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Abstract
Purpose The registration of medical images often suffers from missing correspondences due to inter-patient variations,
pathologies and their progression leading to implausible deformations that cause misregistrations and might eliminate valu-
able information. Detecting non-corresponding regions simultaneously with the registration process helps generating better
deformations and has been investigated thoroughly with classical iterative frameworks but rarely with deep learning-based
methods.
Methods We present the joint non-correspondence segmentation and image registration network (NCR-Net), a convolu-
tional neural network (CNN) trained on a Mumford–Shah-like functional, transferring the classical approach to the field of
deep learning. NCR-Net consists of one encoding and two decoding parts allowing the network to simultaneously generate
diffeomorphic deformations and segment non-correspondences. The loss function is composed of a masked image distance
measure and regularization of deformation field and segmentation output. Additionally, anatomical labels are used for weak
supervision of the registration task. No manual segmentations of non-correspondences are required.
Results The proposed network is evaluated on the publicly available LPBA40 dataset with artificially added stroke lesions and
a longitudinal optical coherence tomography (OCT) dataset of patients with age-related macular degeneration. The LPBA40
data are used to quantitatively assess the segmentation performance of the network, and it is shown qualitatively that NCR-
Net can be used for the unsupervised segmentation of pathologies in OCT images. Furthermore, NCR-Net is compared to a
registration-onlynetwork and state-of-the-art registration algorithms showing thatNCR-Net achieves competitive performance
and superior robustness to non-correspondences.
Conclusion NCR-Net, a CNN for simultaneous image registration and unsupervised non-correspondence segmentation, is
presented. Experimental results show the network’s ability to segment non-correspondence regions in an unsupervisedmanner
and its robust registration performance even in the presence of large pathologies.
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Introduction

Image registration describes the process of finding an opti-
mal deformation that transforms one image such that it is
similar to another image and corresponding image structures
align spatially. Typically this is done by minimizing a loss
functional composed of an image distancemeasure and a reg-
ularizer that smooths the deformation field. Suchmethods are
based on the assumption that for every pixel in the moving
image there exists a corresponding pixel in the fixed image.
Inmedical images, this assumption often does not hold due to
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pathologies either changing over timeor being present in only
one of the images. Registering pathology images directly can
lead to huge registration errors since intensity differences are
erroneously accounted for by image deformations.

Several approaches exist to handle non-corresponding
regions in image registration. One solution is cost func-
tion masking or weighting. The easiest approach is to first
segment non-corresponding regions and then use the seg-
mentation to mask the image distance measure during regis-
tration [1,2], but this requires that non-corresponding regions
are known before registration. Especially when registering
images containing evolving pathologies, the generation of a
ground truth of non-correspondences is often not feasible.

Works detecting non-correspondences during the opti-
mization process, e.g. [3–8], overcome this limitation. Chen
et al. detect non-corresponding regions based on outlier
detection in the distance measure combined with regulariza-
tion [3]. Ou et al. introduce the mutual-saliency weighting
which is based on an automatic estimation of the match-
ing uniqueness between voxel pairs after deformation [4].
Krüger et al. estimate correspondence probabilities between
sparse image representations to weight the image distance
during registration. The correspondence probabilities are fur-
ther used to segment pathologies in medical images [5,6].
Metamorphoses models such as [9–12] model both spatial
deformations and appearance changes to match moving and
fixed image. These have extensively been used to model
evolving processes.

Further approaches that handle the registration of patho-
logical to healthy images try to transform pathological
images such that they appear healthy or to introduce patholo-
gies in healthy images [13–15]. In [13], a tumor growth
model is implemented that introduces artificial tumors in
brain atlases which are then registered to the respective
MRIs, whereas [14,15] estimate healthy versions of images
containing pathologies using low-rank plus sparse image
decomposition.

Common to all these works is that the optimal deforma-
tion is found using iterative optimization schemes. Thus,
they are time-consuming. Recent image registration algo-
rithms are often based on convolutional neural networks
(CNNs) achieving state-of-the-art performance while greatly
reducing computation time in comparison with classical
image registration algorithms, e.g. [16–23]. The networks are
either trained supervised using given deformations as ground
truth [16–18] or unsupervised based on image distance mea-
sures and regularization as in classical image registration
algorithms [19–21]. Weak supervision based on manual seg-
mentationsmay be introduced by additional loss terms giving
feedback on the overlap of corresponding structures [22,23].
For an overview of existing deep learning-based image reg-
istration methods, refer to [24–26].

