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Abstract

Adaptation in extended populations often occurs through multiple independent mutations

responding in parallel to a common selection pressure. As the mutations spread concur-

rently through the population, they leave behind characteristic patterns of polymorphism

near selected loci—so-called soft sweeps—which remain visible after adaptation is com-

plete. These patterns are well-understood in two limits of the spreading dynamics of benefi-

cial mutations: the panmictic case with complete absence of spatial structure, and

spreading via short-ranged or diffusive dispersal events, which tessellates space into dis-

tinct compact regions each descended from a unique mutation. However, spreading behav-

iour in most natural populations is not exclusively panmictic or diffusive, but incorporates

both short-range and long-range dispersal events. Here, we characterize the spatial pat-

terns of soft sweeps driven by dispersal events whose jump distances are broadly distrib-

uted, using lattice-based simulations and scaling arguments. We find that mutant clones

adopt a distinctive structure consisting of compact cores surrounded by fragmented “haloes”

which mingle with haloes from other clones. As long-range dispersal becomes more promi-

nent, the progression from diffusive to panmictic behaviour is marked by two transitions sep-

arating regimes with differing relative sizes of halo to core. We analyze the implications of

the core-halo structure for the statistics of soft sweep detection in small genomic samples

from the population, and find opposing effects of long-range dispersal on the expected diver-

sity in global samples compared to local samples from geographic subregions of the range.

We also discuss consequences of the standing genetic variation induced by the soft sweep

on future adaptation and mixing.

Author summary

When a species is spread out over a large geographic range, different regions may adapt to

the same selection pressure by acquiring distinct beneficial mutations. The resulting pat-

tern of genetic variation in the population is called a soft sweep. Dispersal strongly influ-

ences soft sweep patterns, as it determines how a mutation that arose in one region might
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spread to others. Although most plant and animal populations experience some amount

of dispersal over very long distances, the impact of such long-range dispersal events on

soft sweep patterns remains poorly understood. We use computer simulations and mathe-

matical analysis to study patterns of genetic variation in a model of soft sweeps including

long-range dispersal. We show that long-range dispersal leaves distinct signatures in the

genetic makeup of the population, which can be detected in genetic samples from individ-

uals across the range. Our results are important for correctly interpreting patterns of

genetic diversity in populations that have undergone recent adaptation.

Introduction

Rare beneficial alleles can rapidly increase their frequency in a population in response to a new

selective pressure. When adaptation is limited by the availability of mutations, a single benefi-

cial mutation may sweep through the entire population in the classical scenario of a “hard

sweep”. However, populations may exploit a high availability of beneficial mutations due to

standing variation, recurrent new mutation, or recurrent migration [1–5] to respond quickly

to new selection pressures. As a result, multiple adaptive alleles may sweep through the popula-

tion concurrently, leaving genealogical signatures that distinguish them from hard sweeps.

Such events are termed soft sweeps. Soft sweeps are now known to be frequent and perhaps

dominant in many species [6, 7]. Well-studied examples in humans include multiple origins

for the sickle cell trait which confers resistance to malaria [8], and of lactose tolerance within

and among geographically separated human populations [9, 10].

Soft sweeps rely on a supply of beneficial mutations on distinct genetic backgrounds, which

has two main origins. One is when selection acts on an allele which has multiple copies in the

population due to standing genetic variation—a likely source of soft sweeps when the poten-

tially beneficial alleles were neutral or only mildly deleterious before the appearance of the

selective pressure [3]. In this work, we focus on the other important scenario of soft sweeps

due to recurrent new mutations which arise after the onset of the selection pressure. Soft

sweeps become likely when the time taken for an established mutation to fix in the entire pop-

ulation is long compared to the expected time for additional new mutations to arise and estab-

lish. In a panmictic population, the relative rate of the two processes is set primarily by the rate

at which new mutations enter the population as a whole [5].

Most examples of soft sweeps in nature, however, show patterns consistent with arising in a

geographically structured rather than a panmictic population [7]. Spatial structure promotes

soft sweeps [11]: when lineages spread diffusively (i.e. when offspring travel a restricted dis-

tance between local fixation events), a beneficial mutation advances as a constant-speed wave

expanding outward from the point of origin, much slower than the logistic growth expected in

a well-mixed population. Therefore, fixation is slowed down by the time taken for genetic

information to spread through the range, making multi-origin sweeps more likely. However,

the detection of such a spatial soft sweep crucially depends on the sampling strategy: the wave-

like advance of distinct alleles divides up the range into regions within which a single allele is

predominant. If genetic samples are only taken from a small region within the species’ range,

the sweep may appear hard in the local sample even if it was soft in the global range.

Between the two limits of wavelike spreading and panmictic adaptation lies a broad range

of spreading behaviour driven by dispersal events that are neither local nor global. Many

organisms spread through long-range jumps drawn from a probability distribution of dispersal

distances (dispersal kernel) that does not have a hard cutoff in distance but instead allows

Spatial soft sweeps with long-range dispersal
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large, albeit rare, dispersal events that may span a significant fraction of the population range

[12, 13]. A recent compilation of plant dispersal studies showed that such so-called “fat-tailed”

kernels provided a good statistical description for a majority of data sets surveyed [14]. Fat-

tailed dispersal kernels accelerate the growth of mutant clones, whose sizes grow faster-than-

linearly with time and ultimately overtake growth driven by a constant-speed wave [12, 15].

Besides changing the rate at which beneficial alleles take over the population, long-range dis-

persal also breaks up the wave of advance [16]: the original clone produces geographically sep-

arated satellites which strongly influence the spatial structure of regions taken over by distinct

alleles.

Despite its prominence in empirically measured dispersal behaviour and its strong effects

on mutant clone structure and dynamics, the impact of long-range dispersal on soft sweeps is

poorly understood. Past work incorporating fat-tailed dispersal kernels in spatial soft sweeps

[11] relied on deterministic approximations of the jump-driven spreading behaviour of a sin-

gle beneficial allele [12]. However, recent analysis has shown that deterministic approaches are

accurate only in the two extreme limits of local (i.e. wavelike) and global (i.e. panmictic)

spreading, and break down over the entire regime of intermediate long-range dispersal [17].

Away from the limiting cases, the correct long-time spreading dynamics is obtained only by

explicitly including rare stochastic events which drive the population growth. Deterministic

approaches also do not account for the disconnected satellite structure, which has conse-

quences for soft sweep detection in local samples.

Here, we study soft sweeps driven by the stochastic spreading of alleles via long-range dis-

persal. We perform simulations of spatial soft sweeps in which beneficial alleles spread via fat-

tailed dispersal kernels which fall off as a power law with distance, focusing on the regime in

which multiple alleles arise concurrently. We find that long-range dispersal gives rise to dis-

tinctive spatial patterns in the distribution of mutant clones. In particular, when dispersal is

sufficiently long-ranged, mutant clones are discontiguous in space, in contrast to the compact

clones expected from wavelike spreading models. We identify qualitatively different regimes

for spatial soft sweep patterns depending on the tail of the jump distribution. We show that

analytical results for the stochastic jump-driven growth of a solitary allele [17], combined with

a mutation-expansion balance relevant for spatial soft sweeps [11], allow us to predict the

range sizes beyond which soft sweeps become likely. We also analyze how stochastic aspects of

growth of independent alleles, particularly the establishment of satellites disconnected from

the initial expanding clone, influence the statistics of observing soft sweeps in a small sample

from the large population. We find that long-range dispersal has contrasting effects on the

likelihood of soft sweep detection, depending on whether the population is sampled locally or

globally.

Results

Model of spatial soft sweeps

We consider a haploid population that lives in a d-dimensional habitat consisting of demes

that are arranged on an integer lattice (e.g. square lattice in d = 2). Local resource limitation

constrains the deme population to a fixed size n̂, assumed to be the same for all demes. Denot-

ing the linear dimension of the lattice as L, the total population size is N ¼ Ldn̂. The popula-

tion is panmictic within each deme. With a ratem per generation, individuals migrate from

one deme to another. For each dispersal event, the distance r to the target deme is chosen from

a probability distribution with weight J(r), appropriately discretized, with the normalization
R1

1
JðrÞ dr ¼ 1. The function J(r) is called the jump kernel. The dispersal direction is chosen

uniformly at random from the unit sphere in d dimensions. New mutations arise in all demes

Spatial soft sweeps with long-range dispersal
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at a constant rate u per individual per generation. Each new mutation is distinguishable from

previous mutations (e.g. due to different genomic backgrounds), but all mutations confer the

same selective advantage s. Back mutations are ignored. To minimize the effect of the specific

boundary geometry, periodic boundary conditions are assumed.

To focus on the effects of long-range dispersal over local dynamics, we now impose a set of

bounds on the individual-based parameters following [11]. In particular, we consider only sit-

uations where sn̂ � 1; un̂ � 1;mn̂ � 1 (strong selection, and low mutation and migration

rates at the deme level). Mutations are also assumed to be fully redundant, i.e. a second muta-

tion confers no additional advantage. The strong selection condition implies that genetic drift

within a deme is irrelevant relative to selection: a new mutation, upon surviving stochastic

drift and fixing within a deme (which happens with probability 2s) cannot be subsequently lost

due to genetic drift. The bounds on mutation and migration rates meanwhile imply that the

fixation dynamics of a beneficial mutation within a deme is fast compared to the dynamics of

mutation within a deme or of migration among demes. The time to fixation of a beneficial

allele from a single mutant individual in the deme, log ðn̂sÞ=s, is a few times 1/s. When

un̂ � 1 andmn̂ � 1, the fixation time scale is much shorter than the establishment time

scales of new alleles arising due to mutation or migration, which are ð2smn̂Þ� 1
and ð2sun̂Þ� 1

respectively. Therefore, the first beneficial allele that establishes in a deme, whether through

mutation or migration, fixes in that deme without interference from other alleles. Further-

more, the assumption of mutual redundancy means that subsequent mutations that arrive

after the first fixation event also have no effect. As a result, the first beneficial allele that estab-

lishes in a deme excludes any subsequent ones—a situation termed allelic exclusion [11].

