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+ioridazine was used to sensitize cisplatin against cisplatin-resistant human lung cancer cells. Cells received thioridazine,
cisplatin, or both drugs (the combination). +ioridazine synergized cisplatin to increase percentages of dead and apoptotic cells.
DNA damage was detected using the comet assays; the combination led to the highest alkaline- and neutral-comet percentages,
demonstrating exacerbation of both single- and double-strand breaks. After thioridazine treatment, levels of glutathione, and
BRCA2, RAD51, and ERCC1 proteins were decreased. +ese data manifested that thioridazine decreased the capacities of
detoxification and DNA repair, thereby enhancing cisplatin-induced DNA damage in resistant cells.

1. Introduction

Lung cancer remains one of the most lethal malignancies
worldwide, and cisplatin (DDP) is the first-line agent; however,
the development of chemoresistance decreases the therapeutic
responses and ultimately results in treatment failure [1–3].
Intracellular DDP is hydrated to generate the active forms,
which induce DNA damage to cause apoptosis [3]. DDP re-
sistance is multifactor, including drug influx and efflux, de-
toxification, DNA repair, and apoptosis malfunction [4–7].
Consequently, overcoming resistance is yet a challenge.

+ioridazine (THD) is commonly an antipsychotic drug.
Recent data have demonstrated that THD can inhibit the
proliferation of certain cancer cells (such as ovary, lung,
uterine cervix, esophagus, melanoma, glioblastoma, and
liver) [8–11]. THD binds to dopamine receptors on the cell
membranes to activate biological reactions, i.e., THD can
modulate the behavior of cells expressing dopamine re-
ceptors [12]. Our previous studies have indicated that THD
can sensitize DDP against chemoresistant human lung
cancer cells via enhancing apoptosis [10]. For cytotoxicity of
DDP, DNA damage is the upstream event of apoptosis.
However, how THDmodulates DNA damage attributable to
DDP has not been elucidated yet.

+e aim of this study was to explore mechanisms of
chemosensitization in resistant lung cancer cells from the
perspective of DNA damage. Preliminary data indicated that
THD enhanced DDP-induced DNA insults via modulating
detoxification and DNA repair.

2. Materials and Methods

2.1. Cells. Human lung cancer cell line A549 and the che-
moresistant subline A549/DDP were cultured in RPMI-1640
medium (GIBCO) supplemented with 10% fetal bovine
serum (Biol. Ind., Kibbutz Beit-Haemek, Israel), at 37°C and
5% CO2. DDP (2.0mg/mL; Qilu Pharm. Co. Ltd., Jinan,
China) was added to the medium of A549/DDP to maintain
the resistance phenotype. To avoid interferences of residual
DDP, A549/DDP cells were transferred to DDP-free me-
dium for 5 days before experiments [13, 14].

2.2. Cell Viability. Cells (5000 cells/well) were seeded on a
96-well plate and then were treated with THD (0, 5, 10, 15,
20, 25, 30, 35, and 40 μM; Sigma-Aldrich, Darmstadt,
Germany) or DDP (0, 5, 10, 20, 40, 80, 160, and 320 μM) for
24 h. Drugs were washed away, and then, cells were cultured
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in complete medium. Cell vitality was detected at 24 h (i.e.,
48 h after administering drugs) using a CCK-8 assay
(Dojindo Lab., Kumamoto, Japan), and the half-maximal
inhibitory concentration (IC50) was calculated.

Based on the cell survival percentages, 20 μM THD and
40 μMDDP were adopted in the combination regimen. Cells
were subjected to THD and/or DDP for 24 h, and the via-
bility was determined at 0, 24, and 48 h (i.e., 24, 48, and 72 h
after administering drugs).

2.3. Detection of Apoptotic Cells. Apoptosis were determined
using the Annexin V assay (Keygen Biotech., Nanjing,
China) at 24 h after administering drugs. Apoptotic cells
were the sum of early (V+/PI−) and late (V+/PI+) apoptotic
cells.