The literature on joint image registration and (unsuper-
vised) non-correspondence estimation with deep learning
methods, however, is still scarce. Unsupervised methods to
estimate registration uncertainty can for example be found
in [27,28]. These are based on Monte Carlo dropout and
thus require several runs during inference. Zhou et al. [29]
present a CNN to establish visual correspondence across dif-
ferent object instances. The network outputs a flowfield from
source to target image and a probability map indicating pixel
correspondences. Network training, however, relies on syn-
thetic ground truth.

Sedghi et al. [30] propose a classifier network that
patch-wise predicts class probabilities for either registered,
unrelated or 18 different transformations. The deformation
for unrelated patches is set to zero, regularizing the deforma-
tion in non-correspondent regions. This configuration allows
to directly estimate non-correspondences, but the method
relies on an iterative scheme and is not applicable on voxel
level.

In this paper, we train a CNN to densely register medi-
cal images in one-shot and simultaneously segment regions
of non-correspondence. Using a Mumford–Shah-like func-
tional as loss function, we train the joint non-correspondence
segmentation and registration network (NCR-Net) to per-
form intra-patient registration of retinal optical coherence
tomography (OCT) image slices (B-scans) and inter-patient
registration of magnetic resonance images (MRIs) with
phantom lesions. The loss function is based on a masked
image distance measure combined with several regular-
ization terms, smoothing the deformation field and favor-
ing small and smooth segmentations of non-corresponding
image regions. To the best of our knowledge, this is the first
work adapting the variational joint registration and segmenta-
tion approach [3] for CNN training. We extend the approach
introducing a two-step training procedure that allows to better
disentangle spatial deformations and cost function mask-
ing. Our NCR-Net achieves a performance competitive to
state-of-the-art registration methods while having the great
advantage of generating non-correspondencemaps that allow
for unsupervised segmentation of pathologies, inter- and
intra-patient variations and areas of disease progression. The
main contributions of this work are:

– A new network architecture for joint image registration
and unsupervised non-correspondence segmentation

– Introduction of a two-step training scheme to train the
proposed CNN

– Proof that NCR-Net may be used for unsupervised lesion
segmentation and that it can competewith state-of-the-art
registration frameworks
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Fig. 1 Architecture of NCR-Net. Input to the network are two affinely
pre-aligned pathology images. Output of the registration branch are
three diffeomorphic deformations φ1, φ2 and φ3 that transform the
moving image to the fixed image at different resolution levels. The

segmentation branch outputs the segmentations S1, S2 and S3 of non-
corresponding regions for the three resolution levels. Numbers above
or below the blue boxes indicate the number of feature maps, and BN
stands for batch normalization

Materials andmethods

Network architecture

The proposed network consists of an encoder and two
decoders whose architecture is inspired by the U-Net [31].
Together, they form a y-shaped network architecture with
both decoders being connected to the encoding branch via
skip connections as shown in Fig. 1. The numbers of filters
used in the network were determined empirically by vary-
ing the number of output features in the first convolutional
block between four and 16 and setting the number of filters
in the following blocks dependent on this number. Input to
the network are the moving imageM : Ω −→ R and the fixed
image F : Ω −→ R. The first decoder represents the regis-
tration branch that outputs three diffeomorphic deformation
fields φ1, φ2 and φ3 warping the moving image to match
the fixed image at three levels of resolution [18,23]. The
registration branch first generates vector fields vi which are
interpreted as stationary velocities and then applies an expo-
nentiation layer to generate diffeomorphic transformations
φi as described in [32]. We use the implementation provided

in [33]. The second decoder outputs segmentations S1, S2
and S3 of non-corresponding regions for the three resolution
levels.