Taken together, these assumptions lead to a simplified model that ignores the microscopic

dynamics of mutations within demes. For each deme, we keep track of a single quantity: the

allelic identity (whether wildtype or one of the unique mutants that has arisen) that has fixed

in the deme. At the deme level, new mutations fix within wildtype demes at the rate 2sn̂u, and

each mutated deme sends out migrants at rate 2sn̂m with the target deme selected according

to the dispersal kernel J(r) (the rates explicitly include the fixation probability 2s of a single

mutant in a wildtype deme). The first successful mutant to arrive at a wildtype deme, whether

through mutation or migration, immediately fixes within that deme. The state of the deme

thereafter is left unchanged by mutation or migration events, because of allelic excusion.

When time is measured in units of the expected interval ð2sn̂mÞ� 1
between successive dis-

persal events per deme, the reduced model is characterized by just three quantities: L; J(r); and

the per-deme rate of mutations per dispersal attempt ~u � 2sn̂u=ð2sn̂mÞ ¼ u=m, which we call

the rescaled mutation rate of our model. Simulations are begun with a lattice of demes of size

Ld all occupied by the wildtype. Each discrete simulation step is either a mutation or an

attempted migration event, with the relative rates determined by ~u and the fraction of wildtype

sites at that step. Mutation events flip a randomly-selected wildtype deme into a new allelic

identity. Migration events first pick a mutated origin and then pick a target deme according to

the jump kernel. If the target site is wildtype, it acquires the allelic identity of the origin; other-

wise the migration is unsuccessful. Simulations are run until all demes have been taken over

by mutants.

The fat-tailed jump kernels we use are of the form J(r) = μr−(1+μ), with μ> 0 to ensure that

the kernel is normalizable. The exponent μ characterizes the “heaviness” of the tail of the distri-

bution. We have chosen power-law kernels because they span a dramatic range of outcomes

that connect the limiting cases of well-mixed and wavelike growth upon varying a single

parameter. The growth dynamics of more general fat-tailed kernels in the stochastic regime of

interest (i.e. driven by rare long jumps) are largely determined by the power-law falloff of the

Spatial soft sweeps with long-range dispersal
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tail, and details of the dispersal kernel at shorter length scales are less consequential. Therefore,

our qualitative results should extend to kernels sharing the same power law behaviour of the

tail, provided the typical clones are large enough so that rare jumps picked from the tail of the

distribution become relevant. The underlying analysis leading to the results is even more gen-

eral, and can be applied to any jump kernel that leads to faster-than-linear growth in the extent

of an individual clone with time.

The output of a simulation at a given set of L, μ and ~u values is the final configuration of

mutants, which can be grouped into distinct clones of the same allelic identity. Note that we

have ignored the post-sweep mixing of alleles which are now relatively neutral to each other

due to migration; this is justified by the separation of time scales between fast fixation and

slow neutral migration [11]. In addition, although we restrict ourselves to weak mutation and

migration at the deme level, the population-level mutation and migration rates Nu, Nm are

typically large which allows for soft sweeps with strong migration effects.

While our theoretical results are valid for all dimensions, computational limitations pre-

vented us from running extensive simulations in dimensions higher than one. Therefore, we

primarily report simulations of linear habitats (d = 1) in the main text. Preliminary results

from planar simulations (d = 2) are reported in S1 Appendix, Section B and are consistent

with our theoretical arguments, although quantitative comparisons are limited by finite-size

effects.

Jump-driven growth and the core-halo structure of mutant clones

Some typical outcomes of the simulation model are shown in Fig 1 for both two-dimensional

(2D) and one-dimensional (1D) ranges. To emphasize variations in the spatial patterns for the

same average clone size, simulations were chosen in which the final state has exactly ten unique

alleles; this required varying the rescaled mutation rate as μ was increased. This feature, which

is tied to the slower growth of individual clones apparent in the space-time plots of Fig 1(b), is

explored in depth in Section Characteristic scales via mutation-expansion balance.
In both 2D and 1D, the spatial soft sweep patterns of Fig 1 display systematic differences as

the kernel exponent is varied. Clones are increasingly fragmented as the kernel exponent is

reduced; i.e. as long-range dispersal becomes more prominent. At the highest value of μ in

each dimension, the range is divided into compact, essentially contiguous domains each of

which shares a unique mutational origin. As the kernel exponent μ is reduced, the contiguous

structure of clones is lost as they break up into disconnected clusters of demes. For most

clones, however, a compact region can still be identified in the range which is dominated by

that clone (i.e. the particular allele reaches a high occupancy that is roughly uniform within the

region but begins to fall with distance outside it) and in turn contains a significant fraction of

the clone. We call this region the core of the clone. The remainder of the clone is distributed

among many satellite clusters which produce local regions of high occupancy for a particular

clone. The satellites become increasingly sparse and smaller in size as we move away from the

core. For the broadest kernels (μ = 0.5 in 2D and μ = 0.7 in 1D), most clones also include iso-

lated demes which do not form a cluster but are embedded within cores and satellite clusters

of a different allele. We term the collection of satellites and isolated demes the halo region sur-

rounding the core of the clone. The circles in the second panel of Fig 1(a) illustrate the extent

of core and halo, quantified via distance measures which we introduce later on for a particular

clone (the fifth clone entering the population, colored light green). The spatial extent of the

clone including the halo can be many times the extent of the core alone, and increases relative

to the core extent as μ is reduced. (We will use “extent” to refer to linear dimensions, and

“mass” or “size” to refer to the number of demes).

Spatial soft sweeps with long-range dispersal
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The space-time evolution displayed in Fig 1(b) for linear simulations reveals the role of

jump-driven growth in producing the observed spatial structures. At μ = 2.5, the growth of

clones appears nearly deterministic, with fronts separating mutant from wildtype advancing

outwards from the originating mutations at near-constant velocity. These fronts are arrested

when they encounter advancing fronts of other clones, leaving behind a tessellation of the

range into contiguous clones. By contrast, at the lower values μ = 1.3 and 0.7, the stochastic

nature of jump-driven growth becomes apparent. Clones advance through long-distance dis-

persal events, which seed satellite clusters that may merge with each other before the sweep is

complete. For all except the smallest clones, the originating mutation is surrounded by a region

which is dominated by that particular allele—these form the core regions defined above. Satel-

lites are seeded by stochastic jumps that extend over regions which either were occupied by a

different allele already, or get filled in by a different allele before the satellite has a chance to

merge with the core. For μ = 1.3, haloes extend only a short distance out from the core,

whereas at μ = 0.7 the haloes often extend over a distance many times the core extent.

The increased fragmentation of clones with broader dispersal kernels has a marked impact

on local diversity in sub-regions of the range. Haloes belonging to different alleles overlap to

produce regions of high diversity, as exemplified by the dashed box in Fig 1(a) for μ = 1.5,

which contains demes belonging to six of the 10 unique alleles despite being a small fraction of

Fig 1. Spatial soft sweep patterns with the same number of distinct alleles vary strongly with jump kernel. (a) Final states of 2D simulations

on a lattice of size 512 × 512, for a range of values of the kernel exponent μ. Each pixel corresponds to a deme, and is coloured according to the

identity of the allele occupying that deme; demes belonging to the same mutant clone share the same colour. Simulations were chosen to have

ten unique alleles in the final state; colours reflect the temporal order of the originating mutations as labeled in the lower right panel. Rescaled

mutation rates are 3 × 10−6, 10−6, 10−6, and 10−7 for kernel exponents 0.5, 1.5, 2.5, and 3.5 respectively. The solid and dotted circles in the second

panel indicate the extent of the core and the halo respectively for the light green clone, as quantified by the measures req and rmax respectively

(see text for definitions). The subrange highlighted by a dashed box contains six distinct alleles for μ = 1.5 but only one allele for μ = 3.5. (b) Full

time-evolution of 1D simulations with L = 16384 for three kernel exponents, chosen so that the final state has ten unique alleles. Each vertical

slice displays the lattice state at a particular time (measured in generations), starting from an empty lattice (white) and continuing until all sites

are filled and the sweep is completed. The rescaled mutation rates are 3 × 10−5, 7 × 10−6, and 7 × 10−7 respectively from left to right. In the last

panel, the colours are labelled according to the order of appearance of the originating mutation; the same order is shared among all panels in the

figure.

https://doi.org/10.1371/journal.pgen.1007936.g001
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the total range area. By contrast, the same region contains only one allele at μ = 3.5 for which

clones form contiguous domains. Other effects of broadening the dispersal kernel are also visi-

ble in Fig 1: the spread in clone sizes becomes larger, and individual clones take many more

generations to attain a given size.

To build a quantitative understanding of these variations, we begin by noting that at early

times in Fig 1(b), each clone grow largely unencumbered by other clones. We can therefore

gain insight from existing results on the jump-driven growth of a solitary advantageous clone

expanding into a wildtype background [17]. The key features are summarized here and illus-

trated for the blue clone in Fig 2. Consider a clone that grows from a mutation that originated

at time t = 0 at the origin. At times longer than a short transient, the clone fills most sites out to

some distance from the origin. In line with the terminology established above, we call this

region of high occupancy the core of the growing clone. Its typical extent over time (i.e. the

average radius of a core that has grown for time t) is quantified by a function ℓ(t) which itself

depends on the dispersal kernel (a precise definition is given at the end of this section). As sites

in the core get filled, they send out offspring through long-range dispersal events drawn from

the specified kernel, which then grow into independent satellite clusters. As a result, at any

time t there are also demes outside the core which are occupied by the mutant. However, the

occupancy of sites outside the core decays as r−(d+μ) with distance r from the originating muta-

tion [17], fast enough that the total mass of the clone at time t is proportional to ℓd(t).
As sketched in Fig 2, the core grows through mergers of satellite clusters that grew out of

rare but consequential “key jumps” out of the core at earlier times (solid arrows in Fig 2). [17]

identified qualitative differences in the behaviour of key jumps and the resulting functional

forms of ℓ(t) as the kernel exponent is varied. When μ> d + 1, the extent of typical key jumps

remains constant over time, which implies that they must originate and land within a fixed dis-

tance from the boundary of the high-occupancy region at all times. As a result, clones advance

Fig 2. Marginal dynamics of jump-driven soft sweeps. When long-range dispersal is significant, clones of different

allelic identity (distinguished by colors) grow out of their originating mutations (stars) by accumulating satellite

clusters (translucent cones). If only a single mutation were present, the extent ℓ(t) of the high-occupancy core