2.4. Assessment of the Combination Effect. +e combination
index (CI) was calculated using percentages of dead cells (1-
survival percentage), thereby determining the interaction
between THD and DDP.

CI �
EA+B

EA + EB − EA × EB( 
. (1)

EA+Bwas the effect of combination, and EA or EBwas the
effect of a single drug. A CI value of >1.15 indicated syn-
ergism, and 0.85–1.15 was addition [15].

2.5. Concentration of Glutathione (GSH). +e intracellular
levels of GSH and GSSG were determined at 24 h after
administering drugs using a kit (Beyotime Biotechnol.,
Shanghai, China).

2.6. Measurement of Reactive Oxygen Species (ROS). Cells
were treated as above and then incubated with 10 μM
dichlorofluorescein diacetate (DCFH–DA) (Beyotime Bio-
technol., Shanghai, China) in darkness at 37°C for 30min.
ROS was determined with fluorescent spectrophotometry.
λex was 488 nm, and λem was 525 nm [16].

2.7.DNADamageDetectedwithCometAssays. Comet assays
were performed to detect DNA damage at 24 h after ad-
ministering drugs. +e alkaline assay detected both single-
(SSB) and double-strand break (DSB), and the neutral assay
detected DSB. +e percentage of comet-formed cells re-
flected the level of DNA damage [17].

2.8. Western Blot. Cells were harvested at 24 h after ad-
ministering drugs. Proteins were extracted using the RIPA
kit (Beyotime Biotechnol., Shanghai, China). Proteins
(40 μg/well) were separated by sodium dodecyl sulfate-
polyacrylamide gel electrophoresis and transferred onto a
polyvinylidene fluoride membrane. Rabbit antibodies
(Abcam, Cambridge, UK) against BRCA2 (polyclonal),
RAD51 (monoclonal), ERCC1 (monoclonal), and β-actin
(monoclonal) were used. Rat-anti-rabbit IgG antibody
(Abcam, Cambridge, UK) was the secondary antibody.

Proteins were visualized by an enhanced chemiluminescence
kit (Pierce Biotechnol, Rockford, USA). β-actin was the
reference to quantify the expression level of a target protein.

2.9. Statistical Analysis. +e IBM SPSS 26.0 (IBM, USA)
software was used for statistical analyses. Analysis of vari-
ance (ANOVA) was adopted and the least significant dif-
ference (LSD) was used for multiple comparisons. +e
critical value was set p< 0.05.

3. Results

3.1. THD Synergized DDP against Resistant Cells. Either
DDP or THD dose-dependently deactivated A549 or A549/
DDP cells (p< 0.001) (Figures 1(a) and 1(b)). Both cell lines
displayed similar responses to THD, with IC50 of 20.91 and
18.54 μM, respectively. For DDP, cell survival percentages in
A549/DDP cells were higher than those in A549 cells, with
IC50 of 45.44 and 116.92 μM, respectively, confirming the
resistance property of A549/DDP. +erefore, 20 μM THD
and 40 μM DDP were chosen for the combination therapy.

+e combination regimen (THD+DDP) led to the
lowest cell survival percentage (A549: p< 0.001; A549/DDP:
p< 0.001) (Figures 1(c)–1(e)). CI were 1.09 (1.07–1.12) in
A549 cells (i.e., addition) and 1.18 (1.10–1.30) in A549/DDP
cells (i.e., synergism). +ese data indicated that THD syn-
ergized DDP against resistant cells.

3.2. THD Enhanced Apoptosis Due to DDP. DDP led to a
lower apoptosis percentage in A549/DDP cells compared
with A549 cells (23.0± 1.3% vs. 31.1± 2.1%, p � 0.040). +e
apoptosis percentage in the combination regimen was higher
than that after receiving THD or DDP (A549: p< 0.001;
A549/DDP: p< 0.001) (Figure 2). Late apoptosis had a
higher weight. +ese data manifested that THD can enhance
DDP-induced apoptosis.