Loss functions and training procedure

For the registration of pathological images, we seek a defor-
mation φ : R −→ R

d that transforms the moving image
such that M(φ(x)) is similar to F(x) for every pixel posi-
tion x in Ω \ S with S being the non-corresponding region.
A Mumford–Shah-like functional

LMS(θ;M,F) =
∑

x∈Ω

(
1 − S

) · D[
F, φ ◦ M

]

+ Rφ + RN + λDice
[
SF, φ ◦ SM

]

Rφ = α ‖∇v‖22
RN = β S + γ tanh

(‖∇S‖2
)

(1)

is used as loss function for the training of NCR-Net to opti-
mize the network parameters θ . The image distance measure
D is masked with the segmentation output S of the network

123



702 International Journal of Computer Assisted Radiology and Surgery (2022) 17:699–710

to assure that it is evaluated on corresponding image regions
only. The second term Rφ regularizes the deformation field
φ = exp(v) by enforcing smoothness of the stationary veloc-
ity field v. The loss components of RN approximate the
volume and the perimeter of the segmentation S thus favor-
ing small segmentations with smooth boundaries. This part
of the loss function is similar to the functional used in [3] for
a classical image registration approach. The flexibility of the
CNN-based approach now allows any further loss compo-
nents to be added. To stabilize training and introduce weak
supervision to the registration task, we add an additional term
to the loss function that is based on the overlap of given
segmentations of the moving and the fixed image. These seg-
mentations do not delineate pathologies but large anatomical
regions in the images (e.g., the brain in MR images of the
head or the retina in OCT images) and shall be defined by SF
and SM for fixed and moving image, respectively.

The highly entangled character of the loss function might
cause network training to converge to local minima, where
spatial misalignments are masked out instead of being com-
pensated for by the registration branch of the network
or where non-correspondences lead to registration errors
instead of being masked out. We therefore propose to use
a two-step training scheme that first pre-trains encoder and
registration branch using

LReg(θ;M,F) =
∑

x∈Ω

D[
F, φ◦M]+Rφ+λDice

[
SF, φ◦SM

]

(2)

as loss function and only then use LMS to train the entire
network. The loss functions (1) and (2) are evaluated on all
three resolution levels, and aweighted sum of the three losses
is calculated to give the final loss. LetLi (θ;M,F) be the loss
function (1) or (2) evaluated on the i-th resolution level, then

L(θ;M,F) = ω1 L1 + ω2 L2 + ω3 L3, (3)

withω1>ω2>ω3 andω1+ω2+ω3 = 1, defines the final loss
function giving higher weight to finer resolution levels [23].

For OCT registration, we use the same parameters as done
in [23], namely ω1 = 0.5, ω2 = 0.3 and ω3 = 0.2. For MRI
registration, we found ω1 = 0.7, ω2 = 0.2 and ω3 = 0.1 to
give better results. The proposed network is implemented
in the PyTorch framework and trained for 500 epochs with
an initial learning rate of 1e−4 and Adam optimization. For
the first 250 epochs, LReg is used as loss function and for
the last 250 epochs the network is trained with LMS. The
weighting parametersα,β, γ andλ are found empirically and
set to 0.8, 2.4e−7, 1.2e−7 and 0.4 for the OCT experiments,
respectively. For the MRI experiments, parameters are set
to 2, 1.3e−6, 5.1e−7 and 1 if not stated otherwise. For each
experiment, we perform fivefold cross-validation.

Experiments

In the following, NCR-Net is used to perform two different
registration and non-correspondence segmentation tasks:

1. Intra-patient registration of OCT images of patients
suffering from neovascular age-related macular degen-
eration (AMD)

2. Inter-patient registration of MRIs with phantom lesions
added to the fixed image.

Since the given OCT volumes have a large inter B-scan dis-
tance, a 3D registration does not seem plausible here and
we apply NCR-Net to 2D B-scans separately. Unfortunately,
there are no ground truth segmentations of retinal fluids or
non-correspondent regions given for the OCT dataset which
makes quantitative evaluation of the non-correspondence
segmentations impossible. We therefore quantitatively vali-
date the 2D approach based on the second task that naturally
delivers ground truth lesion segmentations since lesions are
introduced artificially. We perform the following experi-
ments:

– Ablation Studies:

• Weakly supervised vs. fully unsupervised registration
(OCT)

• Performancewith vs.without non-correspondence detec-
tion (MR, OCT)

• Two-step training scheme vs. full loss function through-
out all epochs (OCT)

– Unsupervised and weakly supervised pathology segmen-
tation

• Weakly supervised segmentation of phantom stroke
lesions (MR)

• Unsupervised segmentation of retinal fluids (OCT)

– Comparison to state-of-the-art image registration algo-
rithms (MR).

Finally, we extend NCR-Net to 3D, compare its performance
to another deep learning-based registration approach and use
it for lesion segmentation on 3D MRIs.

