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Functional genomic analysis delineates 
regulatory mechanisms of GWAS‑identified 
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Abstract 

Background:  Genome-wide association studies (GWASs) have identified multiple risk loci for bipolar disorder (BD). 
However, pinpointing functional (or causal) variants in the reported risk loci and elucidating their regulatory mecha‑
nisms remain challenging.

Methods:  We first integrated chromatin immunoprecipitation sequencing (ChIP-Seq) data from human brain tissues 
(or neuronal cell lines) and position weight matrix (PWM) data to identify functional single-nucleotide polymorphisms 
(SNPs). Then, we verified the regulatory effects of these transcription factor (TF) binding–disrupting SNPs (hereafter 
referred to as “functional SNPs”) through a series of experiments, including reporter gene assays, allele-specific expres‑
sion (ASE) analysis, TF knockdown, CRISPR/Cas9-mediated genome editing, and expression quantitative trait loci 
(eQTL) analysis. Finally, we overexpressed PACS1 (whose expression was most significantly associated with the identi‑
fied functional SNPs rs10896081 and rs3862386) in mouse primary cortical neurons to investigate if PACS1 affects 
dendritic spine density.

Results:  We identified 16 functional SNPs (in 9 risk loci); these functional SNPs disrupted the binding of 7 TFs, for 
example, CTCF and REST binding was frequently disrupted. We then identified the potential target genes whose 
expression in the human brain was regulated by these functional SNPs through eQTL analysis. Of note, we showed 
dysregulation of some target genes of the identified TF binding–disrupting SNPs in BD patients compared with con‑
trols, and overexpression of PACS1 reduced the density of dendritic spines, revealing the possible biological mecha‑
nisms of these functional SNPs in BD.
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Background
Bipolar disorder  (BD) is a severe mental disorder that 
affects the emotion, cognition, and behaviour of affected 
individuals, and it affects more than 1% of the world’s 
population [1, 2]. BD is characterized by recurrent altera-
tion between hypomania and depression, and this disor-
der is classified into two major clinical subtypes: bipolar 
disorder type I (BD-I) (which is characterized by hyper-
manic symptoms) and bipolar disorder type II (BD-II) 
(which is mainly characterized by hypomanic episodes 
and severe depression episodes [1]). BD is associated 
with a high risk of morbidity [3, 4] and mortality (the sui-
cide rate of individuals with BD is approximately 20–30 
times higher than that of the general population [5]), 
which makes it a leading cause of disability worldwide.

Although the pathogenesis of BD remains to be elu-
cidated, converging evidence suggests that both genetic 
and environmental factors are involved [6, 7]. Environ-
mental risk factors, such as a lack of social support [8], 
life stress, and sleep-wake cycle disruption, have been 
reported to have a role in BD [9]. In addition, the high 
heritability (approximately 80%) indicates the major role 
of genetic components in BD [10–12]. Over the past dec-
ade, several BD risk loci have been identified by genome-
wide association studies (GWASs) [13–16]. Despite the 
great success of these GWASs, to date, the genetic mech-
anisms of BD (i.e. how risk variants confer risk for BD) 
remain largely unknown. Considering that most BD risk 
variants are located in noncoding regions, it is likely that 
these risk variants confer risk for BD by regulating gene 
expression [17]. However, pinpointing the functional var-
iants (in the reported risk loci) and elucidating their roles 
in BD remain major challenges (due to the complexity of 
linkage disequilibrium (LD) and gene regulation).

To highlight the functional (or causal) risk variants (in 
the reported BD risk loci) and to elucidate their roles in 
BD, we performed the first functional genomics study 
of BD. We first systematically identified risk SNPs that 
disrupted the binding of TFs (these SNPs were referred 
to as functional SNPs) by integrating chromatin immu-
noprecipitation sequencing (ChIP-Seq) and position 
weight matrix (PWM) data. We then conducted a series 
of experiments (including reporter gene assays, allele-
specific expression (ASE) analysis, TF knockdown, and 
CRISPR/Cas9-mediated genome editing) to validate 

the regulatory effects of the identified functional SNPs. 
We further identified the potential target genes whose 
expression in the human brain was regulated by the iden-
tified functional SNPs using eQTL analysis. Finally, we 
investigated the function of PACS1 (a potential target 
gene regulated by the identified TF binding–disrupting 
SNPs rs10896081 and rs3862386) and found that over-
expression of PACS1 affected the density of dendritic 
spines, suggesting the potential mechanism of this gene 
in BD. Overall, we systematically identified the func-
tional SNPs in the reported risk loci and characterized 
the regulatory mechanisms of the identified functional 
SNPs. In addition, our study linked the functional SNPs 
to their potential target genes, providing a starting point 
for further functional characterization and development 
of therapeutic drugs.

Methods
Information about the reagents and kits used in this 
study is provided in the Additional file 1.

Bipolar GWAS used in this study
The genome-wide summary statistics used in this study 
were obtained from a recent large-scale BD GWAS by 
Stahl et al. [15]. Stahl et al. first conducted a GWAS on 
20,352 BD cases and 31,358 controls (referred to as the 
discovery stage). Variants with P < 1×10−4 in the discov-
ery stage were then replicated in an additional cohort 
(9412 cases and 137,760 controls). A total of 30 genome-
wide significant (GWS) loci were finally identified by 
Stahl et al. [15].

Extraction of SNPs in LD with the index SNPs
For each risk locus, we extracted SNPs in LD (r2 > 0.6) 
with the reported index SNPs using genotype data of 
Europeans from the 1000 Genomes project [18]. Consid-
ering that a wide range of LD values (r2) were used across 
the studies to define whether SNPs of interest were in LD 
with the reported index SNPs [19–23], we conducted an 
extensive literature search to select a proper LD thresh-
old in this study. Based on our literature search and the 
following considerations, we selected the widely accepted 
LD value (r2 > 0.6) in this study. First, r2 > 0.6 was widely 
used to define whether SNPs of interest were in LD with 
the reported index SNPs [24–37]. Second, we accounted 

Conclusions:  Our study identifies functional SNPs in some reported risk loci and sheds light on the regulatory 
mechanisms of BD risk variants. Further functional characterization and mechanistic studies of these functional SNPs 
and candidate genes will help to elucidate BD pathogenesis and develop new therapeutic approaches and drugs.
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for both the number of included SNPs and the degree of 
LD. A higher r2 (e.g. 0.8) reduces the number of included 
SNPs and leads to the omission of some potential func-
tional SNPs. Finally, in some cases, the functional SNPs 
might be in low LD with the reported index SNPs [38–
40]. We thus selected the widely used r2 threshold (r2 > 
0.6) in this study. PLINK was used to calculate the LD 
values and extract the SNPs in LD with the reported 
index SNPs [41]. In total, 2775 SNPs (including the 
index SNPs and SNPs in LD with the index SNPs) were 
extracted (Additional file 2, Table S1).