(consisting of satellite clusters which have merged with the cluster growing out of the originating mutation) would, on

average, follow a faster-than-linear growth rule, depicted schematically by the border of the opaque regions. For a wide

range of kernels in the vicinity of μ = d, the growth rule arises from a hierarchy of length and time scales related by

doublings in time: the satellite that merges with the core at time t would typically originate from a key jump out of the

core at time t/2, that extended over a length of order ℓ(t) (solid arrows out of blue region). Looking forward in time, a

clone whose core has grown for time t without being obstructed will have likely seeded satellites out to a distance of

order ℓ(2t). In the presence of recurrent mutations, these satellites may be obstructed from merging with the core due

to intervening cores and satellites of different mutational origin (green and red regions). For very broad dispersal

kernels, the halo also includes rarer jumps out of the core (dashed arrow) that land in regions that are being taken over

by other alleles, but establish themselves in stochastic gaps in those regions. The disconnected satellite clusters and

isolated demes comprise the halo region of the mutant clone.

https://doi.org/10.1371/journal.pgen.1007936.g002
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via a constant-speed front similar to the case of wavelike growth; i.e. ℓ(t)/ t. Furthermore, the

separation between the core and satellites is insignificant at long times, giving rise to essentially

contiguous clones. By contrast, for μ< d + 1, growth is increasingly driven by jumps that orig-

inated in the interior of the core at earlier times, and key jumps become longer with time. The

resulting growth of ℓ(t) is faster-than-linear with time. The value μ = d is an important mar-

ginal case which separates two distinct types of long-time asymptotic behaviour for ℓ(t):
power-law growth for d< μ< d + 1 and stretched-exponential growth for 0< μ< d (see the

second column of Table 1 for the asymptotic growth forms in all regimes). As μ! 0, spatial

structure becomes increasingly irrelevant and the growth dynamics approaches the exponen-

tial growth of a well-mixed population.

These features of solitary-clone growth can be directly connected to the spatial patterns in

Fig 1 when recurrent mutations are allowed. The tessellation of the range into contiguous

domains for the highest values of μ is exactly as expected from the wavelike growth situation

when μ> d + 1. When μ< d + 1, by contrast, each clone consists of a growing core and well-

separated satellite clusters at any time. Unlike the solitary-mutant case, satellites belonging to a

particular clone are no longer guaranteed to merge with the core or with each other at later

times: due to allelic exclusion, mergers are obstructed by cores and satellites with a different

allelic identity, as shown schematically in Fig 2. The final pattern of frozen-in satellite clusters

comprises the previously identified halo structure around each core when μ< d + 1.

Notation and definitions: Before we proceed, we summarize the various quantities in our

analysis, and the conventions used in representing them. (A complete list of variables and defi-

nitions is provided in Table 2). One set of physical quantities, represented as Latin symbols

without a time argument, measures properties of individual clones after the soft sweep has

been completed; i.e. quantities measured from the final simulation outputs such as those dis-

played in Fig 1. (These quantities could also, in principle, be measurable from a real spatial

population that has recently experienced a sweep). Of these, quantities that have dimensions of

length are the mass-equivalent clone radius req and the clone extent rmax (defined in Table 2).

The solid and dotted circles in Fig 1(a) illustrate these quantities for a specimen clone. The

final clone mass is designated by the symbol X. Ensemble averages of these quantities for a

given set of model parameter values, obtained by averaging first over all clones within a single

simulation and then across many independent simulations, are denoted by h. . .i.

Our analysis connects these properties of the final, static soft sweep pattern to the dynamic

growth behaviour of a solitary clone under the same dispersal kernel, in the absence of

Table 1. Core growth asymptotics and characteristic core sizes. The table catalogues the asymptotic behaviour of ℓ(t)
(from [17]) along with the expected scaling of the characteristic clone size χas, omitting distance and time scales for ℓ
and t respectively. W is the Lambert W-function, Bμ� 2d log(2)/(μ − d)2, and η = log[2d/(d + μ)]/log 2. The subscript

in χas indicates that the asymptotic ℓ(t) was used as opposed to the more accurate functions listed in S1 Appendix, Sec-

tion A. Note that for values of μ near d, the asymptotic growth forms are of limited value since the time befor the

asymptotics is reached becomes very large. In this situation, χmust be computed using the more accurate scaling

forms, see S1 Appendix, Section A for more details.

Kernel exponent Asymptotic ℓ(t) behaviour χas

μ< d exp(Bμtη) ½x=WðxÞ�
1
Z; x � BmZdð~uodÞ

� Z

μ = d exp(c log2 t) ð~uodÞ
� 1e2ðlog 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log 2 logð2=~uodÞ
p

Þ

d< μ< d + 1 t1/(μ−d)
ð~uodÞ

� 1=m

μ = d + 1 t log t (1D) 1

2

ffiffiffiffiffiffiffiffiffiffi
Wð2=~uÞ

2~u

q

μ> d + 1 t ð~uodÞ
� 1=ðdþ1Þ

https://doi.org/10.1371/journal.pgen.1007936.t001
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interference from other clones. For a given dispersal kernel, the typical growth behaviour is

captured by the core growth function ℓ(t) which we introduced previously. A precise definition

of ℓ(t) requires making a choice about how to identify the core region. In contrast to the case

of wavelike growth, there is no sharp advancing front which separates the high-occupancy

region of a growing clone from its surroundings; the average radial occupancy profile at time t
(defined as the probability that a deme at distance r from its point of origin is occupied by the

clone) is close to one out to some distance from the origin, beyond which it crosses over to a

profile that decays as a power law with increasing distance. One possibility, proposed in [11],

is to define ℓ(t) as the distance at which the average occupancy profile falls below some low

threshold probability ε. Here, we make a different choice motivated by the property, proved in

[17], that the total mass of the clone (which we callM(t)) is proportional to ℓd(t). We define

ℓ(t) as the expected mass-equivalent radius of the clone at time t: ℓ(t)� E[(M(t)/ωd)1/d], where

ωd is the volume of the d-sphere of radius 1 (ω1 = 2, ω2 = π). For a particular solitary-clone

growth simulation,M(t) is straightforward to measure since the clone mass is readily accessi-

ble. For a particular value of μ, ℓ(t) is then estimated using an ensemble average over many

independent solitary-clone simulations (see S1 Appendix, Section A for details). Our choice of

ℓ(t) is proportional to ℓ(t) defined using an occupancy threshold, provided ε is small enough.

We expect that using other definitions of ℓ(t) which scale proportionately with the core region

will not significantly change our results, at most shifting the magnitude of reported quantities

Table 2. Glossary of length and size scales. Table summarizes the various characteristic lengths (denoted by Greek let-

ters) and measured quantities (masses in capital Roman letters and lengths in small Roman letters). The characteristic

time t� is implicitly defined in Eq 1. Except where explicitly noted, the definitions are valid in all dimensions.

Symbol Description Definition

Measures of individual clones in final state of spatial sweep
X Final clone mass Number of demes belonging to clone

req Mass-equivalent clone radius (X/ωd)1/d

rmax Clone extent Half the separation of pair of demes in clone that are furthest apart

(1D)

r8max = eighth central moment of clone (2D)

Averages of final-state quantities
hqi Ensemble average of quantity q A range average of q is obtained by averaging over all clones in an

individual simulation; the range average is itself averaged over

multiple independent simulations to obtain hqi.
qave Expected value of q under

mutation-expansion balance

E[q] in the limit L� χ

Measures of growth of solitary clones
M(t) Time evolution of clone mass Number of demes colonized at time t starting from a single deme at

time 0.

ℓ(t) Expected core radius at time t E[(M(t)/ωd)1/d]

Characteristic lengths from mutation-selection balance
χ Characteristic core extent ℓ(t�)
ψ Characteristic extent of satellite

clusters

ℓ(2t�)

z Characteristic outer limit of rare

jumps

~u � 1=m

λas Asymptotic estimate of length scale

λ
Characteristic length computed using asymptotic forms for ℓ(t)
from Table 1.

https://doi.org/10.1371/journal.pgen.1007936.t002
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by constant factors of order unity as long as we are sufficiently far from the well-mixed limit

μ! 0.

Finally, the interplay between the expansion of individual clones and the introduction of

new mutations is used to derive various time-independent characteristic lengths, which are

represented as Greek symbols. These length scales depend on the dispersal kernel via the func-

tional form of ℓ(t), and the rescaled mutation rate ~u. Precise definitions of the characteristic

length scales are provided in Table 2 and in the forthcoming sections.

Marginal dynamics and the relative sizes of core and halo. We can quantify the expected

spatial extent of entire clones (including haloes) relative to cores by considering the dynamics

in the vicinity of the marginal value μ = d. Although the long-time asymptotic dynamics are

qualitatively different above and below this value (power-law in t for d< μ< d + 1, and

stretched-exponential for 0< μ< d), the approach to the asymptotic behaviour is extremely

slow for values of μ close to d, with the intermediate-time evolution controlled by the marginal

dynamics at μ = d. As a result, the marginal dynamics is important for a wide range of values

of μ at biologically-relevant time scales [17].

In the marginal regime, the scaling behaviour of key jumps follows a particularly simple

pattern, illustrated schematically in Fig 2: satellite clusters which merge with the core at time t
are seeded by key jumps that typically happened around time t/2 and covered a distance of

order ℓ(t)� ℓ(t/2). Therefore, a core that has grown up to some extent of order ℓ(t) has likely

already seeded satellites out to a distance of order ℓ(2t), some of which will have reached an

appreciable size as illustrated in Fig 2. If the core has grown to some linear size l, we then

expect satellites that have reached a significant size to extend to a distance l0 � ℓ(2ℓ−1(l)),
which may be considered to be a lower bound on the expected extent of the halo. When iso-

lated demes embedded within cores and satellites belonging to other clones are included, the

full spatial extent of the clone is even larger, because there remains a finite probability of rare

jumps from the core out to distances farther than l0 (dotted arrow in Fig 2).