Data

OCT images of AMD patients

The dataset used for OCT registration consists of 709 OCT
volumes from 41 AMD patients monitored for several years.
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Follow-up times range from32.5months to 82.8months. The
OCT images were taken with eye-tracking on a Heidelberg
Spectralis system and provided by the Department of Oph-
thalmology in Kiel. The images have a size of 496×512×
25 pixels with a field of view size of 2×6×6 mm3. For
each volume the inner limiting membrane (ILM), the retinal
pigment epithelium (RPE) and the Bruch’s membrane (BM)
were manually delineated by a medical expert. Out of these
709 OCT images 193 image pairs (9650 B-scans) from 40
patients are selected for which the acquisition times of first
and second image are no longer apart than five months. For
intra-patient OCT registration the baseline image is defined
as moving and the follow-up image as fixed image. Further-
more, we define SM and SF as the given retina segmentation
of baseline and follow-up images, respectively. The retina
is defined as the area between ILM and BM. A spatial
transformer network is trained to rigidly pre-align Gaussian-
smoothed OCTB-scans using the mean squared error (MSE)
as loss function. The pre-aligned images are cropped to the
central 384 A-scans to assure the given segmentations span
the whole image width. The cropped images serve as inputs
of NCR-Net. As distance measure for the loss function of
NCR-Net we again use MSE. Online data augmentation is
performed by randomly rotating between −7% and +7%,
vertically shifting the moving image (by at most one quarter
of the image height) and flipping both images horizontally.
The data are split on patient-level into training (32 patients)
and test (8 patients) data.

LPBA40 image slices with phantom lesions

TheLPBA40dataset consists of 40whole-headMRIvolumes
and manual segmentations of 56 anatomical regions [34,35].
Image size is 181×217×181 voxels with an isotropic spacing
of 1 mm. In previous work [5,6] we inserted four different
stroke lesions from the ISLES dataset [36] into the images
for evaluation purposes. The artificially inserted lesions (L1,
L2, L3, L4) differ in size and appearance with two of the four
lesions being huge and corrupting large areas of the images.
Each of the four lesions is introduced into each MRI sepa-
rately, leading to five versions of each image (original plus
four corrupted images containing lesion L1, L2, L3 and L4,
respectively). As the lesions are introduced into the images
artificially, ground truth segmentations of the pathologies are
available that we use to evaluate the segmentation perfor-
mance of NCR-Net.

Again, the data are split on patient level into training (32
patients) and test datasets (8 patients). The CNN is trained
performing pairwise registration of each lesion-free image to
all images available from the remaining 31 patients. Here, SM
andSF are defined as automatic brain segmentations resulting
from skull-stripping. Normalized cross correlation is used as
image distance measure for LPBA40 registration. We per-

form online data augmentation by randomly rotating one of
the images between −3◦ and +3◦ or both images between
−8◦ and +8◦ and shifting them by a maximum of 4 pixels in
each direction. Additionally, images are randomly flipped in
the horizontal axis andGaussian noise is added to the images.
For 3D registration we downsample the image volumes to a
resolution of 96×96×112 voxels and in 2D we register the
central transversal MR slices.

Ablation studies

In this section, we analyze different aspects of our proposed
NCR-Net. First, we train NCR-Net with and without the
described weak supervision of the registration task. That is,
we train the network using (1) as loss function once with and
once without the Dice loss component. Second, we analyze
the influence of the non-correspondence segmentation on the
registration performance of the network comparingNCR-Net
to a registration-only network calledRegNet. RegNet is iden-
tical to NCR-Net except that it has no segmentation branch.
To train RegNet we use (2) as loss function. Finally, we train
NCR-Net with the proposed two-step training scheme, ini-
tially only updating the registration part of the network and
later the entire network. In summary, this means that four
CNNs are trained:

1. RegNet: Pure registrationnetwork (nonon-correspondence
segmentation)

2. NCR-Netb: Baseline NCR-Net trained using (1)
3. NCR-Netu: Fully unsupervised NCR-Net trained using

(1) without Dice loss
4. NCR-Nets: NCR-Net trained with the proposed two-step

training scheme.

In Table 1, results of all four networks are reported for
OCT image registration. Mean Hausdorff and average sym-
metric surface distances of ILM, RPE and BM are given
before and after registration with different CNNs. Results
show that the registration performance is similar for NCR-
Netb and NCR-Netu despite the unsupervised training of
NCR-Netu. When using one-sided Wilcoxon signed rank
tests (significance level 0.05) to compare results of the two
network versions, only the performance difference for the
ILM results is significant. The proposed method may thus
also be used for datasets without any given annotations while
maintaining good registration performances.