Identification of SNPs that affected TF binding
To identify functional (or potential causal) SNPs in 
the reported GWS loci, we used a functional genomic 
approach, which has been described in detail in previ-
ous studies [42–44]. The flowchart of our functional 
genomic-based approach includes three major steps 
(Fig.  1). The first step is derivation of the TF binding 
motifs. We downloaded raw data for ChIP-Seq of 34 TFs 
(conducted in brain tissues or neuronal cell lines from 
the ENCODE project) (https://​www.​encod​eproj​ect.​org/) 
[45] and conducted a series of analyses. After cleaning 
by Btrim (http://​graph​ics.​med.​yale.​edu/​trim/) [46], the 
cleaned reads for 30 TFs (4 TFs were excluded because 

of low quality) were mapped to the reference genome 
(hg19) by bowtie (http://​bowtie-​bio.​sourc​eforge.​net/​
index.​shtml) [47]. The mapped sam files were then con-
verted into bam files by SAMtools (http://​samto​ols.​sourc​
eforge.​net) [48]. The derived bam files were used for peak 
calling (by using MACS (http://​liulab.​dfci.​harva​rd.​edu/​
MACS/) [49]). The peaks were sorted, and the sequences 
of the top 500 ChIP-Seq peaks for each TF were used to 
derive the binding motifs with the MEME online tool kit 
(https://​meme-​suite.​org/​meme/​tools/​meme) [50]. The 
derived motifs for each TF were then compared with 
PWMs (compiled by Whitington et al. https://​www.​ncbi.​
nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE70​770) [44], 
and the matching motifs were used for further analysis. 
The second step is extraction of the SNPs in LD with the 
reported index SNPs. We extracted sequences cover-
ing ±20 bp around the SNPs of interest (including the 
index SNPs and SNPs in LD with the index SNPs) (based 
on the human reference genome (hg19)). For each SNP, 
two DNA sequences were generated with a difference 
of only one base at the SNP position (i.e. one sequence 
contained the reference allele, while the other sequence 
contained the alternative allele). FIMO (https://​meme-​
suite.​org/​meme/​tools/​fimo) [51] was used to search 
for motif occurrence in the DNA sequences (with the P 

Fig. 1  Overview of the study design. Left panel: Data from ChIP-Seq (conducted in neuronal tissues and cell lines) of 34 TFs from the ENCODE 
project were downloaded. After quality control, read mapping, and peak calling, binding motifs of the included TFs were derived. Right panel: SNPs 
in LD with the reported index SNPs were extracted (r2 > 0.6) using genotype data for Europeans from the 1000 Genomes project. FIMO was used to 
evaluate motif occurrence in the sequences containing the SNPs of interest (sequences (±20 bp) flanking the SNPs of interest were used). A total of 
16 functional candidate SNPs were selected, and a series of functional studies was performed to verify their regulatory functions
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value threshold set at < 0.001) [42–44]. The final step is 
identification of the TF binding–disrupting SNPs. We 
then defined a SNP as a TF binding–disrupting SNP by 
the following criteria: First, the sequences surrounding 
the SNP of interest contained a TF binding motif (e.g. 
a CTCF binding motif ) (motif occurrence revealed by 
FIMO). Second, we checked whether the corresponding 
TF bound to the sequence containing the SNP of interest 
in the ChIP-Seq data (from ENCODE). If a SNP met both 
of the above criteria (i.e. motif occurrence and binding to 
the corresponding TF (ChIP-Seq peak data)), this SNP 
was defined as a TF binding–disrupting SNP.

eQTL analysis
We examined the associations between the identified 
functional SNPs and gene expression in the human brain 
by using the original reported eQTL results for 5 eQTL 
datasets [52–56]. The PsychENCODE project includes 
human brain tissues from 1866 individuals. eQTL results 
were downloaded from the PsychENCODE website 
(http://​resou​rce.​psych​encode.​org/) [52]. The Common 
Mind Consortium (CMC) (https://​www.​ncbi.​nlm.​nih.​
gov/​geo/​query/​acc.​cgi?​acc=​GSE30​272) [53] eQTL data 
are based on 209 schizophrenia cases and 206 healthy 
controls, as well as 52 affective/mood disorder (AFF) 
cases (tissues from the dorsolateral prefrontal cor-
tex were used for gene expression measurements). The 
Lieber Institute for Brain Development (LIBD2) (http://​
eqtl.​brain​seq.​org/​phase2/​eqtl/) [56] eQTL dataset is 
based on 286 schizophrenia cases and 265 healthy con-
trols (tissues from hippocampus and the dorsolateral 
prefrontal cortex were used for expression quantification 
using RNA sequencing). The xQTL (http://​mosta​favil​ab.​
stat.​ubc.​ca/​xQTLS​erve/) [54] dataset contains eQTL data 
for 494 individuals (tissues from the dorsolateral prefron-
tal cortex were used for gene expression quantification). 
The Genotype-Tissue Expression (GTEx) project (https://​
gtexp​ortal.​org/​home/) [55] contains 49 tissues with 
eQTL data (sample size (N) = 836). Thirteen brain tissues 
were included in our eQTL analysis. More details about 
the GTEx project can be found in the original paper and 
on the GTEx website (https://​gtexp​ortal.​org/​home/) [55]. 
The eQTL results were extracted directly from the origi-
nal eQTL studies. If the original eQTL results had been 
subjected to false discovery rate (FDR) correction, only 
SNP-gene associations with FDR < 0.05 were retained. If 
the eQTL results did not contain FDR information, SNP-
gene associations were adjusted using the Bonferroni 
correction.

Allele‑specific expression analysis
Allele-specific expression (ASE) analysis is another 
way to study the regulatory effect of a variant. The 

imbalance in expression between two different alleles 
(maternal and paternal) reflects the potential regula-
tory effect of a variant. RNA sequencing (RNA-Seq) 
data can be used to estimate the ASE effect. Suppose 
that an individual is heterozygous (e.g. with Allele1/
Allele2) for a specific SNP. If this SNP is located in a 
transcribed region, RNA-Seq can determine the num-
ber of reads (read counts) containing either Allele1 
or Allele2 (quantified as Countallele1 and Countallele2). 
The Countallele1/Countallele2 ratio is compared with 
(Countallele1+Countallele2)/2: (Countallele1+Countallele2)/2 
(no ASE) by a binomial test to determine if the num-
ber of reads containing Allele1 is significantly differ-
ent from the number of reads containing Allele2. ASE 
data in human brain tissues were downloaded from the 
GTEx project [55] (Version 8). Among the 16 identified 
functional SNPs, SNPs showing ASE were extracted 
directly from the GTEx project. More detailed infor-
mation about ASE analysis in human brain tissues can 
be found in the original paper and on the GTEx website 
(https://​gtexp​ortal.​org/​home/) [55].

To test whether the identified TF binding–disrupting 
SNPs showed significant ASE, we performed a Bino-
mial test (using the binom.test function implemented 
in R). The total number of variants reported by GTEx 
V8 is 46,526,292 [55], and 571,220 variants show signifi-
cant ASE in brain tissues [55, 57]. We tested whether 4 
of the 16 functional SNPs showing ASE were statistically 
significant by running the command binom.test (4, 16, 
571220/46526292) implemented in R. 571220/46526292 
is the probability if a random SNP showing significant 
ASE (randomly selected from all the variants of GTEx 
panel), and Binomial test will determine whether 4 of the 
16 function SNP showing significant ASE is statistically 
significant.

