
HCC patient with nTR is marked on each axis. b, c The calibration curves
between the nomogram prediction and actual observation for nTR and TR
patients in the training and validation cohorts, respectively. The diagonal

dotted line represents an ideal evaluation, while the solid lines and dashed
lines represent the performance of the corrected and apparent bias, re-
spectively. The closer the fit is to the diagonal dotted line, the better the
evaluation. AFP, alpha-fetoprotein; BCLC, Barcelona Clinic Liver
Cancer; HCC, hepatocellular carcinoma; TACE, transcatheter arterial
chemoembolization; TR, TACE response; nTR, non-TACE response
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cisplatin, and epirubicin [43]. The choice of the anticancer agent
and the administered dose are recommended by the intervention-
al radiologists based on the condition of the patients [44].

However, there are several limitations in our study. First,
selection bias was inevitable because the current study was a
single-center, retrospective study. Second, the sample size
was relatively small, and external validation and larger
datasets are needed to validate and refine our results. In the
future, large samples, multi-center cohorts, and multimodal
research should be conducted to validate the prognostic sig-
nificance of this radiomics signature.

In conclusion, radiomics provides a novel method to ex-
tract potentially important data from clinical imaging that can
identify different clusters. The constructed novel TR predic-
tion nomogram is a novel, noninvasive, efficient, and feasible
method for the prediction of clinical TACE responsiveness in
HCC patients. The quantitative nomogram prediction model
based on the Rad-score and clinical predictors may serve as an
alternative method for precision medicine and provide highly
informative data for making clinical management decisions.
Furthermore, the present study provides new strategies for
more precise and personalized management of HCC patients,
which could also be extended to other types of treatment.
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