The above estimate for l0, when approximated using the long-time asymptotic growth

rules for different jump kernels, reveals qualitatively different scaling behaviours for the clone

extent on either side of the critical point μ = d. For power-law growth, ℓ(t)* t1/(μ−d), we find

l0/l* 21/(μ−d); i.e. the ratio of halo size to core size is a constant that grows as μ! d but is

independent of the size of the clone. By contrast, in the stretched-exponential regime, with

ℓ(t)* exp(Btη) where B and η depend on μ, we find l0=l � lð2Z � 1Þ; i.e. the ratio of halo to core

depends on the core size as well as on the kernel exponent. Since η = log[2d/(d + μ)]/log 2> 1,

the halo becomes increasingly prominent as μ! 0. These scaling estimates break down as μ
approaches d—for instance, the ratio l0/l diverges in the power-law growth regime—mirroring

the limited utility of the approximate asymptotic forms for ℓ(t) near μ = d. Instead, we must

use the more accurate forms for ℓ(t) (S1 Appendix, Section A) to evaluate l and l0. However,

upon using these forms with fitted magnitude and time scales, the qualitative picture is largely

unchanged: the ratio l0/l becomes very weakly dependent on the core size as μ& d, but the

dependence is much stronger when μ drops below d. For instance, at μ = 1.2 in 1D, the pre-

dicted ratio l0/lmerely doubles from 4 to 8 as l spans four orders of magnitude from l = 10 to

l = 105; by contrast, at μ = 0.8 the ratio changes by an order of magnitude (from roughly 5 to

70) over the same range of core sizes.

In summary, the growth dynamics for solitary clones at different kernel exponents predicts

the following structure for large mutant clones: contiguous, compact clones for μ> d + 1; a

high-occupancy core with a halo of well-developed satellite clusters that extends out to a size-

independent (but kernel-dependent) multiple of the core radius for d< μ< d + 1; and a sparse

halo which is significantly larger in extent than the core and becomes more prominent with

Spatial soft sweeps with long-range dispersal
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increasing clone size for μ< d. We now assume that these conclusions, and the associated scal-

ing relations for the linear extent of the core and halo, also apply to the spatial structure of

mutant clones that have grown during soft sweeps and have been frozen in due to interference

with clones of differing mutational origin. This key assumption is tested in the following

section.

Occupancy profiles. To verify the structural features outlined above, we measured aver-

age occupancy profiles of distinct clones in the final states of 1D soft sweep simulations (Fig 3).

Occupancy profiles from clones of different sizes are combined by scaling the distance coordi-

nate of each profile by the mass-equivalent radius req, derived from the total mass X of that

clone via req� (X/ωd)1/d, and performing an ensemble average as described in Table 2. The

choice of distance scale is motivated by our definition of ℓ in terms of the clone mass, and justi-

fied by the observation that averaged occupancy profiles for a given kernel with vastly different

average clone sizes collapse onto a single curve when the distance coordinate is rescaled by the

size, consistent with the core radius being proportional to req, see S1 Fig.

Ensemble-averaged occupancy profiles for different jump kernels are shown in Fig 3(a)

with ~u ¼ 10� 5. We observe that when μ> d + 1, the averaged occupancy is negligible for

r/req > 2, and the curve has a point of symmetry at (r/req, hρi) = (1, 1/2), such that hρi(r/req) =

1 − hρi(2 − r/req) for 1< r/req < 2. This form is consistent with the entire clone being con-

tained in a single domain, which grows to different lengths on either side of the originating

mutation, as illustrated in the inset.

Fig 3. Occupancy profiles of clones show the reduced prominence of the core with increased long-range dispersal. (a) Ensemble-

averaged occupancy profiles of mutant clones in 1D, with L = 106 and ~u ¼ 10� 5. The occupancy profile of a particular clone is defined as

the probability ρ(r) that a deme at distance r from its point of origin is occupied by that clone. Colours signify different dispersal kernels,

with exponents μ = {0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2, 3} in order of increasing occupancy at the origin. Curves are obtained by averaging

individual occupancy profiles from all clones with total mass X> 100 to obtain a range-averaged occupancy profile hρi for each of 100

independent simulations for each dispersal kernel; these were then averaged to obtain the ensemble-averaged profile h�ri. Inset illustrates

the origin of the variation in occupancy for r/req < 2 in the wavelike growth regime: the mutational origin need not be positioned at the

centre of mass of the contiguous domain, giving rise to a single-clone occupancy profile ρ(r) = {1, 0< r� r1; 1/2, r1 < r� r2; 0, r> r2}.

(b) Same data as in (a) on logarithmic scales. The dashed lines show the power-law dependence hρi / r−(μ+d). (c) Core occupancy,

defined as the fraction of the ensemble-averaged occupancy that lies within 0< r/req < 2, as a function of kernel exponent μ.

https://doi.org/10.1371/journal.pgen.1007936.g003
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The predicted breakup of clones due to long-range dispersal is reflected in the overall

broadening of occupancy profiles as the kernel exponent μ is reduced below the critical value

d + 1. In this range, an appreciable portion of the clone lies outside the maximal distance from

the origin (r/req = 2) that could be measured for a contiguous domain in a linear habitat. (This

upper limit would correspond to a clone that was obstructed by an occupied deme adjacent to

its mutational origin on one side, and attained its final mass by expanding only in the other

direction). The dropoff in occupancy becomes increasingly steep at low values of r/req as μ is

reduced, but more gradual at larger distances, consistent with a narrowing high-occupancy

region balanced by a halo of increasing prominence. At large distances, the falloff in occupancy

is consistent with the power-law behaviour expected from the solitary-clone growth dynamics,

hρi / r−(μ+d) [dashed lines in Fig 3(b)], which supports our assumption that the final structure

of a mutant clone in a spatial soft sweep is similar to that of a solitary clone expanding without

interference.

To quantify the relative prominence of the halo to the core across all growth regimes, we

define the core occupancy as the fraction of the total occupancy contained within the maximal

range of distances that could be measured for contiguous domains, 0< r/req < 2. We find

that the core occupancy is close to 100% for μ> d + 1 (= 2 in 1D), consistent with the contigu-

ous clones and insignificant haloes expected for wavelike growth [Fig 3(c)]. For broader ker-

nels, the core occupancy falls with μ, reflecting the increasing prominence of the halo as μ
approaches zero. However, the core still contains an appreciable fraction of the total occupancy

for all values of μ that we have simulated. This observation further supports our approach of

connecting the geometric extent of cores to the total mass of their corresponding clones, as we

do in the following section.

Characteristic scales via mutation-expansion balance

So far, we have focused on the spatial structure of individual clones within a soft sweep, and

have shown that many aspects of this structure can be understood from the theory of growth

of a solitary clone under the same dispersal kernel. To address questions of global and local

allelic diversity, however, we need to explicitly consider the concurrent growth of multiple

clones. We now show how the balance between jump-driven growth and the dynamics of

introduction of new mutations sets the typical size and spatial extent of clones.

Size of a “typical” clone. In an infinitely large range, a solitary clone could grow without

bound, but in the presence of recurrent mutations, the growth of any one clone is obstructed

by other clones. Balancing mutation and growth gives rise to a characteristic time scale t�, and

associated characteristic linear extent χ, for mutant clones in multi-origin spatial sweeps [11].

These scales determine whether a sweep will be “hard” or “soft” within a finite range of given

size.

When clones grow as compact, connected domains, growth is interrupted when the

advancing sharp boundary of the clone encounters a different allele. However, for clones grow-

ing via long-range dispersal events, a sharp boundary no longer exists, and small obstacles can

be traversed by jumps. The picture of jump-driven growth that we have developed suggests

that haloes belonging to different clones can freely overlap, whereas core regions cannot.

Therefore, new mutations arising within the halo region of a growing clone do not signifi-

cantly impede its growth. Instead, the crucial factor restricting the growth of a clone is when

its high-occupancy core encounters a different clone, as depicted schematically in Fig 2. Since

ℓ(t) defines precisely the time-evolution of the core extent of a solitary clone, we define t� as

the time interval for which exactly one mutation is expected to occur in the space-time region

Spatial soft sweeps with long-range dispersal
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swept out by the growing core:

~ut�od‘
d
ðt�Þ ¼ 1: ð1Þ

The corresponding characteristic extent, χ� ℓ(t�), matches the length scale introduced in [11]

to characterize spatial soft sweeps.

Rough estimates for t� and χ can be obtained by using the long-time asymptotic forms for

ℓ(t) in the different growth regimes, see Table 1. These estimates highlight the vastly different

functional dependences of the characteristic scales on the rescaled mutation rate as the kernel

exponent is varied. For quantitative tests, we use scaling forms for ℓ(t) derived in [17], which

are much more accurate at short times when μ is close to d. All theoretical forms for ℓ(t)
include unspecified multiplicative factors A and B for the length and time variables, which are

fixed by fitting the functional forms to the growth of isolated clones starting from a solitary

seed, see S1 Appendix, Section A for details.

The scales χ and t� provide the appropriate rescaling of space and time to compare two

sweeps with different mutation rates but the same growth rule ℓ(t), and therefore capture the

dependence of many soft sweep features on the mutation rate. Most significantly, they set the

expected number of independent mutational origins in a range of a given size. When both

sides of Eq 1 are multiplied by the total number of demes Ld, it equates to a condition for the

range to be completely filled by mutations accumulated at a rate Ld~u over a time t� without

interference, each of which grows to the characteristic size ℓ(t�). The expected number of

mutational origins in the range therefore scales as Ld~ut� ¼ Ld=ðodwdÞ. If Ld~ut� � 1, or equiva-

lently L� χ, it is unlikely that many independent mutations will arise: the sweep is likely to be

hard. By contrast, if the range is large compared to the characteristic length χ, the number of

independent origins grows in proportion to the range area. Consequently, the total number of

demes in the range divided by the expected number of origins converges to a well-defined

value as L increases, which we call the expected clone mass Xave. For a given dispersal kernel,

the mutation-rate dependence of Xave is captured by the variation of χ with ~u : Xave / w
d,

with a ~u-independent factor of proportionality that dependes on the details of the growth

dynamics.

To test whether the characteristic length scale quantifies the number of mutational origins

in a range, we compare the ensemble-averaged clone mass measured in simulations, hXi, to

wdð~uÞ computed using the theoretical forms for ℓ(t). Results for 1D simulations are shown in

Fig 4. (Definitions of measured quantities and averages are provided in Table 2). For clarity,

the expected scaling with mutation rate in the wavelike spreading limit, w / 1=
ffiffiffi
~u
p

, is divided

out. We find that the average clone sizes for different system sizes coincide at ~u ¼ 10� 6, consis-

tent with hXi being an estimate of an underlying expected clone mass, Xave, that is determined

by the mutation-expansion balance and is independent of system size. For each value of μ, the

computed wð~uÞ quantitatively captures the dependence of hXi on ~u over many orders of mag-

nitude, up to a ~u-independent constant factor (the factor depends on model details and is

treated as a fitting parameter, but it turns out to not vary significantly with μ). These results

confirm that the mutation-expansion balance captured in Eq 1, first identified in [11], remains

relevant for characterizing the compact core regions of clones in when long-range dispersal is

prominent.