Cell culture
Three cell lines (HEK293T, SH-SY5Y, and U251) were 
originally obtained from the Kunming Cell Bank at the 
Kunming Institute of Zoology, Chinese Academy of 
Sciences. HEK293T and U251 cells were cultured in 
high-glucose DMEM (Gibco, Cat. No: C11995500BT) 
supplemented with 10% FBS (Gibco, Cat. No: 10091148) 
and 1% penicillin and streptomycin (100 U/mL). SH-
SY5Y cells were cultured in high-glucose DMEM (Gibco, 
Cat. No: C12430500BT) supplemented with 10% FBS 
(Gibco, Cat. No: 10091148), 10 mM sodium pyruvate 
solution (Gibco, Cat. No: 11360070), 1% penicillin and 
streptomycin (100 U/mL), and 1× minimum essential 
medium nonessential amino acid solution (Gibco, Cat. 
No: 11140050). All cells were cultured at 37 °C in 5% 
CO2. All cell lines were confirmed to be mycoplasma-free 
by regular testing by PCR analysis.

http://resource.psychencode.org/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30272
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30272
http://eqtl.brainseq.org/phase2/eqtl/
http://eqtl.brainseq.org/phase2/eqtl/
http://mostafavilab.stat.ubc.ca/xQTLServe/
http://mostafavilab.stat.ubc.ca/xQTLServe/
https://gtexportal.org/home/
https://gtexportal.org/home/
https://gtexportal.org/home/
https://gtexportal.org/home/
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Reporter gene assays
DNA fragments (approximately 500 bp) located in 
the promoter regions containing different alleles of 
the candidate functional SNPs were inserted into the 
pGL4.11[luc2P] vector (which is used to determine pro-
moter activity); alternatively, the enhancer regions con-
taining different alleles of the candidate functional SNPs 
were inserted into the pGL3-Promoter vector (which is 
used to determine enhancer activity). The constructs 
were validated by Sanger sequencing.

We performed reporter gene assays in three cell 
lines (HEK293T, SH-SY5Y, and U251) as previously 
described [42, 43]. HEK293T, SH-SY5Y, and U251 cells 
were plated into 96-well plates at densities of 3.0 × 104 
cells/well, 1.0 × 105 cells/well, and 1.0 × 104 cells/well, 
respectively. After culture for 12 h, the constructed vec-
tors and the internal control vector (pRL-TK, Promega, 
Cat. No: E2241) were cotransfected into cells using 
Lipofectamine™ 3000 (Invitrogen, Cat. No: L3000-015). 
For HEK293T cells, 100 ng of the constructed vectors 
and 20 ng of the pRL-TK were used. For SH-SY5Y and 
U251 cells, 150 ng of the constructed vectors and 50 ng 
of the pRL-TK vector were used. Forty-eight hours post 
transfection, luciferase activity was measured by a dual-
luciferase reporter gene assay system (Promega, Cat. 
No: E1960) according to the manufacturer’s instruc-
tions. Differences were calculated with two-tailed Stu-
dent’s t test, and the significance threshold was set at P 
< 0.05.

Knockdown of TFs
We used online short hairpin RNA (shRNA) design 
tools (http://​rnaid​esign​er.​therm​ofish​er.​com/​rnaie​xpress/​
setOp​tion.​do?​desig​nOpti​on=​shrna​&​pid=-​31053​15568​
90192​3019) [58] to design shRNAs targeting CTCF, 
PBX3, and TAF1. The sequences of the shRNAs are pro-
vided in Additional file 1, Table S2. The annealed oligos 
were cloned into the pLKO.1 vector, and the constructs 
were validated by Sanger sequencing. Lentiviral particles 
were obtained by cotransfecting the constructed vec-
tors (10 μg) with the envelope plasmid pMD2.G (2 μg, 
Addgene, Cat. No: 12259) and the packaging plasmid 
psPAX2 (5 μg, Addgene, Cat. No: 12260) into HEK293T 
cells. Forty-eight hours post transfection, the superna-
tant containing the packaged lentiviral particles were 
collected for SH-SY5Y cell infection. The cells were 
then subjected to puromycin (2 μg/mL, Sigma, Cat. 
No: 540222) treatment for 1 week to select the cells 
with stable expression of the shRNAs of interest. The 
TF knockdown efficiency was determined by real-time 
quantitative PCR (RT-qPCR).

Deletion of genomic sequences containing the identified 
functional SNPs by CRISPR/Cas9 genome editing
To evaluate whether the target genes of interest are reg-
ulated by the genomic regions containing the candidate 
functional SNPs, we used CRISPR/Cas9 technology to 
delete the genomic regions containing the target SNPs. 
We designed a pair of sgRNAs (sgRNA1 and sgRNA2, 
located upstream and downstream of the target SNP, 
respectively) for each target SNP using the CRISPR 
sgRNA Design Tool (https://​zlab.​bio/​guide​design-​resou​
rces). The plasmids PX459M and EZ-GuideXH were first 
linearized with the restriction enzyme BbsI, and sgRNA1 
and sgRNA2 were inserted into PX459M and EZ-Gui-
deXH, respectively. After validation by Sanger sequenc-
ing, the cassette expressing sgRNA2 from EZ-GuideXH 
was subcloned into a linearized PX459M plasmid that 
contained sgRNA1 with the restriction enzymes Hin-
dIII and XhoI. The ClonExpress II One Step Cloning Kit 
(Vazyme, Cat. No: C112-01) was employed to generate 
the final recombinant plasmid expressing both sgRNA1 
and sgRNA2 to perform genome editing in HEK293T 
cells.

Real‑time quantitative PCR (RT‑qPCR) analysis
Total RNA (1 μg) was used as templates for reverse tran-
scription by using the PrimeScript™ RT Kit with gDNA 
Eraser (Takara, Cat. No: RR047A). The generated cDNA 
was diluted 1:5 for subsequent RT-qPCR analysis, which 
was carried out using TB Green™ Premix Ex Taq™ II (Tli 
RNaseH Plus) (Takara, Cat. No: RR820A) in a QuantS-
tudio™ 12K Flex (Applied Biosystems) instrument or a 
CFX96 Touch™ Real-Time PCR detection system accord-
ing to the manufacturers’ instructions. ACTB was used as 
the internal control, and the 2−ΔΔCt method [59] was used 
to calculate relative gene expression. The significance 
threshold was set at P < 0.05, and differences were cal-
culated with two-tailed Student’s t test. Primer sequences 
are provided in Additional file 1, Table S3.