Table 1 also shows that the two-step training procedure
significantly improves the registration performance for the
OCT data. As hypothesized in “Loss functions and training
procedure“ section, pre-training the network on the reg-
istration task can actually help to better disentangle the
registration and non-correspondence segmentation tasks. All
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Table 1 OCT registration results: average symmetric surface (ASSD) and Hausdorff distances (HD) of ILM, RPE and BM before and after
registration with RegNet, baseline NCR-Net (NCR-Netb), unsupervised NCR-Net (NCR-Netu) and two-step training NCR-Net (NCR-Nets)

ILM RPE BM

Method ASSD HD ASSD HD ASSD HD

w/o reg. 6.825 (±7.507) 15.152 (±14.008) 6.269 (±7.281) 13.936 (±12.179) 6.642 (±8.423) 12.220 (±12.424)

RegNet 0.852 (±1.787) 3.483 (±5.983) 1.861 (±1.819) 7.313 (±6.023) 2.796 (±4.168) 8.478 (±9.367)

NCR-Netb 1.072 (±2.952) 4.369 (±8.517) 2.198 (±3.252) 8.213 (±7.993) 3.104 (±5.115) 9.135 (±10.459)

NCR-Netu 1.086 (±2.998) 4.416 (±8.649) 2.192 (±3.272) 8.162 (±7.906) 3.095 (±5.128) 9.100 (±10.414)

NCR-Nets 0.927∗ (±2.174) 3.765∗ (±6.898) 2.100∗ (±2.741) 7.888∗ (±7.102) 3.021∗ (±4.759) 8.951 (±10.003)

Significantly best results are presented in bold font. The NCR-Net version, which significantly outperforms the other NCR-Net versions, is marked
with ∗. All tests are performed using one-sided Wilcoxon signed rank tests with significance level 0.05

upcoming experiments are therefore performed using the
two-step training procedure.

The registration-only network slightly but significantly
outperforms NCR-Net for the OCT data. Still, RegNet tends
to give implausible deformations in pathological image areas
as shown in Fig. 2. This behavior is even more apparent for
MRI registration as the phantom stroke lesions L1 and L4 are
very large. In Fig, 2 it can be seen how lesion L1 impairs reg-
istration performance of RegNet and how a healthy structure
that is only visible in one of the two MR images (red cir-
cles in Fig, 2) is eliminated by the registration-only network
that tries to compensate intensity differences with implausi-
ble deformations. NCR-Net manages to plausibly deform the
pathological area and to retain the healthy structure thanks to
the masking of the image distance measure. In Table 2 quan-
titative results comparing RegNet and NCR-Net for MRI
registration are given. Since voxel-level segmentations are
available for the MRIs we report mean Jaccard indices of the
19 labels that are present in all 2D slices used. Again it can
be seen howNCR-Net benefits from the non-correspondence
segmentation leading to significantly better performance for
lesions L1 and L4.

Unsupervised and weakly supervised pathology
segmentation

The non-correspondence maps resulting fromNCR-Net may
be used to segment pathologies in a weakly supervised
or even fully unsupervised manner. We will evaluate the
segmentation capacity of NCR-Net quantitatively based on
the LPBA40 dataset with phantom stroke lesions and show
exemplary qualitative results for unsupervised fluid segmen-
tation in OCT images.

Weakly supervised segmentation of stroke lesions in MR
images

As shown in Fig. 2, the segmentations given by NCR-
Net for inter-patient MRI registration do not only contain
pathologies but also normal inter-patient variations are seg-
mented. To quantitatively evaluate the network’s lesion
segmentation performancewe therefore postprocess the non-
correspondence maps given by NCR-Net performing region
growing based on the assumption that a correct seed point
inside the lesions may be defined. We determine such seed

(a) Moving & fixed image (b) RegNet results (c) NCR-Net results

Fig. 2 Results of RegNet and NCR-Nets for the registration of OCT
B-scans (upper row) and MRI slices (lower row). ILM, RPE and BM
are marked in the OCT images with red, blue and orange lines, respec-
tively. In (b) and (c) deformation fields, deformed moving images and,

if applicable, segmentations of non-correspondent image regions are
shown. The non-correspondence segmentation of NCR-Net allows for
more plausible deformations in pathological (yellow dashed ovals) and
non-correspondent (red circles) areas
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Table 2 MRI registration results: The mean Jaccard indices of 19 labeled anatomical regions are reported before and after registration of LPBA40
with four phantom stroke lesions (lesion types L1–L4)