Characteristic extent of clones. The analysis of the spatial structure of individual clones

(Section Jump-driven growth and the core-halo structure of mutant clones) showed that the

extent of clones (i.e. the portion of the range over which demes belonging to the clone can be

found) can be many times larger than the expected extent for a compact clone, especially for

broad dispersal kernels. Therefore, the average clone size may not be representative of the
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spatial extent of typical clones over the range, pointing to the potential relevance of additional

length scales when characterizing jump-driven spatial soft sweeps. To quantify this effect, we

measure the extent, rmax, of a clone in our 1D simulations as half the largest distance between

any pair of individuals belonging to that clone. The disparity between the true extent of clones

and the extent expected from the average clone mass can be evaluated by comparing the

ensemble-averaged extent hrmaxi to the average mass-equivalent radius hreqi. If all clones were

perfectly contiguous and compact, we would expect hrmaxi = hreqi.

Fig 5 shows the ratio of average clone extent to average mass-equivalent radius for different

dispersal kernels and mutation rates. The ratio is unity when μ> d + 1, which is the expected

regime of compact clones. For broader kernels, we find that the average spatial extent is larger

than the mass-equivalent radius, consistent with our expectation from jump-driven growth.

Two separate behaviours can be identified in this regime. In the range d< μ< d + 1, the ratio

hrmaxi/hreqi is independent of the rescaled mutation rate. By contrast, for μ� d, the ratio of

lengths shows a mutation-rate dependence, and grows dramatically in magnitude. At the

smallest values of μ, the measured extent of the largest clones becomes limited by the system

size (the maximum measurable extent under periodic boundary conditions is L/2). This finite-

Fig 4. Average clone mass is set by mutation-expansion balance. The ensemble-averaged final mass of mutant clones

hXi as measured from 1D simulations as a function of rescaled mutation rate, scaled by the expected dependence

(/ 1=
ffiffiffi
~u
p

) for wavelike growth of clones. Results from different system sizes (symbols) are presented for each dispersal

kernel quantified by μ (colours); the values are (from top to bottom) μ = {0.2, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2, 3}. Each

point represents an average over 20 or more independent simulations. Error bars denote measured standard deviation

across repetitions. Dashed lines show the theoretical predictions for wð~uÞ for each dispersal kernel (see S1 Appendix,

Section A for details), multiplied by a μ-dependent magnitude factor whose value is 1.5 for 1� μ< 2, 1.6 for μ> 2,

and 1.65 for all other values.

https://doi.org/10.1371/journal.pgen.1007936.g004
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size effect artificially suppresses the ratio hrmaxi/hreqi, as is apparent upon comparing the mea-

surements at L = 106 and L = 107. (Note that the measurement of hreqi does not suffer from

finite-size effects, which was verified in Fig 4, since the core extent remains much smaller than

the system size for these parameters).

To explain these features, we return to the core-halo picture of clone structures. We had

previously identified two contributions to the halo region of a clone (Fig 2). One contribution

comes from satellite clusters which are established with high probability during the growth

process, but are obstructed from merging with the core by clusters belonging to other clones.

In addition, the heavy-tailed jump kernel could populate demes arbitrarily far from the grow-

ing core. These would form isolated demes or small clusters embedded within other clones,

without any related clusters in the neighbourhood. These two mechanisms lead to different

characteristic length scales which we now analyze in detail.

We first quantify the extent of the region in which satellite clusters are established. We had

argued that, in the vicinity of the critical value μ = d, a clone whose core has grown to some

size ℓ(t) will have likely established satellites of a significant size out to a distance ℓ(2t). Having

derived a characteristic time scale t� (defined in Eq 1) for the growth of a typical clone

restricted by mutation-expansion balance, a rough estimate for the extent of its halo is pro-

vided by the quantity

c � ‘ð2t�Þ; ð2Þ

Fig 5. The spatial extent of clones can be much larger than the expectation derived from the average mass.

Ensemble-averaged spatial extent of clones hrmaxi, where rmax is defined as half the distance between leftmost and

rightmost demes belonging to a particular clone. Values are normalized by the ensemble-averaged mass-equivalent

radius hreqi in 1D simulations. Each point is an average over values from 20 independent simulations. Dotted lines

connect simulation data points. Dashed lines show the theoretical expectations z/χ (with ~u ¼ 10� 3) and ψas/χas in the

ranges μ< 1 and 1< μ< 2 respectively, multiplied by model-dependent numerical factors. For μ< 1, wmð~u ¼ 10� 3Þ is

evaluated as described in S1 Appendix, Section A; for 1< μ< 2, the ratio ψas/χas is independent of ~u. The fall in the

measured ratio at low values of ~u for μ< 1 is due to finite-size effects, as seen by comparing the two system sizes: the

measured values of rmax in this range are below the values that would be measured in an infinitely large system.

https://doi.org/10.1371/journal.pgen.1007936.g005
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which quantifies the extent of established satellites of the typical clone. Although this estimate

ignores interference among haloes of different clones, we note that the expected number of

new mutational origins encountered by each satellite cluster is less than one since the satellites

are smaller than ℓ(t�), which limits the amount of interference. An alternative argument,

which balances the rate of key jumps out of the core with the expected rate of mutations arising

in the target region of the jumps and therefore incorporates some interference effects, pro-

duces a similar estimate for the typical extent of the satellite cluster region (see S1 Appendix,

Section C).

Since the existence of satellite clusters is closely tied to the growth process of the core, we

expect the typical halo extent to be at least of order ψ. In this part of the halo, the distribution

of satellite clusters of the same identity as the core is relatively dense: in the absence of interfer-

ence with other clones, the maximum separation between satellite clusters would be of order

ℓ(t�) = χ. However, the halo also includes contributions from rare long-distance dispersal

events which land well outside the dense region of satellite clusters. Due to the heavy tail of the

dispersal kernel, the growing core could send out offspring to arbitrarily large distances, which

are not restricted by the length scale ψ. If these rare jumps land on unoccupied demes, they

would establish isolated demes or small clusters. Unlike the satellite clusters, these isolated

clusters would be very sparsely distributed, being separated from their relatives by distances

much larger than χ. However, they would still count as part of the discontiguous halo of their

parent core. In particular, the extremal measure rmax is sensitive to isolated offspring even if

they do not belong to satellite clusters of significant size.

The outer limit of jumps made by the core during the sweep can be estimated using prior

scaling arguments. Since our time units are set by the migration rate, the net number of jumps

out of a typical clone which grows over a time t� is roughly ωdt�ℓd(t�), which equates to 1=~u by

the definition of t�. The fraction of these jumps which end up beyond a distance l is
R1
l JðrÞ dr ¼ l

� m. A crude estimate for the outer limit z of these rare events is obtained by

requiring the net number of jumps from the core to distances z or greater to be equal to 1:

z
� m
=~u ¼ 1) z ¼ ~u � 1=m: ð3Þ

Unlike the extent of the satellite cluster region, z does not depend explicitly on the core growth

function ℓ(t). However, the scaling for z does not account for the fact that many of the long-

distance rare jumps would fail to establish because they land on the high-occupancy cores of

competing clones, which fill up the range over the same time scale t�. Therefore, z is likely to

be relevant when the sparse halo regions become dominant over the cores, i.e. for μ< d.
To test whether ψ or z determines the average clone extent in the different growth regimes,

we also need to fix an overall magnitude factor, which is not predicted by the scaling argu-

ments. The most general behaviour would be for these magnitude factors to themselves

depend on μ. However, our measurements of the clone mass (Fig 4) showed that the magni-

tude factors only vary slightly over the range of values of μ. Therefore, we evaluate the effective-

ness of the theoretical length scales by testing whether they reproduce the simulation data up

to a μ-independent magnitude factor, which we treat as a fit parameter.

The asymptotic growth forms for ℓ(t) from Table 1 can be used to obtain the qualitative

behaviour of the characteristic satellite cluster extent; we term the resulting estimate ψas. (We

expect asymptotic estimates to become inaccurate as μ approaches d). In the region of power-

law growth, d< μ< d + 1, we find that ψas and z both have the same mutation-rate depen-

dence for a given dispersal kernel,/ ~u � 1=m. However, the ratios of the length scales to the char-

acteristic core size χas show different behaviour as μ is varied: ψas/χas = 21/(μ−d) has no

remaining dependence on χas or ℓ(t), whereas z=was ¼ A1� 1=m
m

o
� 1=m

d depends on the magnitude
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parameter Aμ which characterized the solitary-clone growth. The measured ratio of average

clone extent to average mass-equivalent radius agrees well with the theoretical prediction for

ψas/χas for μ� 1.4 (red dashed line in Fig 5; the overall magnitude factor was chosen to match

the value at μ = 2). By contrast, the prediction z/χ (cyan dashed line) deviates by factors of

order one from the measured ratio due to the residual dependence on Aμ, although it agrees

with the overall trend. As expected, the asymptotic estimates become increasingly inaccurate

as μ! 1 which reflects the breakdown of the asymptotic growth form.

At the marginal value μ = d, the asymptotic form predicts cas / ~u � 1=de� cd
ffiffiffiffiffiffiffiffi
� log ~u
p

for ~u � 1,

where cd is a numeric constant of order one. In 1D, the very weak additional dependence on

log ~u is not sufficient to distinguish this form from the alternative length scale z ¼ ~u � 1 for μ =

1. However, the differences in ψ and z become significant in the region of stretched-exponen-

tial growth, μ< d. As μ approaches zero, the strong divergence in Eq 3 for rescaled mutation

rates below one induces z to grow much faster than ψas. For our 1D simulations, the ratio ψ/χ
only varies by about an order of magnitude, regardless of whether the asymptotic forms or the

more accurate scaling forms from S1 Appendix, Section A are used. Therefore, the satellite

cluster region cannot account for the dramatic increase in average clone extent observed at

low values of μ in Fig 5. By contrast, z grows rapidly over many orders of magnitude over the

same range. Upon fitting an overall magnitude factor, the ratio z/χμ successfully captures the

variation in hrmaxi/hreqi for the largest rescaled mutation rate ~u ¼ 10� 3 (cyan dashed line in

Fig 5).