Dendritic spine density analysis
Animals
Wild-type C57BL/6J mice were purchased from Shanghai 
Model Organisms Center (http://​www.​model​org.​com), 
and the animals were maintained in a quiet, uncrowded 
temperature-controlled house on a 12-h light/dark cycle 
(lights on at 08:00 and lights off at 20:00) with ad  libi-
tum access to lab chow and water. All experiments were 
approved by the Animal Ethics Committee of the Kun-
ming Institute of Zoology (License number: SMKX-2021-
01-001) and conformed to National Advisory Committee 
for Laboratory Animal Research guidelines.

http://rnaidesigner.thermofisher.com/rnaiexpress/setOption.do?designOption=shrna&pid=-3105315568901923019
http://rnaidesigner.thermofisher.com/rnaiexpress/setOption.do?designOption=shrna&pid=-3105315568901923019
http://rnaidesigner.thermofisher.com/rnaiexpress/setOption.do?designOption=shrna&pid=-3105315568901923019
https://zlab.bio/guidedesign-resources
https://zlab.bio/guidedesign-resources
http://www.modelorg.com
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Culture of mouse cortical neurons
The pregnant C57BL/6J mice were anaesthetized and 
euthanized using a CO2 chamber. Brain tissue was har-
vested from more than 5 mouse embryos (E16.5–17.5), 
and the prefrontal cortices were isolated in 1× HBSS. 
The cortical tissues were digested with papain (Wor-
thington, Cat. No: LS003119) and DNase I (Sigma, Cat. 
No: D4263-1VL) at 37 °C for 18 min. The digested tis-
sues were then dissociated to obtain single-cell sus-
pensions of neurons. Neurons were seeded into 6-well 
plates (containing coverslips precoated with poly-D-
lysine hydrobromide (Sigma, Cat. No: P6407-5MG; 10 
μg/mL)) and cultured in 2 mL of culture medium (neu-
robasal medium (Gibco, Cat. No: 21103049), 2% B27 
(Gibco, Cat. No: 17504044), 1× GlutaMAXTM-I (Gibco, 
Cat. No: 35050061), and 2.5% FBS (Biological Indus-
tries, Cat. No: 04-001-1ACS)). After 4 h, the medium 
was changed to culture medium without FBS (neuroba-
sal medium, 2% B27, and 1× GlutaMAXTM-I). Cultures 
were incubated at 37 °C in a humidified, 5% CO2 atmos-
phere for 14 days. Half of the culture medium was 
refreshed every 7 days.

Plasmid transfection and immunofluorescence staining
The recombinant pCDH constructs for PACS1 (or 
control vector (pCDH-GFP)) and Venus vector were 
cotransfected into cultured neurons (cultured for 14 
days) using Lipofectamine 3000. After 3 days, the neu-
rons were first fixed with 4% paraformaldehyde and 4% 
sucrose dissolved in PBS at room temperature and were 
then treated with 0.1% Triton X-100 and 2% goat serum 
in PBS. The neurons were stained with anti-mCherry 
(GeneTex, Cat. No: GTX128508) and anti-GFP (Abcam, 
Cat. No: ab13970) antibodies overnight at 4 °C and 
were then incubated with the corresponding secondary 
antibodies for 1 h at room temperature.

Image acquisition and dendritic spines analyses
Analyses of dendritic spine density were carried out as 
previously described [60–62]. Briefly, images of fixed 
neurons expressing GFP or both GFP and mCherry 
were acquired at random using an LSM 880 confocal 
microscope (Carl Zeiss) by Z-stack image scanning (41 
images, 0.25-μm intervals, 1024 × 1024 pixel resolu-
tion) with a ×100 objective and 10× digital zoom. The 
intense expression of GFP encoded by the Venus vec-
tor was employed to outline the morphology of neu-
ronal dendritic spines. NeuronStudio [63, 64] was 
used to analyse secondary or tertiary dendritic spines, 
including their shape and density. Data obtained from 
more than 2 dendrites (total length of 60–100 μm per 

dendrite) of each neuron were averaged as the result 
for one neuron to reduce variability. Statistical analy-
sis of the total dendritic spine density between the two 
groups was performed with two-tailed Student’s t test. 
Spine subtype (mushroom, thin, and stubby) densities 
were analysed using a 2-way ANOVA. All statistical 
analyses were performed with GraphPad Prism 8, and 
the significance level was set at 0.05. All assays were 
performed in at least two independent experiments.

Results
Functional genomics identified 16 TF binding–disrupting 
SNPs in the reported BD risk loci
To identify the functional SNPs in the reported risk loci, 
we utilized a functional genomics approach (Fig. 1) [42, 
43]. By integrating ChIP-Seq and PWM data, we identi-
fied 16 SNPs (Additional file 1, Table S4) that affected the 
binding of TFs (these TF binding–disrupting SNPs were 
called functional SNPs). ANNOVAR annotations [65] 
showed that most of the SNPs were located in intronic 
(N = 9) and intergenic (N = 2) regions (Fig. 2). Of note, 
among the 16 functional SNPs, 7 affected the binding of 
CTCF, and 5 affected REST binding (Fig. 2). In addition, 3 
SNPs affected the binding of two or more TFs: rs2027349 
(affected CTCF/TAF1 binding), rs3862386 (affected 
CTCF/REST binding), and rs228769 (affected CTCF/
SMC3 binding) (Additional file 1, Table S4). These results 
identified functional SNPs in the reported risk loci, sug-
gesting that these functional SNPs may exert their effects 
on BD by regulating gene expression.

Reporter gene assays validated the regulatory effects 
of the identified functional SNPs
Our functional genomic analysis identified 16 TF bind-
ing–disrupting SNPs in the reported BD risk loci. To 
verify the effects of the identified functional SNPs, 
we carried out dual-luciferase reporter gene assays in 
HEK293T, SH-SY5Y, and U251 cells. Among the 16 TF 
binding–disrupting SNPs, all exhibited regulatory effects 
(i.e. different alleles of these SNPs significantly affected 
luciferase activity) in at least one tested cell lines (Addi-
tional file 1, Table S5). Of note, 11 SNPs exhibited regu-
latory effects in all three cell lines (Figs.  3, 4, 5, and 6), 
and 3 SNPs showed regulatory effects in both SH-SY5Y 
and U251 cells (Additional file 1, Figure S1). These results 
validated the regulatory effects of these identified func-
tional SNPs.

Disruption of PBX3 binding by rs10896081
To further investigate the regulatory mechanisms of 
the functional SNPs, we focused on SNP rs10896081 
(located at 11q13.2), which disrupted the binding of 
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the TF PBX3 (Fig.  4a). The ChIP-Seq data indicated 
that PBX3 can bind to the genomic region containing 
rs10896081 (Fig. 4b). The DNase-Seq data showed that 
rs10896081 is located in a genomic region with active 
transcription in brain tissues (or neuronal cell lines) 
(Fig.  4b). The histone modification data revealed that 
rs10896081 is located in a chromosomal region marked 
with H3K27ac (a marker for active enhancers [66, 
67]) (Fig.  4b). These data indicated that rs10896081 is 
located in an active regulatory element. To test whether 
rs10896081 has a functional consequence, we per-
formed reporter gene assays. We found that the T allele 
of rs10896081 produced significantly higher activity 
than the A allele in all three tested cell lines (Fig.  4c), 
supporting the regulatory effect of rs10896081. We 
then conducted eQTL analysis to identify genes whose 
expression levels in the human brain are associated 
with rs10896081. Four genes (PACS1, RP11-755F10.1, 

RAB1B, and YIF1A) showed the most significant associ-
ations with rs10896081 in the human brain (Additional 
file 2, Table S6), suggesting that these genes were poten-
tial target genes of rs10896081.