Method No Lesion L1 L2 L3 L4

w/o reg. 0.480 (0.063) 0.480 (±0.063) 0.480 (±0.063) 0.480 (±0.063) 0.480 (±0.063)

RegNet 0.620 (0.0335) 0.509 (±0.032) 0.610 (±0.033) 0.620 (±0.033) 0.528 (±0.034)

NCR-Net 0.619 (0.034) 0.600 (±0.036) 0.619 (±0.034) 0.619 (±0.0340) 0.595 (±0.035)

Significantly best results are presented in bold font (one-sided Wilcoxon signed rank test with significance level 0.05)

Moving L1 Dice: 0.714 Dice: 0.885 L2 Dice: 0.187 Dice: 0.913

L3 Dice: 0.328 Dice: 0.786 L4 Dice: 0.714 Dice: 0.901

Fig. 3 Registration and segmentation results of NCR-Net for four
different lesions added to the LPBA40 dataset. The second and fifth
columns show the fixed image with the artificially inserted lesions. In
the third and sixth columns the difference image between fixed and
warped moving image is shown with the segmentation output of the

network overlaid in red and the ground truth lesion segmentation in
blue. The fourth and seventh columns show the warped moving image
together with the lesion segmentation after region growing in red and
the ground truth segmentation in blue

points by calculating the overlap between segmentation out-
put and ground truth and randomly selecting one voxel inside
the overlap region. The resulting lesion segmentations are
compared to the ground truth lesion masks by calculating the
mean Dice similarity coefficients (DSCs) between the seg-
mentations. We show exemplary results in Fig. 3 and report
the results averaged over all images in Table 3. For compari-
sonwe cite the results achieved byKrüger et al., who estimate
correspondence probability maps and use these maps to gen-
erate lesions segmentations. For this purpose they perform
thresholding and region growing with two different thresh-
olds and keep the best-performing method per image [6].

The results show that simple thresholding on the seg-
mentation output of NCR-Net leads to comparable or better
segmentation results than thresholding performed on corre-

spondence probabilitymaps.Using regiongrowingNCR-Net
again outperforms the competitive method for two out of
three lesions used in [6]. For lesion L4 NCR-Net also
achieves good results with a mean Dice score of 0.880.
All in all, NCR-Net achieves high overlap with the ground
truth lesion segmentations for all four lesion types showing
its potential for unsupervised (thresholding on segmentation
output) or weakly supervised (e.g., region growing with seed
inside lesion) lesion segmentation quantitatively.

Unsupervised fluid segmentation in OCT images

In Fig. 4, exemplary OCT image registration and non-
correspondence segmentation results of NCR-Net are shown
for two AMD patients. Since we are performing intra-

Table 3 Mean DSCs between
ground truth lesion
segmentations and
segmentations given by
NCR-Net binarized by simple
thresholding with threshold 0.5
(TH) and segmentations
resulting from performing
region growing on the network’s
output (RG)

Method L1 L2 L3 L4

ProbReg, TH 0.693 (± 0.174) 0.278 (± 0.174) 0.126 (± 0.092) –

NCR-Net, TH 0.742 (± 0.067) 0.225 (± 0.086) 0.362 (± 0.107) 0.737 (± 0.067)

ProbReg, RG 0.865 (± 0.111) 0.629 (± 0.172) 0.754 (± 0.156) –

NCR-Net, RG 0.871 (± 0.049) 0.870 (± 0.040) 0.630 (± 0.157) 0.880 (± 0.041)

For comparison the results by Krüger et al. [6] are shown who use thresholding and region growing on
correspondence probability maps to segment lesions. Best results presented in bold font
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Baseline
(moving, M)

Follow-Up
(fixed, F)

Warped
Baseline

Difference
Image

Non-corr.
Region

Fig. 4 Registration and non-correspondence segmentation results of NCR-Net for two AMD patients. Each row corresponds to one patient. The
last column shows the follow-up image with the segmentation of non-corresponding regions overlaid

patient registration over close timepoints structural differ-
ences between the two images are solely due to lesions either
progressing from baseline to follow-up or being present for
only one of the two time-points. As shown in the figure,
the network training based on outlier detection in the image
distance measure combined with regularization enables the
network to delineate areas of disease progression. Even
though our method is fully unsupervised NCR-Net pro-
duces sharp and very detailed pathology segmentations, a
huge advantage compared to other unsupervised segmenta-
tion approaches such as [37]. This shows great potential of
our network to be used for the monitoring of progressive dis-
eases such as AMD without the need for expensive manual
segmentations.