To summarize, we have identified two characteristic scales, ψ and z (defined in Eqs 2 and 3

respectively), that could set the average halo extent in our spatial soft sweeps. Differences

between ψ and z are small when d� μ< d + 1, but become significant for μ< d. Comparisons

with the measurements of clone extent in simulations (Fig 5) support the hypothesis that z sets

the halo extent for the highly sparse clones that arise when μ< d, while ψ sets the halo extent

for the more compact but still discontiguous clones when μ� d< d + 1.

Clone size distributions vary with dispersal kernel and influence global

sampling statistics

Unlike our simulations, studies of real populations do not have access to complete allelic infor-

mation over the entire range. Instead, the allelic identity of a small number of individuals is

sampled from the population. The likelihood of detecting a soft sweep in such a random sam-

ple is determined not only by the total number of distinct clones in the range, but also by their

size distribution: if the range contains many clones, but all but one are at extremely small fre-

quency (defined as the fraction of demes in the range that belong to that clone), the sweep is

likely to appear “hard” in a small random sample which would with high probability contain

only the majority allele. Long-range dispersal can therefore influence soft sweep detection not

only by setting the average clone size, but also by modifying the distribution of clone sizes

around the average. Having already established that the dispersal kernel has a significant effect

on the average clone size (Fig 4), we now analyze its effects on the clone size distribution and

the consequences for soft sweep detection.

Clone size distributions were quantified by computing the allele frequency spectrum f(x),
defined such that f(x)δx is the expected number of alleles which have attained frequencies

between x and x + δx in the population [18]. The allele frequency spectrum is related to

the average probability distribution of clone sizes, but has a different normalization
R 1

1=N xf ðxÞ dx ¼ 1 which allows sampling statistics to be expressed as integrals involving f(x)
(we will exploit this fact in Section Global sampling statistics below). Analytical results for f(x)
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can be derived for the deterministic wavelike growth limit μ� d + 1 in 1D by mapping the

spatial soft sweep on to a grain growth model [19], and for the panmictic limit μ! 0 in any

dimension via a different mapping to an urn model [20]. The resulting functions, termed fw
and f1 for the two limits respectively, provide bounds on the expected frequency spectra at

intermediate μ. Details of the mappings and complete forms for the functions fw and f1 are

provided in S1 Appendix, Section D.

Fig 6(a) shows allele frequency spectra computed from the outcomes of 1D soft sweep simu-

lations for system size L = 107 and mutation rate ~u ¼ 10� 4. We find that the frequency spectra

vary strongly with the dispersal kernel, and approach the exact forms f1 and fw for small and

large μ respectively. Generically, spectra become broader as the kernel exponent is reduced: as

μ! 0, more high-frequency clones are observed. Although this broadening is partly explained

by the increase in the average clone size due to accelerated expansion, which would lead to

more high-frequency alleles, there are also systematic changes in the overall shapes of the

distribution as the dispersal kernel is varied. Upon reducing the rescaled mutation rate to

~u ¼ 10� 6 [Fig 6(b)], all frequency spectra broaden due to the increase in the average clone size,

but the variations in shapes of the f(x) curves with μ remain consistent across the two mutation

rates. These observations suggest that spatial soft sweep patterns with similar numbers of dis-

tinct alleles in a range might nevertheless have vastly different clone size distributions due to

different dispersal kernels, with implications for sampling statistics.

To uncover variations due to long-range dispersal beyond changes in the average clone size,

we rescaled the frequency spectra by the expected dependence on Xave, which we have already

Fig 6. Variation of allele frequency spectra with mutation rate and dispersal kernel. (a) Allele frequency spectra f(x) estimated from 1D

simulations with L = 107 and ~u ¼ 1e � 4. Each curve is the average of frequencies measured from 20 independent simulations. Curves are

coloured by dispersal kernel according to the legend in (c). The uptick for the lowest bin is an artifact of the logarithmic bin sizes together with

the hard lower cutoff in allele frequency at x = 1/L. Black dotted and dash-dotted lines show the analytical distributions for wavelike spreading

and panmictic limits respectively. (b) Same as in (a) except with ~u ¼ 1e � 6. (c) Frequency spectra from (a) and (b), rescaled to remove the

expected variation due to changes in average clone size. Inset, dependence of the cut-off frequency xc on the exponent p when frequency spectra

are approximated by a power law f(x)/ xp for x� xc and f(x) = 0 for x> xc. Dots show the cutoff estimated numerically as the value for which

the second derivative of the rescaled curves first drops below −4, plotted against the observed exponents p� {−0.9, −0.72, −0.47, 0, 1} for the

small-frequency behaviour.

https://doi.org/10.1371/journal.pgen.1007936.g006
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established as being set by the mutation-expansion balance via the characteristic size χ. To

establish the form of this rescaling, we assume that for a given dispersal kernel, soft sweep pat-

terns at different mutation rates are self-similar when distances are rescaled by the characteris-

tic length χ. Under this assumption, the probability distribution of clone sizes in an infinitely

large range is a function only of the rescaled clone mass s� X/Xave; i.e. the probability of find-

ing a clone between s and s + δs is Pμ(s)δs, where the density function Pμ depends only on the

dispersal kernel and not on the rescaled mutation rate.

For finite ranges of extent Lmuch larger than χ, we can now express the average allele fre-

quency spectrum in terms of Pμ. The expected number of unique alleles in the range is Ld/Xave.

Within these alleles, the probability of finding an allele in the frequency range (x, x + δx) is

Pμ(Ldx/Xave) × Ldδx/Xave. Therefore, the expected number of alleles with frequencies between x
and x + δx is

Ld

Xave

� �2

Pm
Ldx
Xave

� �

dx:

Upon comparing this expression the definition of the allele frequency spectrum for the finite

range, we arrive at

f ðxÞ ¼
Ld

Xave

� �2

Pm
Ldx
Xave

� �

; ð4Þ

Eq 4 implies that for a given dispersal kernel, the dependence of the allele frequency spec-

trum on mutation rate and range size is completely captured by the ratio Ld/Xave. In particular,

when f(x) is multiplied by (Xave/Ld)2 and the frequency by Ld/Xave, frequency spectra for differ-

ent values of ~u ought to collapse onto a single curve for each μ. Fig 6(c) shows that upon such a

rescaling (with hXi used as a simulation-derived estimate of Xave), curves for the same value of

μ from panels (a) and (b) largely coincide, confirming that most of the dependence of the fre-

quency spectrum on mutation rate is captured by the variation of the single length scale χ and,

through it, the expected clone mass Xave. Note that we can use the fact that Xave/ χ
d with a

kernel-independent prefactor to rewrite Eq 4 as f(x) = (L/χ)2dGμ(Ldx/χd), where Gμ is indepen-

dent of ~u, which explicitly shows the role of χ in scaling the allele frequency spectrum.

The arguments leading to Eq 4 relied on the assumption that only one characteristic scale

exists for the soft sweep patterns. For our class of kernels, this assumption is only exact in the

regime of power-law growth, for which the halo extent scale ψ is proportional to χ. In the

stretched-exponential and marginal growth cases, by contrast, ψ acts as an independent length

scale from χ with its own mutation-rate dependence. In S1 Appendix, Section E, we show that

the consequent corrections to Eq 4 are weak (logarithmic in mutation rate and system size)

and are strongest when μ approaches 0, validating the effectiveness of the proposed rescaling

over all regimes away from the well-mixed limit.

The scaled frequency spectra show that broader dispersal kernels favour broader allele fre-

quency spectra even after accounting for changes in the average clone size. At μ = 4, the steep

decline in the frequency spectrum occurs near the frequency expected of an average clone,

x� hXi/L. As μ is reduced, the falloff occurs at higher frequencies; at μ = 0.4, for instance,

clones with frequencies an order of magnitude higher than the average clone are still likely.

Qualitatively, this trend is a result of the increased nonlinearity of the growth functions ℓ(t) for

broader dispersal. If we assume no interference among distinct clones until the time t�, the size

of an allele which arrives at time ti is proportional to ℓd(t� − ti). For a given spread of arrival

times of mutations, the spread of final clone sizes is significantly enhanced by nonlinearity in

ℓ(t). Therefore, the increased departure from linear growth in ℓ(t) as μ! 0 gives rise to
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broader clone size distributions. Deterministic approximations to the clone size distributions

expected for the asymptotic ℓ(t) forms in 1D, described in S1 Appendix, Section E, support

this heuristic picture.

Although we do not have analytical expressions for the frequency spectra at intermediate μ,

the measured curves and deterministic calculations suggest a simple approximate form for the

allele frequency spectra: extend the power-law behaviour observed at intermediate frequencies

[straight parts of the curves in Fig 6(a)–6(b)] from x = 0 up to a cutoff frequency correspond-

ing to the location of the sharp dropoff in f(x). Quantitatively, we consider an ansatz for the

frequency spectra with two parameters:

f ðxÞ ¼
pþ 2

xpþ2
c
xp; x < xc

0; x > xc;

8
<

:
ð5Þ

i.e. a power-law behaviour characterized by exponent p, up to some maximal frequency xc,

with the constant of proportionality determined by the normalization. The values p and xc are

determined from the numerical data, but are also consistent with theoretical arguments (S1

Appendix, Section E). The small-x behaviour of the two limiting spectra, f1(x)* x−1 and

fw(x) * x as x! 0, imply that p is restricted to vary from −1 to 1 as μ increases from zero.

Despite its simplicity, this approximation can be used to quantify the relationships among vari-

ous features of the clone size distributions as we show in S1 Appendix, Section F. For instance,

the power-law ansatz predicts a relation between the average clone size and the cutoff fre-

quency, Lxc/Xave = (p + 1)/(p + 2), which matches the trends observed in the rescaled fre-

quency spectra, see inset to Fig 6(c).