The finding that rs10896081 disrupts the binding of 
PBX3 implies that rs10896081 regulates its eQTL genes 
by affecting PBX3 binding. To further validate whether 
PACS1, RP11-755F10.1, RAB1B, and YIF1A are regu-
lated by PBX3, we repressed PBX3 expression in SH-
SY5Y cells. PBX3 knockdown resulted in significant 
dysregulation of PACS1 and YIF1A (Fig.  4d–f), indicat-
ing regulatory effects of PBX3 on these two genes. The 
expression of RP11-755F10.1 was not examined, as it is 
a pseudogene. In addition, RAB1B did not show a sig-
nificant expression change in cells with PBX3 repression. 
As rs10896081 is located in the first intron of the long-
est transcript of PACS1 (Fig. 4g), we further investigated 
the regulatory effect of the genomic region containing 

Fig. 2  Distribution of the TF binding–disrupting SNPs across the human genome. a The number of SNPs that affect the binding affinity of specific 
TFs. b Distribution of the TF binding–disrupting SNPs across the human genome. A large proportion of the functional SNPs disrupt the binding of 
CTCF, and over half of the functional SNPs are located in intronic regions
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Fig. 3  Validation of the regulatory effect of the TF binding–disrupting SNPs. a The luciferase expression of the constructs carrying the G allele 
of rs7570 was significantly higher than that of constructs carrying the C allele in all three tested cell lines. b The G allele of rs228769 showed 
significantly higher luciferase activity than the C allele in all three tested cell lines. c The constructs containing the C allele of rs10994322 produced 
significantly higher luciferase activity than the constructs containing the T allele in all three tested cell lines. d The constructs carrying the C allele 
of rs2251219 exhibited significantly higher luciferase activity than the constructs carrying the T allele in all three tested cell lines. Notably, this result 
was inconsistent with the previously published study by Yang et al. [61], likely because of the different lengths (in this study, 513 bp; in Yang et al. 
study, 435 bp) and directions (in this study, 5′ to 3′; in yang et al. study, 3′ to 5′) of the DNA fragments containing rs2251219 in the pGL3-Promoter 
vector between the studies. e The reporter vectors containing the C allele of rs72694957 showed significantly higher luciferase activity than 
those containing the T allele in SH-SY5Y and U251 cells. f The reporter vectors containing the G allele of rs1814518 displayed significantly higher 
luciferase activity than those containing the C allele in SH-SY5Y and U251 cells. g The luciferase expression of the vectors containing the G allele of 
rs2071507 was significantly higher than that of the vectors containing the A allele in SH-SY5Y and U251 cells. h The constructs carrying the A allele 
of rs113779084 produced significantly higher luciferase activity than those carrying the G allele in SH-SY5Y and U251 cells. N = 8 per group for 
HEK293T cells, n = 8 for the control group, and n = 16 per experimental group for SH-SY5Y cells and U251 cells. Two-tailed Student’s t test. *P < 0.05, 
**P < 0.01, ***P < 0.001 
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Fig. 4  Verification of the regulatory roles of rs10896081. a Disruption of PBX3 binding by the SNP rs10896081. b ChIP-Seq tracks showing 
DNase-Seq signals (light blue), TF ChIP-Seq signals (green), and histone modifications (purple) near rs10896081. c Reporter gene assays showed 
that the T allele of rs10896081 produced significantly higher luciferase activity than the A allele in all three tested cell lines. d–f Knockdown of 
PBX3 increased the expression of PACS1 and decreased the expression of YIF1A, indicating that PACS1 and YIF1A are regulated by PBX3. g The 
SNP rs10896081 is located in the first intron of the longest transcript of PACS1. h–j Deletion of the genomic region containing rs10896081 led to 
dysregulation of PACS1 and YIF1A. h Electrophoretic analysis showed that the segment containing rs10896081 was deleted from the genome. The 
expected DNA length of rs10896081 in wild-type cells (WT) was 1042 bp, and that in edited cells (KO) was 646 bp. UTR, untranslated region. CDS, 
coding sequence. N = 8 per group for HEK293T cells, n = 8 for the control group, n = 16 per experimental group for SH-SY5Y and U251 cells, n = 3 
per group in (d–f) and (h–k). Two-tailed Student’s t test. *P < 0.05, **P < 0.01, ***P < 0.001 
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Fig. 5  Confirmation of the regulatory effect of rs3862386. a, b The SNP rs3862386 disrupts CTCF and REST binding. c The SNP rs3862386 is located 
in a genomic region with DNase-Seq, ChIP-Seq, and histone modification signals, indicating that it is located in a genomic region with active 
transcription in neuronal cells. d Reporter gene assays showed that the G allele of rs3862386 produced significantly higher luciferase activity than 
the C allele in all three tested cell lines. e–g The expression of PACS1 and YIF1A was significantly altered by CTCF knockdown. h–j A 331-bp genomic 
sequence containing rs3862386 was deleted by CRISPR/Cas9-mediated genome editing. Deletion of rs3862386 resulted in altered expression 
of PACS1 and YIF1A. h Genomic PCR/electrophoresis results showed deletion of the genomic region containing rs3862386. WT, genomic DNA 
containing rs3862386 in wild-type cells (882 bp). KO, genomic DNA containing rs3862386 in edited cells (311 bp). N = 8 per group for HEK293T 
cells, n = 8 for the control group, n = 16 per experimental group for SH-SY5Y and U251 cells, n = 3 per group in (e–h) and (j–l). Two-tailed Student’s 
t test. *P < 0.05, **P < 0.01, ***P < 0.001 
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rs10896081 on PACS1 and YIF1A using CRISPR/Cas9. 
Deletion of the genomic sequence (666 bp) contain-
ing rs10896081 (Fig. 4h; Additional file 1, Figure S2) led 
to significant decreases in the expression of PACS1 and 
YIF1A (Fig. 4i, j). Taken together, these results suggested 
that rs10896081 regulates the expression of PACS1 and 
YIF1A by interacting with PBX3.