Comparison to state-of-the-art registration
algorithms

For comparison of our framework to state-of-the art registra-
tion algorithms we use the variational registration algorithm
(VarReg) by Ehrhardt et al. [38], the deformable registra-
tion via attribute matching and mutual-saliency weighting
(DRAMMS) byOu et al. [4,39] and the diffeomorphic exten-
sion of the deep learning-based approach VoxelMorph by
Balakrishnan et al. [20,40] as competitive algorithms. Both
VarReg and Dramms are among the best performing algo-
rithms on the LPBA40 dataset and open-source [38,39]. The
mutual-saliency weighting of DRAMMS serves to reduce
the impairment done by non-corresponding regions similar
to our masking of the distance measure. We use the default
parameters of the DRAMMS algorithm [6,39] and VarReg
is performed with curvature regularization and the normal-

ized cross correlation distance measure. The VoxelMorph
network is trained with the same learning rate schedule as
NCR-Net using (2) as loss function. The network architec-
ture is the same as in the original VoxelMorph papers [20,40].

The results for MRI registration with different methods
are shown in Fig. 5. As done in [6], we measure the registra-
tion performance by calculating the average Jaccard index
of anatomical labels once for all 19 given labels and once
for the labels inside and outside of the inserted lesions. The
results show that the proposed CNN can compete with Vox-
elMorph, DRAMMS and VarReg. Especially for very large
lesions (L1 and L4), NCR-Net manages to produce plausible
deformations while the performance of competitive meth-
ods drops substantially. For images containing no or small
lesions (L2 and L3) NCR-Net outperforms VoxelMorph and
DRAMMS while results for VarReg are slightly yet signifi-
cantly (one-sidedWilcoxon signed rank testwith significance
level 0.05) better than the results of NCR-Net. Still, VarReg
lacks the advantage of producing non-correspondence maps
and is less robust to non-correspondences since it is not tai-
lored to handle non-correspondent image regions. While the
performance of VarReg consequently drops for large lesions,
NCR-Net performs similar for all lesion types considered.
This shows that NCR-Net achieves good registration results
independently of wide varieties of lesions while being espe-
cially useful for the registration of images containing large
pathologies that lead to registration errors in image registra-
tion methods that do not account for non-correspondences
such as VoxelMorph or VarReg.
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(a) All 19 Labels

(b) Inside lesion (c) Outside lesion

w/o registration

VoxelMorph

DRAMMS

VarReg

NCR-Net

Fig. 5 Jaccard indices of 19 labeled anatomical regions before
(blue) and after 2D registration with VoxelMorph (purple), DRAMMS
(orange), VarReg (green) and NCR-Net (red). In a results for all 19

labels are reported, while in b only those labels are considered that
overlap with the lesion. In c Jaccard indices for labels outside of the
lesions are shown

3DMRI registration

In this experiment, we extend NCR-Net to 3D and perform
pairwise registration of the LPBA40 image volumes. As
before, pairwise registration is performed. The images with
pathologies serve as reference and the lesion-free images as
moving images. Since we expect fewer non-correspondences
when using the entire image volumes than in the 2D setting,
wheremisalignments between slices can occur, theweighting
parameters in the loss function are set to α = 4, β = 2e−2,
γ = 6e−3 and λ = 1. In the following, we (1) report reg-
istration performance over all 56 labels, (2) compare results
to 3D VoxelMorph and (3) report segmentation results for
unsupervised and weakly supervised lesion segmentation in
3D.

Table 4 summarizes the 3D registration results for NCR-
Net and VoxelMorph. Given are the mean Jaccard indices
and their standard deviation averaged over all 56 labels
before and after registration. As in the 2D setting, NCR-
Net outperforms VoxelMorph and it can again be observed
that the performance of NCR-Net is not much affected by
non-correspondences. The robustness of NCR-Net is further
confirmed by the values of the standard deviation showing
much less variation in the NCR-Net results compared to
VoxelMorph. In Fig. 6, an exemplary registration and seg-
mentation result is shown for the 3D NCR-Net. Note that the
3D version of NCR-Net segments less non-correspondent
regions as it profits from the entire image information (cf.
Fig. 3).