3.3. THD Decreased GSH. +e levels of total and reduced
GSH in A549/DDP cells were higher than those in A549 cells
(p< 0.001, p< 0.001). THD or the combination regimen
decreased the levels of total and reduced GSH (A549: THD
p � 0.007, combination p< 0.001; A549/DDP: THD
p< 0.001, combination p< 0.001), but increases were noted
after DDP treatment (A549: p< 0.001; A549/DDP:
p< 0.001) (Figure 3(a)). A higher ROS level was detected
after THD treatment, with the highest level in cells receiving
the combination regimen (A549: p< 0.001; A549/DDP:
p � 0.001) (Figure 3(d)). +ese data indicated that THD can
decrease the intracellular level of GSH.

3.4. THD Enhanced DDP-Induced DNA Damage.
Alkaline and neutral assays demonstrated that THD, DDP,
and the combination induced comet formation, and the
combination regimen resulted in the highest comet per-
centage (A549: p< 0.001 for each; A549/DDP: p< 0.001 for
each) (Figure 4). After DDP treatment, both the alkaline- or
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neutral-comet percentage in A549/DDP cells were lower
than those in A549 cells (p � 0.001; p< 0.001) (Figure 4).

BRCA2 and RAD51 were key molecules for DSB repair,
and ERCC1 was the critical protein in SSB repair [18].
Western blot indicated that the level of BRCA2, RAD51, and
ERCC1 was decreased after treatment with THD or the
combination of THD and DDP but was increased after DDP
treatment (A549: BRCA2 p � 0.001, RAD51 p � 0.078,
ERCC1 p � 0.001; A549/DDP: BRCA2 p � 0.007, RAD51
p< 0.001, ERCC1 p< 0.001) (Figure 5). +ese data dem-
onstrated that THD enhanced DDP-induced DNA damage
and can decrease the DNA repair capacity in resistant cells.

4. Discussion

DNA was the preferred target of DDP. DDP frequently
attacked guanine and adenine to induce intra- and interstand
crosslinks, causing SSB and DSB [19, 20]. Most SSB can be
repairable and partial SSB would evolve into DSB; unrepairable
DSB triggered apoptosis to deactivate cells [21]. Resistant cells
had a higher capacity of DNA repair, thereby protecting cells
fromDNAdamage [21].+esewere consistent with the present
data that the cell survival was higher and apoptosis and comet
percentages were lower in A549/DDP cells than those in A549
cells. +erefore, chemosensitization due to THD was explored
from the perspective of DNA damage in the present study.

Data on cytotoxicity and apoptosis accorded with the
previous findings, verifying the sensitization effect of THD,
i.e., data on DNA damage in this study were valuable [10].
Comet percentages in the combination group were higher
than those in the DDP group, indicating that THD enhanced
DNA damage induced by DDP. An exacerbation of DNA
damage caused more cells undergo apoptosis. Here, the ratio
of neutral- to alkaline-comet percentages was >76% in the
combination therapy, i.e., most damage was DSB. In re-
sistant ovarian cancer cells COC1/DDP, the ratio was <40%
when using cyclosporin/ultrasound to sensitize DDP, or
exposure to electric pulses [20].+ese data indicated that the
feature of DNA damage depended on cell type and the
therapeutic means. Increasing the proportion of DSB fa-
vored apoptosis. +us, THD modulated DNA insults,
promoted apoptosis, and eventually synergized DDP.

DSB was repaired via homologous recombination
(HR), where BRCA2 and RAD51 were essential molecules
[22, 23]. ERCC1 was the key protein for nucleotide excision
repair (NER) that repaired SSB [24, 25]. Lung cancer pa-
tients with a high expression level of those molecules in
cancer tissues had poor therapeutic responses and shorter
survival time [24]. +e present data showed that THD
decreased the level of these 3 proteins, indicating that both
SSB and DSB repairs were suppressed. +e persistence of
SSB and DSB accumulated errors, resulting in cell death.
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Figure 1: Cytotoxicity of THD and DDP in A549 and A549/DDP cells. Survival curves after exposure to THD or DDP with serials of
concentration (a, b). Survival percentages at 24–72 h after administering to 20 μMTHD and/or 40 μMDDP (c–e): the combination led to the
lowest survival fractions. Data were mean± standard deviation for 3 independent experiments. a vs. group ctrl, p< 0.05; b vs. group THD,
p< 0.05; c vs. group DDP, p< 0.05.
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Upregulation of these proteins was noted after DDP
treatment, which was consistent with previous reports and
was inductive expression [26]. DNA damage attributable to
DDP activated the adaptive responses to protect cells.
Consequently, the repair capacity can be actually decreased
only when the downregulation effect surpassed the upre-
gulation effect. In this study, the levels in the combination
group did not exceed those in the THD group.+is played a
part in the highest comet percentages observed in the
combination group.