Regulatory mechanisms of rs3862386
We also investigated the regulatory mechanism of 
rs3862386, a SNP that affects the binding of CTCF and 
REST (Fig. 5a, b). SNP rs3862386 is located in a genomic 
region with strong ChIP-Seq, DNase-Seq, and histone 
modification signals (Fig.  5c), indicating that rs3862386 
lies in a regulatory element to which the TFs CTCF 
and REST bind. Reporter gene assays showed that the 
G allele (protective allele) of rs3862386 was associated 
with higher luciferase activity than the C allele in all 
three tested cell lines, confirming the regulatory effect 
of rs3862386. Interestingly, rs3862386 is in strong LD (r2 
= 0.97) with rs10896081 (a SNP that disrupts the bind-
ing of PBX3). To explore the potential target genes reg-
ulated by rs3862386, we conducted eQTL analysis and 
found that rs3862386 was associated with the expres-
sion of PACS1, RP11-755F10.1, RAB1B, and YIF1A in 
the human brain (Additional file  2, Table  S6). We thus 
further investigated whether rs3862386 and its binding 
TFs (CTCF and REST) regulate the expression of the 
four eQTL genes of rs3862386. Knockdown of CTCF 
in SH-SY5Y cells resulted in significant upregulation of 
PACS1 and downregulation of YIF1A (Fig.  5e–g), sug-
gesting that the expression of these genes is regulated 
by CTCF. However, no alteration in RAB1B expression 
was detected. The expression of RP11-755F10.1 was not 
determined because it is a proposed pseudogene. We 
then further analysed whether rs3862386 regulates the 
expression of PACS1 and YIF1A. Deletion of the genomic 
sequence (331 bp) containing rs3862386 (Fig.  5h; Addi-
tional file  1, Figure S3) led to dysregulation of PACS1 
and YIF1A (Fig. 5i, j), indicating the regulatory effect of 
rs3862386 on PACS1 and YIF1A. These data suggested 
that rs3862386 may confer risk for BD by modulating 
PACS1 and YIF1A expression.

Disruption of CTCF and TAF1 binding by rs2027349
We characterized rs2027349, a SNP that affects the bind-
ing of the TFs CTCF and TAF1 (Fig.  6a, b). The ChIP-
Seq data revealed that the TFs CTCF and TAF1 can bind 
to the genomic sequence containing rs2027349 in cell 
lines from the human brain, and the DNase-Seq and his-
tone modification data showed that rs2027349 is located 
in an actively transcribed region (Fig. 6c). Reporter gene 
assays further validated the regulatory role of rs2027349. 
The G allele of rs2027349 produced significantly higher 
luciferase activity than the A allele in all three tested 
cell lines (Fig. 6d), indicating the regulatory function of 
rs2027349. eQTL analysis showed that rs2027349 was 
associated with ANP32E, TARS2, RPRD2, and VPS45 
expression in the human brain (uncorrected P < 0.01 in 
at least one eQTL dataset) (Additional file 2, Table S6), 
suggesting that rs2027349 regulates these genes.

To further explore whether rs2027349 regulates its 
eQTL genes via interactions with CTCF and TAF1, we 
knocked down CTCF and TAF1. CTCF knockdown 
resulted in significant alterations in ANP32E, TARS2, and 
RPRD2 expression, but VPS45 expression did not change 
in cells with CTCF repression (data not shown). In addi-
tion, TAF1 knockdown led to dysregulation of TARS2 
and VPS45 (Fig. 6e–k), indicating the regulatory effect of 
CTCF and TAF1 on these genes. ANP32E and RPRD2 did 
not show expression changes in TAF1 knockdown cells 
(data not shown). Finally, rs2027349 deletion (507 bp) led 
to dysregulation of ANP32E, TARS2, and VPS45 (Fig. 6l–
o; Additional file 1, Figure S4), supporting the hypothesis 
that rs2027349 regulates its eQTL genes by interacting 
with the TFs CTCF and TAF1.

eQTL analysis identified the potential target genes 
regulated by the identified TF binding–disrupting SNPs
To further identify the potential target genes regu-
lated by the identified functional SNPs, we used five 
human brain eQTL datasets. Among the 16 TF bind-
ing–disrupting SNPs, 14 were associated with gene 
expression (uncorrected P < 0.01) in at least one brain 
eQTL dataset (Additional file 2, Table S6), 12 were sig-
nificantly correlated with gene expression in at least 

(See figure on next page.)
Fig. 6  Validation of the regulatory effect of rs2027349 by reporter gene assays, TF knockdown and CRISPR/Cas9-mediated genome editing. a, b 
The SNP rs2027349 disrupts CTCF and TAF1 binding. c The 1 kb sequence near the SNP rs2027349 is marked with a strong DNase-Seq (light blue), 
TF ChIP-Seq (green), and histone modification (purple) signals. d Reporter gene assays showed that the G allele of rs2027349 produced significantly 
higher luciferase activity than the A allele in all three tested cell lines. e–k CTCF knockdown led to downregulation of ANP32E, TARS2, and RPRD2. 
However, knockdown of TAF1 resulted in downregulation of TARS2 and upregulation of VPS45. l–o A genomic sequence containing rs2027349 was 
deleted by CRISPR/Cas9-mediated genome editing, which resulted in downregulation of ANP32E, TARS2, and VPS45 expression. l Electrophoresis 
showed that the genomic region containing rs2027349 was deleted by the sgRNAs. WT, genomic DNA containing rs2027349 (996 bp) in wild-type 
cells. KO, genomic DNA containing rs2027349 (473 bp) in edited cells. N = 8 per group for HEK293T cells, n = 8 for the control group, n = 16 per 
experimental group for SH-SY5Y and U251 cells, n = 3 for each group in (e–k) and (l–o). Two-tailed Student’s t test. *P < 0.05, **P < 0.01, ***P < 0.001 
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Fig. 6  (See legend on previous page.)
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two brain eQTL datasets (Additional file  2, Table  S7), 
9 exhibited significant associations with gene expres-
sion in at least three brain eQTL datasets (Additional 
file 2, Table S8), and 6 were significantly associated with 
gene expression in at least four brain eQTL datasets 
(Table  1). Notably, 3 SNPs showed significant associa-
tions with gene expression in all five brain eQTL data-
sets (Table 1), suggesting that these SNPs may regulate 
the expression of their target genes. Considering these 
results collectively, we prioritized the potential target 
genes regulated by the identified functional SNPs.

ASE analysis supported the regulatory effects 
of the identified functional SNPs
To further explore the regulatory effects of the TF 
binding–disrupting SNPs, we used ASE data from the 
GTEx project (including only brain tissues). The results 
showed that 4 of the 16 TF binding–disrupting SNPs 

exhibited ASE in the human brain. The binomial test 
indicated that 4 out of the 16 SNPs showed ASE was 
statistically significant compared with the proportion 
of SNPs showing ASE in the GTEx project (P = 3.67 × 
10−5, Additional file 2, Table S9), indicating that the TF 
binding–disrupting SNPs are more likely to show ASE. 
The four ASE SNPs are rs2027349 (Fig.  6), rs2251219 
(Fig.  3d), rs1814518 (Fig.  3f ), and rs2270448 (Addi-
tional file  1, Figure S1a). These ASE results provided 
further support for the functionality of the TF binding–
disrupting SNPs.