Using the non-correspondence output of NCR-Net to seg-
ment the phantom stroke lesions in 3D average DSCs of

Table 4 Registration results of NCR-Net for 3D MRI registration compared to VoxelMorph. The mean Jaccard indices of 56 labeled anatomical
regions are reported

Method No Lesion L1 L2 L3 L4

w/o reg. 0.373 (± 0.048) 0.373 (± 0.048) 0.373 (± 0.048) 0.373 (± 0.048) 0.373 (± 0.048)

VoxelMorph 3D 0.480 (± 0.056) 0.466 (± 0.052) 0.480 (± 0.056) 0.474 (± 0.053) 0.464 (± 0.052)

NCR-Net 3D 0.489∗ (± 0.033) 0.486∗ (± 0.032) 0.487∗ (± 0.033) 0.476 (± 0.031) 0.486∗ (± 0.032)

Best results are presented in bold font and ∗ mark significantly higher results according to a one-sided Wilcoxon signed rank test with significance
level 0.05
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Fig. 6 Exemplary 3D result of NCR-Net. Shown are themoving image,
the fixed imagewith lesionL4 and the difference images before and after
registration. Green crosses indicate the position of the other depicted

image slices. Overlaid onto the difference image after registration the
ground truth and generated lesion segmentations are shown in blue and
red

0.584, 0.039, 0.028 and 0.679 are achieved for lesions L1 to
L4, respectively.With region growing, these can be improved
to 0.713, 0.675, 0.071 and0.760.This shows that large lesions
L1 and L4 are again well recognized and outlined, and even
the small lesion L2 is segmented well using region growing.
Only for lesion L3 results are inferior, which might be due to
the comparably high weighting of the segmentation regular-
ization and the fact that the lesion has a rather low contrast
to healthy tissue compared to the other lesions.

To measure how good the network’s lesion detection rate
is, we calculate the proportion of lesions that did not have
a voxel segmented by the network. Both large lesions were
detected in each of the 1560 runs performed per lesion type.
Lesion L2 was missed only three times and even lesion L3
was detected in 83.65%of the runs. Although the lesion is not
well segmented, its detection rate remains high. This could
be used, for example, to provide guidance on image exam-
ination. Overall, NCR-Net scales well to 3D both for the
registration and the non-correspondence detection task.

Discussion

We presented NCR-Net, a new network architecture for joint
image registration and unsupervised non-correspondence
segmentation. The networkwas trainedwith a two-step train-
ing procedure that first pre-trains encoder and registration
decoder and later updates the entire network based on a
Mumford–Shah-like functional.Hereweused rough anatom-
ical labels to introduce weak supervision into the registration
task but also showed thatNCR-Netmaybe trained fully unsu-
pervised without significant drop in performance. NCR-Net
was additionally shown to profit from the generated non-
correspondence maps that prevent implausible deformations
in pathological areas.

The resulting deformation fields and segmentations of
non-corresponding regions may be used to visualize dis-
ease progression in OCT image slices of AMD patients.
Based on outlier detection in the image distance measure and

without the need for manual segmentations of lesions, NCR-
Net learned to segment regions containing altered or newly
developed pathologies in OCT images. The lesion segmen-
tation abilities of NCR-Net were quantitatively confirmed
using phantom stroke lesions in MR images. This shows
great potential of our CNN to be used to generate sharp and
detailed segmentations of lesions in an unsupervisedmanner.
In the two-dimensional setting, NCR-Net showed a compa-
rable performance with state-of-the-art registration methods
for lesion-free images and surpassed the other methods
for images with major pathologies. The three-dimensional
extension of NCR-Net outperformedVoxelMorph, one of the
state-of-the-art CNN-based registration methods. Overall,
the performance of NCR-Net is competitive to state-of-the-
art registrationmethods and robust to awide variety of lesions
thanks to the non-correspondence detection part of the net-
work. The segmentations given by NCR-Net are usable for
the segmentation of newly appeared or altered pathologies,
the detection of dissolved lesions or the analysis of inter-
patient variations with the great advantage that no expensive
manual segmentations are needed for training. Our further
research will concentrate on improving the separation of spa-
tial deformations and cost function masking even more and
making the 3D extension ofNCR-Net usable for larger image
resolutions.
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