Global sampling statistics. The utility of f(x) in the context of soft sweep detection is

made apparent by noting that the probability Phard(j) of finding only one unique allele in a

sample of size j� 2 drawn randomly from the population (i.e. detecting a hard sweep) is [18]

PhardðjÞ ¼
Z 1

0

xjf ðxÞ dx: ð6Þ

The probability of observing a soft sweep in a sample of size j is simply Psoft = 1 − Phard(j).
(Although Psoft might be more relevant to soft sweeps, we deal with Phard(j) in the following

sections because it is more straightforward to compute and manipulate mathematically). Since

xf(x) does not diverge as x! 0 for all observed frequency spectra, the integral in Eq 6 is domi-

nated by contributions from the high-frequency region of f(x) and is therefore highly sensitive

to the breadth of the frequency spectrum. Using the power-law ansatz for the frequency spec-

trum, Eq 5, gives PhardðjÞ / xj� 1
c =j for large j (see S1 Appendix, Section F): the dominant behav-

iour is an exponential decay with sample size, with the decay scale set by the high-frequency

cutoff xc. At a given rescaled mutation rate, this cutoff falls by many orders of magnitude as μ
is increased, as we saw in Fig 6(a)–6(b). As a consequence, the probability of finding a monoal-

lelic sample also falls dramatically with increasing μ, see Fig 7(a). Analytical calculations of

Phard using f1(x) and fw(x) in the μ! 0 and μ� d + 1 limits (dashed and dash-dotted lines)

provide bounds on the variation (see S1 Appendix, Section G for explicit forms of Phard(j) in

these limits).

We have seen that increased long-range dispersal broadens the frequency spectrum both by

increasing the average clone size, and by enhancing the spread of clone sizes around the aver-

age. In the hypothetical case of all clones having the same size Xave, a monoallelic sample of

size j is obtained by having the last j − 1 samples drawn from the same clone as the first sample,

which occurs with probability (Xave/Ld)j−1/ (χ/L)d(j−1). To distinguish the effect of the shape
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of f(x) from that of the average size of clones, we scale Phard(j) in 1D simulations by (hXi/L)j−1

for a range of rescaled mutation rates, see Fig 7(b). (As before, we use hXi for a simulation-

derived estimate of Xave). If the sampling statistics were determined primarily by the average

clone size (which in turn is set by χ) and the effect of variations in the shape of f(x) were insig-

nificant, we would expect the rescaled Phard(j) for different kernels to all collapse on the same

curve. Instead, we find that the sampling statistics vary significantly with μ even when account-

ing for differences in average clone size. Whereas the rescaling captures a significant amount

of the variation in Phard(j) within each value of μ (with a residual ~u-dependence that differs for

the different regimes of ℓ(t), and is due to the relevance of the additional length scales outside

the power-law growth region), the rescaled curves vary widely among the different dispersal

kernels.

Fig 7(b) quantifies the influence of long-range dispersal on soft sweep detection beyond

merely setting the average size of clones: if mutation rates are adjusted so that the characteristic

length scales χ and hence the average clone sizes are comparable for different dispersal kernels,

soft sweeps continue to be less likely to be detected for broader kernels (smaller μ). This hap-

pens because the range has a larger contribution from high-frequency clones with x> (χ/L)d

for broader dispersal kernels, making monoallelic sampling more likely. In summary, not only

does broadening the dispersal kernel make sweeps harder, it also makes their detection less

likely. Since a wide range of possible outcomes separates the two limits of panmictic (μ! 0)

and wavelike spreading (μ� d + 1), predictions based on these extremes might perform

poorly in making inferences from sampling statistics in populations with intermediate long-

range dispersal.

Local sampling protocols are highly sensitive to the core-halo structure

Population genomic studies are often limited not only in the number of independent samples

available, but in their geographic distribution as well. Samples tend to be clustered in regions

chosen for a variety of reasons such as anthropological or ecological significance, or practical

Fig 7. Probability of observing only one allele in a finite sample. (a) The probability Phard(j) of observing a hard (i.e. monoallelic) sweep in a

sample of size j chosen at random from the range, computed from simulated clone size distributions for different dispersal kernels (colours,

labeled) with L = 106 and ~u ¼ 10� 6 in 1D. Three analytical forms are shown as dotted lines (from top to bottom): the Ewens’ sampling result for

the panmictic case, the approximate form derived using a hard-cutoff ansatz for the allele frequency spectrum for μ = 1 (S1 Appendix, Eq

(A12)), and Phard calculated from the exact f(x) for the wavelike spreading limit (S1 Appendix, Section G). (b) The same quantity computed

across a range of rescaled mutation rates (symbols), and scaled by the expectation for a range with all clones having the same size and hence the

same frequency Xave/L.

https://doi.org/10.1371/journal.pgen.1007936.g007
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limitations. The analysis of the last section would apply to comparing samples across different

regions, provided that these are relatively well spread out in the range. Here we focus on the

variation within local samples from a subrange of the entire population. As illustrated by the

wide variation in local diversity within the highlighted subranges (dashed boxes) in Fig 1(a),

inferences based on local sampling can be significantly different from inferences based on

global information, and may be very sensitive to modes of long-range dispersal.

Long-range dispersal enhances local diversity. When clones extend over a much wider spa-

tial range than required by their mass (Fig 5), local subranges contain alleles whose origins lie

far away from the subrange, and are consequently more diverse than expected from the diver-

sity of the range as a whole. To quantitatively illustrate this effect, we compute sampling statis-

tics for different dispersal kernels and subrange sizes from 1D simulations with a global range

size much larger than the characteristic length scale χ (Fig 8). (Subrange size, denoted by Ls,

and extent are equivalent in our 1D simulations). We observe that the smaller clones expected

at higher values of μ favour the detection of soft sweeps globally (Fig 8a), but the diversity is

less detectable in samples from subranges that are smaller than the characteristic size shared by

the compact domains at μ = 4. By contrast, samples from smaller subranges continue to show

signatures of soft sweeps for broader dispersal kernels (Fig 8b and 8c).

To compare the sensitivity of soft sweep detection to subrange size across different dispersal

kernels and mutation rates, we focus on the probability of detecting the same allele in a pair of

individuals randomly sampled from a subrange, Phard,s(2) (also called the species homoalleli-

city of the subrange). This probability is high only when the subrange is mostly occupied by

the core of a single clone; it is low if the subrange contains cores belonging to different clones,

or a combination of cores and haloes. Therefore, we expect χ (or equivalently the average

mass-equivalent radius hreqi, which we may use as a simulation-derived estimate for χ in 1D)

to also be the relevant scale to compare Ls values across different situations. Fig 9(a) shows the

dependence of Phard,s(2) on Ls/hreqi for different dispersal kernels and mutation rates in the

χ� L limit. As with the global sampling probabilities reported in Fig 7(b), we find that the

rescaling of subrange size with hreqi captures much of the variation among different mutation

rates (symbols) for a given dispersal kernel. In contrast with the global sampling statistics,

Fig 8. Dispersal promotes soft sweep detection in small subranges. (a)–(c) Probability of observing a hard sweep in j samples randomly

chosen from contiguous subranges of different sizes Ls in simulated 1D ranges of size L = 106, with rescaled mutation rate ~u ¼ 10� 6. At the same

mutation rate, broader dispersal kernels lead to a larger average clone size (hXi � 980, 1.6 × 104, 4 × 104 for μ = {4, 1, 0.6} respectively), which

reduces the total number of alleles and favours hard sweep signatures when the sampling is done over the entire range [L = Ls, (a)]. However,

when Ls is reduced [(b)–(c)], the detection of soft sweeps become increasingly likely for the broader dispersal kernels; the broken-up structure of

clones compensates for their smaller overall number. For small enough subranges, the order of values of Phard(j) with increasing μ is inverted

compared to the values at Ls = L.

https://doi.org/10.1371/journal.pgen.1007936.g008
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however, hard sweep detection probabilities are suppressed (or equivalently, soft sweeps are

easier to detect for the same rescaled subrange size) as the jump kernel is broadened. At high

values of μ in the wavelike expansion limit, the shape of the curves is well-approximated by the

null expectation for an idealized clone size distribution where all clones are perfectly contigu-

ous segments of equal size Xave. As μ falls below d + 1, the prevalence of overlapping haloes

increases local diversity at the scale of satellite clusters, much smaller than the typical clone

size would dictate. The effect is especially strong in the marginal and stretched-exponential

growth regimes (μ� d), which was associated with the halo dominating over the core (Figs 3

and 5).

A different measure of subrange diversity is the total number of distinct alleles present in

a subrange on average, which we call nc,s. Unlike the subrange homoallelicity, which was

dominated by the most prevalent clone in the subrange, this measure gives equal weight to

all clones, and is sensitive to haloes that overlap with the subrange. The expected number of

distinct cores in the subrange is Ls/(2hreqi); in the absence of haloes, we would expect nc,s to

be equal to this value. However, haloes of clones whose cores are outside the subrange would

cause nc,s to exceed the number of cores in the subrange. This enhancement in diversity due

to encroaching haloes would be expected to occur only when the subrange is smaller than

the average clone extent including the halo, i.e., when Ls < 2hrmaxi. When the subrange

is larger than the typical halo extent, the cores of clones whose haloes contribute to nc,s are

also expected to lie within the subrange, and are accounted for in Ls/(2hreqi). This expecta-

tion is confirmed in Fig 9(b). When the subrange size is rescaled by the extent of the

clone including the halo, the average number of distinct alleles in the subrange follows

nc,s = Ls/(2hreqi) (solid line) in all cases, provided Ls/hrmaxi> 2. For smaller subrange sizes,

nc,s lies above this estimate, reflecting the enhancement of local diversity due to encroaching

haloes.

Fig 9. Different measures of diversity within a subrange are sensitive to different characteristic scales. (a) Probability Phard,s(2) of observing

a single allele in a pair drawn from a subrange of size Ls for different dispersal kernels (colours, labeled) and mutation rates [symbols, see legend

in panel (b)], for 1D simulations with L = 106, as a function of the ratio Ls/hreqi. In all cases, the population range was chosen to be many times

larger than the characteristic size χ and harbours many distinct alleles. The dashed line is the prediction if all clones are of the same size Xave, in

which case geometry dictates that Phard,s(2) = {1 − x/3, x< 1; 1/x − 1/(3x2), x� 1}. The inset shows data for μ = {0.6, 1.0, 3.0} on log axes. (b)

Number of distinct alleles nc,s observed in a subrange of size Ls, shown as a function of the ratio Ls/hrmaxi. Values are scaled by hrmaxi/hreqi, the

expected number of clones in the area occupied by the average halo. The solid line corresponds to nc,shreqi/hrmaxi = Ls/(2hrmaxi), or equivalently

nc,s = Ls/(2hreqi).

https://doi.org/10.1371/journal.pgen.1007936.g009
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Discussion

Adaptation in a spatially extended population often uses different alleles in different geo-

graphic regions, even if the selection pressure is homogeneous across the entire range. The

probability of such convergent adaptation [21] and the patterns of spatial soft sweeps that result

depend on two factors: the potential for the population to recruit adaptive variants from either

new mutations or from the standing genetic variation, and the mode of dispersal. Previous

work has focused on the two extremes of dispersal phenomena: panmictic populations without

spatial structure [3–5] or wavelike spreading due to local diffusion of organisms [11, 21]. How-

ever, gene flow in many natural populations does not conform strictly to either limit. Many

species experience some long-distance dispersal either through active transport or through

passive hitchhiking on wind, water, or migrating animals including humans [12–14]. The

dynamics of adaptation of populations with a large range can be strongly influenced by long-

distance dispersal even when dispersal events are rare [22].