Differential expression analysis of genes (eQTL genes) 
whose expression was associated with the identified 
functional SNPs
To further verify whether the identified functional SNPs 
may confer risk for BD by regulating the expression of 
their target genes, we examined the expression levels of 

Table 2  Differentially expression analysis of genes (eQTL genes) associated with the identified functional SNPs

Ensembl_gene_id Gene_name P.value FDR Log2FC

ENSG00000010322 NISCH 0.000652673 0.025719695 0.053824812

ENSG00000087365 SF3B2 0.025271057 0.191498291 0.034375659

ENSG00000092529 CAPN3 0.025012225 0.190376571 -0.125577335

ENSG00000099785 MARCHF2 0.045287401 0.257423271 0.038582022

ENSG00000105708 ZNF14 0.000256993 0.015221847 0.069962199

ENSG00000117791 MTARC2 0.001085525 0.033910493 0.075874475

ENSG00000160161 CILP2 0.000082 0.007972009 0.220446629

ENSG00000163938 GNL3 0.02844909 0.203075523 0.033097846

ENSG00000166136 NDUFB8 0.047600309 0.263534942 0.037699559

ENSG00000167491 GATAD2A 0.028028595 0.201830947 0.041306987

ENSG00000173599 PC 0.020481736 0.171492954 0.044787537

ENSG00000174791 RIN1 0.006004402 0.086305322 0.067733795

ENSG00000175115 PACS1 0.004206371 0.071508307 0.044807186

ENSG00000180071 ANKRD18A 0.01185869 0.127555154 0.131432268

ENSG00000180979 LRRC57 0.048150452 0.264937063 0.035979853

ENSG00000181638 ZFP41 0.023891485 0.18596537 -0.045816011

ENSG00000187664 HAPLN4 0.035640292 0.227131948 0.098804717

ENSG00000189157 FAM47E 0.012030774 0.128710189 0.062403408

ENSG00000198106 SNX29P2 0.001497159 0.040607774 0.105070975

ENSG00000213533 TMEM110 0.00058669 0.024231067 -0.067704389

ENSG00000215256 DHRS4-AS1 0.014319833 0.141778997 0.095963915

ENSG00000240747 KRBOX1 0.000122545 0.009994372 0.234360192

ENSG00000251867 Y_RNA 0.041863676 0.246888247 0.069471479

ENSG00000254510 RP11-867G23.10 0.000869737 0.029881244 -0.291953622

ENSG00000272414 FAM47E 0.005317918 0.08078778 0.102011622

ENSG00000272573 MUSTN1 0.025553164 0.192617262 -0.266328945

ENSG00000273045 C2ORF15 0.022486423 0.179919816 0.067969908

ENSG00000273170 ANKRD18A 0.017391347 0.156333195 0.161747281

ENSG00000273173 SNURF 0.00818448 0.10344798 0.060262523

ENSG00000273291 KRBOX1 0.01933284 0.165860839 0.157290642
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target genes (genes whose expression levels were associ-
ated with the functional SNPs) in the brains of BD cases 
and controls using the transcriptome data from Psy-
chENCODE [68]. Expression analysis showed that 30 tar-
get genes were differentially expressed (uncorrected P < 
0.05) in the brains of BD cases compared with controls 
(Table  2). Of note, the expression of 8 genes (NISCH, 
ZNF14, MTARC2, CILP2, SNX29P2, TMEM110, 
KRBOX1, and RP11-867G23.10) was significantly dysreg-
ulated in BD cases compared with controls (FDR < 0.05) 
(Table 2). These results provided further evidence to sup-
port the hypothesis that the identified functional SNPs 
may contribute to the risk of BD by regulating their target 
genes.

PACS1 overexpression affected dendritic spine density
To further investigate the potential role of the target 
genes (those regulated by the identified functional SNPs) 
in BD, we selected PACS1 for further functional char-
acterization. The expression of PACS1 was regulated by 
the TF binding–disrupting SNPs rs10896081 (Fig. 4) and 
rs3862386 (Fig.  5). In addition, eQTL analysis indicated 
that PACS1 expression was associated with rs10896081 
and rs3862386 (Additional file  2, Table  S6), suggesting 
that these two functional SNPs may confer risk for BD by 
regulating PACS1 expression. Notably, expression analy-
sis showed a trend of significant upregulation of PACS1 
in BD cases compared with controls [68] (P = 4.21 × 

10−3, FDR = 0.072) (Table 2). These convergent and con-
sistent lines of evidence suggest that the functional SNPs 
rs10896081 and rs3862386 might confer BD risk by regu-
lating PACS1 expression.

Accumulating data suggest that dysfunction of den-
dritic spines (e.g. altered density) may have a pivotal 
role in BD [17, 69–72]. We thus mimicked the effect of 
PACS1 upregulation on dendritic spine density. To gain 
insights into the function of PACS1 in in vitro-cultured 
primary mouse neurons, we cotransfected the plasmid 
encoding PACS1 (or the control vector) with the Venus 
plasmid into mouse cortical neurons (day in vitro (DIV) 
14). Notably, we observed a significantly decreased total 
spine density after overexpression of PACS1 (control, 
5.568 ± 0.691 spines per 10 μm; PACS1 overexpres-
sion, 5.034 ± 0.691 spines per 10 μm; Fig. 7). We further 
assessed the effects of PACS1 overexpression on den-
dritic spines. Neurons transfected with PACS1 showed a 
selective decrease in the density of immature thin spines 
with elongated necks and small heads (control, 3.135 ± 
0.536 spines per 10 μm; PACS1 overexpression, 2.610 ± 
0.599 spines per 10 μm; Fig. 7). However, the densities of 
mushroom and stubby spines were not changed. These 
results indicate the important role of PACS1 in mediat-
ing the morphogenesis of dendritic spines, suggesting 
that the identified functional variants rs10896081 and 
rs3862386 might confer BD risk by modulating PACS1 
expression.

Fig. 7  Overexpression of PACS1 resulted in an altered density of dendritic spines. Representative pictures of cortical neurons transfected with 
control (pCDH-GFP empty) and PACS1 overexpression vectors at DIV14. Only the GFP channel is shown to outline dendrite morphology (scale bar 
10 μm). Branches of dendrites were imaged in each corresponding neuron (scale bar 5 μm). A two-tailed t test was used to determine whether the 
difference in dendritic spine density was statistically significant. To quantify the density of each dendritic spine subtype, 2-way ANOVA with multiple 
comparison testing using the Bonferroni correction (P = 0.0047) was used. More than 40 dendrites from 20 neurons were analysed in each group 
(control or PACS1 overexpression). The error bars indicate the standard error of the mean (SEM) values. *P < 0.05, ***P < 0 .001. Stubby (P > 0.05), thin 
(P < 0.001), mushroom (P > 0.05)
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Discussion
Since the first report of a BD GWAS in 2007 [73], many 
BD risk loci have been identified through several larger 
GWASs in the past decade [13, 15, 74–79]. However, due 
to the complicated LD and the complexity of gene regula-
tion, identifying causal risk variants in the reported risk 
loci and elucidating the molecular mechanisms of these 
causal risk variants in the pathophysiology of BD remain 
major challenges in the post-GWAS era. In this study, we 
systematically characterized the regulatory mechanisms 
of BD risk variants using a functional genomic approach. 
We identified 16 SNPs (from a total of 2775 SNPs) 
that disrupted the binding of 7 TFs, and we validated 
the functional consequences of these identified SNPs 
through a series of assays, including reporter gene assays, 
ASE analysis, TF knockdown, and CRISPR/Cas9-medi-
ated genome editing. By combining these approaches 
with eQTL analysis, we further identified potential target 
genes regulated by these TF binding–disrupting SNPs. 
Of note, we showed dysregulation of some target genes 
(regulated by the identified functional SNPs) in BD cases 
compared with controls. Finally, we investigated the 
potential role of PACS1 (regulated by rs10896081 and 
rs3862386) in BD pathogenesis.