Intracellular processes of DDP included activation (i.e.,
forming hydrated platinum) and inactivation. DDP was
inactivated when binding with GSH and metallothioneins,
and the conjugate was pumped out by GS-X [27]. A high
intracellular level of GSH led to DDP resistance, and de-
creasing GSH improved the cells’ sensitivity to DDP [28].
+is verdict accorded with the present data that a higher
GSH level was detected in A549/DDP cells. THD decreased

the GSH level, thereby increasing the intracellular amount of
active platinum. +at THD reduced GSH via lowering the
yield or accelerating the degradation should be elucidated.
ROS was involved in the action of DDP, and a decrease in
ROS related to resistance [29, 30]. ROS mediated cytotox-
icity via lipid peroxidation. Here, the combination led to the
highest ROS level, implying that THD can facilitate the ROS
generation attributable to DDP. Additionally, GSH was an
antioxidant that can scavenge ROS. THD decreased the GSH
level, favoring intracellular accumulation of ROS.

Noticeably, for cell death and apoptosis, A549 and A549/
DDP cells displayed similar responses to THD; THD also
enhanced the action of DDP on A549 cells from the per-
spective of cell apoptosis and DNA damage. +is can be an
advantage, i.e., determining the DDP sensitivity prior to
treatments was unnecessary. +e present study was an in
vitro trial, and therefore the aforementioned verdicts should
be tested in vivo.
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Figure 2: Apoptosis after treatments with THD and/or DDP in A549 (a, b) and A549/DDP (a, c) cells. +e combination regimen caused the
highest apoptosis percentage. Data were mean± standard deviation for 3 independent experiments. a vs. group ctrl, p< 0.05; b vs. group
THD, p< 0.05; c vs. group DDP, p< 0.05.
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Figure 3: Levels of GSH and ROS. Total and reduced GSH were decreased after receiving THD or the combination regimen (a, b). ROS level
(d): a higher level was detected after treatments with THD or the combination regimen. Data were mean± standard deviation for 3
independent experiments. a vs. group ctrl, p< 0.05; b vs. group THD, p< 0.05; c vs. group DDP, p< 0.05. ∗p< 0.05.
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Figure 4: Continued.
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Figure 4: DNA damage after exposure to THD and/or DDP. Representative comet images (a, b). Comet percentages in the alkaline (c) or
neutral (d) assay: the highest value was noted after receiving the combination regimen. Data were mean± standard deviation for 3 in-
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In summary, THD reduced the GSH level to increase
the intracellular amount of active platinum; THD
downregulated the levels of ERCC1, BRCA2, and RAD51
proteins, thereby decreasing the DNA repair capacity.

+ese effects enhanced DDP-induced DNA damage,
promoted/exacerbated DSB, and eventually triggered
apoptosis to deactivate resistant lung cancer cells
(Figure 6).
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Figure 5: DNA-repair related proteins BRCA2, RAD51, and ERCC1 validated by western blot in A549 (a, b) and A549/DDP (a, c) cells.
Levels of BRCA2, RAD51, and ERCC1 were decreased after receiving THD or the combination regimen but were increased after DDP
treatment. Data were mean± standard deviation for 3 independent experiments. a vs. group ctrl, p< 0.05; b vs. group THD, p< 0.05; c vs.
group DDP, p< 0.05.
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