We have described spatial patterns of convergent adaptation for a general dispersal model,

with jump rates taken from a kernel that falls off as a power-law with distance. Although the

underlying analysis is applicable to more general dispersal kernels, our specific choice of kernel

allows us to span a wide range of outcomes using a single parameter. We have shown that

long-range dispersal tends to break up mutant clones into a core region dominated by the

clone, surrounded by a disconnected halo of satellite clusters and isolated demes which mingle

with other alleles. A key result of our analysis is that although the total mass of a clone is well-

captured by the extent of the core region, the sparse halo can extend out to distances that are

significantly larger than the core, sometimes by orders of magnitude. Therefore, understand-

ing clone masses alone provides incomplete information about spatial soft sweep patterns, and

can vastly underestimate the true extent of mutant clones.

By analyzing the balance between the jump-driven expansion of solitary clones and the

introduction of new mutations, we have identified three characteristic length scales that quan-

tify the spatial relationships between core and halo: the characteristic core extent χ, which sets

the average clone mass; the radial extent ψ within which well-developed satellite clusters are

expected; and the outer limit z within which both satellite clusters and isolated demes are typi-

cally found. As the kernel exponent μ is varied, these length scales demarcate three regimes

with qualitatively different core-halo relationships: compact cores with insignificant haloes,

similar to the case of wavelike growth, for μ> d + 1; a dominant high-occupancy core sur-

rounded by a halo of well-developed satellite clusters which extend to a size-independent mul-

tiple of the core radius (z* ψ/ χ) when d< μ< d + 1; and a halo including a significant

number of isolated demes in addition to satellite clusters, which may extend over a region

orders of magnitude larger than the core (z� ψ� χ) when μ< d.
We have also studied the signatures left behind by these patterns on population samples

that are taken either from a local region, or globally from the entire range. Under which condi-

tions, and for which types of samples, can we expect to observe a soft sweep? We have found

that when ranges with similar overall diversity (as judged by the number of distinct clones in

the entire range) are compared, broadening the dispersal kernel has opposing effects on soft

sweep detection at global and local scales: soft sweeps become harder to detect in a global ran-

dom sample, but easier to detect in samples from smaller subranges.

Besides having consequences for detecting and interpreting evidence for spatial soft sweeps,

the breakup of mutant clones by long-range dispersal also impacts future evolution after the

soft sweep has completed. Our analysis describes the spatial patterns arising in the regime of

strong selection, where the large advantage of beneficial mutants over the wildtype dominates

the evolutionary dynamics. Once the entire population has adapted to the driving selection
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pressure, smaller fitness differences among the distinct alleles will become significant, and

modify the spatial patterns on longer time scales. Selection is most sensitive to these fitness dif-

ferences at the boundaries separating demes belonging to different clones. For the same global

diversity, the total length of these boundaries is strongly influenced by the connectivity of

clones, and grows significantly as the kernel exponent is reduced, thereby modifying the post-

sweep evolution of the population. The post-sweep evolution could also favour well-developed

satellite clusters over isolated demes of one allele within a region dominated by another: iso-

lated demes are likely to be taken over by their surrounding allele through local diffusion of

individuals. Therefore, the characteristic length ψmay prove to be a relevant spatial scale for

the post-sweep evolution, even in the regime μ< d where z sets the extent of the halo in the

sweep patterns.

Although a quantitative evaluation of our model using real-world genomic data is beyond

the scope of this work, some qualitative features of long-range dispersal can be identified in

previous studies of spatial soft sweeps. The evolution of resistance to widely-adopted drugs in

the malarial parasite Plasmodium falciparium is a well-studied example of a soft sweep arising

in response to a broadly applied selective pressure. While multiple mutant haplotypes confer-

ring resistance to pyrimethamine-based drugs have been observed across Africa and South-

east Asia, the number of distinct haplotypes is smaller than would have been expected if resis-

tance-granting mutations were confined to their area of origin [23]; this feature has been

linked to long-distance migration of parasites through their human hosts, which allowed indi-

vidual haplotypes to quickly spread across disconnected parts of the globe [24]. Within the

same soft sweep, high levels of spatial mixing of distinct resistant lineages was also observed in

some sub-regions [25]. These observations are consistent with the contrasting effects of long-

range dispersal we have quantified in our model: at a given rescaled mutation rate, dispersal

reduces diversity globally, but increases the mixing of alleles locally. Advances in sequencing

technology have driven rapid improvements in the spatiotemporal resolution of drug-resis-

tance evolution studies [26], making them a promising candidate for quantitative analysis of

the spatial soft sweep patterns we have described.

Many interesting questions remain to be explored. Our simulation studies in d = 2 could be

significantly expanded. We have also focused on the limit in which the average clone size is

many times smaller than the entire range. It would also be interesting to study the statistics of

soft sweeps when the extent of the range is comparable to the characteristic length scale χ,

making a soft sweep an event of low but significant probability which may vary significantly

with the dispersal kernel.

The applicability of our results to continuous populations without an imposed deme struc-

ture is an open problem. In our model, the deme structure is used to impose a local population

density and allows us to separate the local dynamics of fixation from the large-scale behaviour

driven by rare but consequential jumps. However, the theoretical picture of growth via the

merger of satellite outbreaks with an expanding core does not rely on the deme structure.

Therefore, we expect aspects of our results to also hold in continuous populations under cer-

tain parameter regimes. However, explicitly translating the parameters and defining the cor-

rect continuum limit of deme-based models is known to be challenging [27], and presents an

interesting avenue for future work. Our simulations could also be modified to exploit advances

in computational modeling of continuum populations [28].

The model can also be extended to include additional mechanisms involved in parallel

adaptation. Besides recurring mutations, standing genetic variation (SGV) in the population

is a important source of diversity for soft sweeps [3]. Long-range dispersal could impact both

the spatial distribution of SGV before selection begins to act, and the spreading of alleles from

distinct variational origins during the sweep [21]; both situations can be explored through
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extensions of our model. In the latter case, we expect the distinct regimes of core-halo patterns

for different jump kernels to persist, but with the characteristic core size set by the initial distri-

bution of variational origins rather than mutation-expansion balance.

The necessity of including heterogeneity motivates a natural set of extensions of the model.

When soft sweeps arise due to mutations at different loci producing similar phenotypic effects,

some variation in fitness among the distinct variants is inevitable. In panmictic models, fitness

variations do not significantly affect the probability of observing a soft sweep, provided that

the variations are small relative to the absolute fitness advantage of mutants over the wildtype

[5]. Since spatial structure restricts competition to the geographic neighbourhood of a clone,

we expect the effect of fitness variation to be even weaker than for panmictic populations, and

our results should be robust to a small amount of variation in fitness effects. However, when

fitness variations among mutations are large enough to be significant, the impact of the varia-

tions could depend on the dispersal kernel, and show qualitatively different behaviours in the

distinct regimes of power-law and stretched-exponential growth. Similarly, spatial heterogene-

ities in the selection pressures could lead to so-called “patchy” landscapes which lead to certain

mutations being highly beneficial in some patches but neutral or even deleterious in others

[29]. Convergent adaptation on patchy landscapes is likely to be significantly impacted by

long-range dispersal which would allow mutations to spread efficiently to geographically sepa-

rated patches.

Finally, the assumptions of strong selection and weak mutation/migration allowed us to

ignore the dynamics of introduction of beneficial mutations within a deme. Relaxing these

assumptions would lead us to a more general model with an additional time scale characteriz-

ing the local well-mixed dynamics at the deme level. The interplay between this time scale and

the time scales governing the large-scale dynamics driven by long-range dispersal could lead to

new patterns of genetic variation during convergent adaptation.

Materials and methods

Simulation methods

Simulations were written in the C++ programming language, and utilized the standard Mers-

enne Twister engine to generate pseudorandom numbers. A simulation of linear size L in d
dimensions is begun by initializing an array of integers of size Ld. Each array position corre-

sponds to a single deme, and the associated integer value stores the allelic type. The array is ini-

tialized with all demes bearing the value 0 signifying the wildtype (WT).

As described in the text, the simulations only need to incorporate the two types of events

which could potentially change the identity of a deme: a mutation of a WT deme, or an

attempted migration from a mutant deme. To accomplish this, each deme is assigned a weight

of ~u if WT, and 1 if a mutant deme. At each discrete simulation step, a deme is picked at ran-

dom with probability proportional to its weight. If the deme chosen is WT, it is assigned a

unique integer that was not previously present in the array. If the deme chosen contains a

mutant allele, a jump is attempted. The jump distance r is obtained by drawing a random

number X evenly distributed between 0 and 1, and computing the variable r = X−1/μ; this pro-

duces a variable with normalized probability density function P(r) = μr−(1+μ) for kernel expo-

nent μ. The distance is then multiplied with a random d-dimensional unit vector (simply ±1 in

d = 1, and evenly distributed on the unit circle in d = 2). Each vector component is rounded to

the nearest integer to obtain a jump vector on the lattice. The target position for the migration

attempt is obtained by adding this jump vector to the source position, and wrapping the result

into the range of size Ld assuming periodic boundary conditions.
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If the target deme is WT, its value is updated with the allelic identity of the source; otherwise

the migration attempt is unsuccessful. If the simulation step ends in a mutation or a successful

migration, the probability weights associated with the demes are updated and the next step is

executed. The simulation continues until all Ld array positions contain nonzero integers signify-

ing the completion of the sweep. The final array of Ld integers constitutes the simulation output.

A single simulation took between a few minutes and 24h of CPU time depending on the

parameter values. Simulation results were processed using scripts written in the Python pro-

gramming language. All reported results were obtained by averaging over 20-100 independent

simulations for each set of parameters, depending on system size.
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