We noted that approximately 43% (7/16) of the TF 
binding–disrupting SNPs were located in the CTCF 
binding motif, implicating that altered CTCF binding 
may be a common mechanism of BD risk variants. Con-
sidering the important role of CTCF in regulating chro-
mosomal conformation [80], our data also suggest that a 
large proportion of BD risk variants may exert their bio-
logical effects by regulating the expression of distal genes. 
In addition, approximately 56% (9/16) of the TF bind-
ing–disrupting SNPs were located in intronic regions, 
demonstrating the important roles of genetic variants in 
intronic regions in the regulation of BD risk genes.

The ASE results (Additional file  2, Table  S9) provide 
further evidence indicating that our TF binding–dis-
rupting SNPs are regulatory variants. For example, we 
showed that rs2027349 (Fig. 6) is a regulatory SNP that 
affects the binding affinity of CTCF and TAF1. ASE 
analysis also indicated that rs2027349 showed significant 
ASE in the human brain (data from GTEx V8, Additional 
file 2, Table S9), further supporting the regulatory role of 
rs2027349 in neuronal tissues.

We showed that PACS1 may have a role in BD patho-
genesis. Previous studies have shown that dysfunction 
of dendritic spines might have a role in BD [69]. PACS1 
(phosphofurin acidic cluster sorting protein 1) encodes 
a trafficking protein that plays a role in the localization 
of trans-Golgi network (TGN) membrane proteins [81]. 
PACS1 has been reported to be associated with many dis-
eases, including acquired immune deficiency syndrome 

(AIDS) [82] and Alzheimer’s disease [83]. It can induce 
internalization of MHC-I by interacting with the HIV-1 
protein Nef, resulting in reduced immune recognition of 
infected cells [82]. PACS1 is also involved in the transport 
of amyloid precursor protein and enhances the formation 
of brain plaques in Alzheimer’s disease [83]. Mutations in 
PACS1 cause a defect in cranial neural crest migration, 
which leads to intellectual disability [84]. In addition, 
PACS1 may play a role in cervical cancer [85]. Although 
PACS1 plays an important role in protein transport and is 
associated with a variety of diseases, the role of this gene 
in BD is still largely unknown. In this study, we showed 
that PACS1 overexpression in mouse primary cortical 
neurons resulted in an altered density of thin dendritic 
spines, indicating that PACS1 may confer risk for BD by 
affecting the function of dendritic spines.

We noted that some loci contained several TF bind-
ing–disrupting SNPs. In our opinion, such TF binding–
disrupting SNPs are meaningful for disease susceptibility. 
First, in our study, we showed that four functional SNPs 
(rs3862386 (r2 = 0.99), rs10896081 (r2 = 0.99), rs2270448 
(r2 = 0.81), and rs6591201 (r2 = 0.73)) are in LD with the 
index SNP rs10896090. As shown in Figs.  4 and 5, the 
results of reporter assays, TF knockdown, and CRISPR/
Cas9-mediated genome editing suggested that rs3862386 
and rs10896081 might confer risk for BD by modulating 
PACS1 and YIF1A expression. In addition, we found that 
different alleles of rs2270448 and rs6591201 resulted in 
significant differences in luciferase activity in SH-SY5Y 
and U251 cells (Additional file  1, Figure S1), suggesting 
that rs3862386 and rs10896081 are functional variants. 
In fact, many studies have reported that several func-
tional SNPs in a single risk locus might act synergistically 
or independently to contribute to disease susceptibility. 
For example, French et  al. showed that two functional 
SNPs (rs78540526 and rs554219) located in enhancer ele-
ments conferred risk for breast cancer through regulating 
the CCND1 gene [86]. Chatterjee et al. showed that sev-
eral regulatory variants in enhancer elements conferred 
risk for Hirschsprung disease by affecting RET expres-
sion [87]. Shidal et  al. [88] showed that the functional 
variants rs35418111 and rs2078203 (in LD with the index 
variant in the 21q22.3 risk locus) might be involved in the 
occurrence of breast cancer by regulating the expression 
of YBEY. In addition to these reports, other studies also 
have revealed that several functional variants in a specific 
risk locus contributed to disease susceptibility by modu-
lating the same risk gene [89, 90]. These results suggest 
that some loci harbour several functional SNPs to regu-
late the expression of effector risk genes.

There are a few limitations of this study that should be 
noted. First, only a limited number of TFs (i.e. 30) were 
included in this study. Considering that the number of 
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TFs in the human genome is approximately 1600 [91], we 
could not identify the risk SNPs that disrupt the binding 
of other TFs not included in this study. Second, we only 
analysed single-nucleotide polymorphisms. However, 
other types of genetic variations (such as copy number 
variations (CNVs), chromosomal structural variants, rare 
mutations, and de novo mutations) may also have a piv-
otal role in BD. These types of genetic variations were 
not included in our study, and further work is needed to 
explain the importance of other types of genetic varia-
tions in BD. Third, during execution of this study, a larger 
GWAS on BD was published [16]. The new risk loci 
identified in this study were not included in our study. 
Fourth, overexpression of PACS1 in cultured mouse pri-
mary cortical neurons resulted in a significant decrease 
in the density of thin dendritic spines, revealing the plau-
sible biological mechanisms of PACS1 in BD. However, 
further in vivo analyses (e.g. studies in transgenic mice) 
are needed to demonstrate the molecular mechanism 
of PACS1 in the pathogenesis of BD. Fifth, our findings 
do not guarantee that the functional SNPs identified in 
this study are the most relevant SNPs for understanding 
susceptibility to bipolar disorder. This is a critical limi-
tation of our study. However, considering that pinpoint-
ing functional (or causal) variants in the reported risk 
loci and elucidating their regulatory mechanisms remain 
challenging in the post-GWAS era, our findings may 
provide some new insights into the genetic mechanisms 
of bipolar disorder. Sixth, we characterized only three 
SNPs (rs10896081, rs3862386, and rs2027349) (Figs.  4, 
5, and 6) in detail in our study. The major reasons that 
we characterized these three SNPs are as follows: (i) The 
ChIP-Seq data clearly showed that the corresponding 
TFs bound to genomic sequences containing these three 
SNPs in human brain tissues or neuronal cells; (ii) these 
three SNPs were characterized by strong DNase-Seq and 
histone modification signals; and (iii) the reporter gene 
assays of these three SNPs showed significant differences 
between different alleles, with the same effect direction. 
Characterization of more TF binding–disrupting SNPs 
will provide more insights into the genetic regulatory 
mechanisms of BD. Finally, our results suggested that 
two regulatory SNPs (rs10896081 and rs3862386) might 
act independently to regulate the potential target gene 
PACS1. However, more work is needed to demonstrate 
whether these two SNPs act independently or synergisti-
cally to regulate PACS1.

Conclusions
In summary, we identified 16 functional SNPs in 9 
reported BD risk loci and demonstrated the functional 
consequences of these SNPs. Our results revealed the 

complex gene regulatory mechanisms of BD risk vari-
ants and provided potential targets for clinical drug 
development.
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