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Driving forces of soil bacterial 
community structure, diversity, and 
function in temperate grasslands 
and forests
Kristin Kaiser1, Bernd Wemheuer1, Vera Korolkow1, Franziska Wemheuer2, Heiko Nacke1, 
Ingo Schöning3, Marion Schrumpf3 & Rolf Daniel1

Soil bacteria provide a large range of ecosystem services such as nutrient cycling. Despite their 
important role in soil systems, compositional and functional responses of bacterial communities to 
different land use and management regimes are not fully understood. Here, we assessed soil bacterial 
communities in 150 forest and 150 grassland soils derived from three German regions by pyrotag 
sequencing of 16S rRNA genes. Land use type (forest and grassland) and soil edaphic properties 
strongly affected bacterial community structure and function, whereas management regime had 
a minor effect. In addition, a separation of soil bacterial communities by sampling region was 
encountered. Soil pH was the best predictor for bacterial community structure, diversity and function. 
The application of multinomial log-linear models revealed distinct responses of abundant bacterial 
groups towards pH. Predicted functional profiles revealed that differences in land use not only select 
for distinct bacterial populations but also for specific functional traits. The combination of 16S rRNA 
data and corresponding functional profiles provided comprehensive insights into compositional and 
functional adaptations to changing environmental conditions associated with differences in land use 
and management.

Soil bacteria play an important role in biogeochemical cycles1,2. They control soil processes such as decompo-
sition3 and mineralization, including the associated release of greenhouse gases such as carbon dioxide (CO2), 
nitrous oxide (N2O), and methane (CH4)4,5 into the atmosphere. Moreover, several soil bacteria promote plant 
growth and productivity2,6. As soil represents a highly dynamic and complex environment, bacterial communi-
ties living in this ecosystem are influenced by a multitude of different biotic and abiotic factors. Previous studies 
showed that soil pH is a major driver of these communities7–9. Lauber and colleagues8 observed that the overall 
bacterial community composition in different soils from across South and North America was significantly cor-
related with soil pH. This was confirmed by a study of bacterial communities in German grassland and forest 
soils9. Other studies investigating the effect of edaphic parameters on soil bacteria found that these communities 
were influenced by the availability of nutrients such as carbon, nitrogen10,11, and soil moisture in grasslands12 and 
forests13.

In recent years, the impact of land use intensification on bacterial community diversity and composition, e.g. 
by fertilization in grasslands, has been frequently investigated14–17. In a study by Herzog et al.15, composition and 
diversity of entire and active bacterial communities were altered by fertilizer application. Lauber et al.16 analyzed 
soil bacterial communities across different land use types such as grasslands and forests. For soil bacteria in forest 
systems, soil disturbance and organic matter removal18,19 as well as the dominant tree species20 have been shown 
to influence community composition. This provides evidence that land use intensification can alter soil bacte-
rial community composition. However, most studies have focused on a limited number of soil samples in one 
region. Therefore, the response of bacterial communities in grasslands and forests to land use intensification and 
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environmental changes is not yet fully understood. Large comparative studies are required to unravel the diverse 
interactions between bacteria and their environments, and how changes in community composition might reflect 
changes in bacterial functioning.

The aim of the present study was to identify key drivers of bacterial community composition, diversity, and 
functions in forest and grassland soils. In addition, we aimed at clarifying in which way soil bacterial communities 
respond to management regime, and if changes are merely a product of the edaphic properties. In this study, 300 
soil samples were taken from the three German Biodiversity Exploratories Schorfheide-Chorin, Hainich-Dün 
and the Schwäbische Alb21. Two previous studies focusing on subsets of samples taken in the Biodiversity 
Exploratories showed that bacterial diversity was influenced by land use intensity22 and land use type9. Bacterial 
communities were assessed by pyrotag sequencing targeting the bacterial 16S rRNA gene. Additionally, func-
tional profiles were calculated from obtained 16S rRNA gene data23. We focused on three main hypotheses:  
(1) soil bacterial communities exhibit distinct biogeographic patterns, (2) respond differently to soil conditions 
and land use intensification, and (3) bacterial community composition, diversity and functioning are shaped in a 
similar way within the same land use system.

Results and Discussion
General characteristics of the soil samples.  Soil samples showed significant differences with respect to 
soil texture and edaphic properties (Table 1, Supplementary Material Tables S1 and S2). Forest soils were more 
acidic, had a higher C:N ratio and smaller clay amount than grassland soils. Forest soil samples derived from 
the different exploratories exhibited significant differences in all measured edaphic properties. The Schorfheide-
Chorin forest soils were more acid and had higher C:N ratios compared to the Hainich-Dün and Schwäbische 
Alb soils, which did not differ significantly. In addition, Schorfheide-Chorin forest soils also exhibited the lowest 
gravimetric water content, clay and silt amount of all exploratories.

Grassland soil samples derived from the different exploratories also exhibited significant differences between 
all measured edaphic properties. The Hainich-Dün grasslands soil had the highest pH values, lowest gravimetric 
water content and highest silt amount compared to the Schorfheide-Chorin and Schwäbische Alb soil, which did 
not differ significantly. The Schorfheide-Chorin grassland soils exhibited the highest C:N ratio and sand amount 
compared to the other two exploratories. Clay amount was lowest in the Schorfheide-Chorin grassland soils, 
followed by the Hainich-Dün soils. The highest clay amounts were determined for the Schwäbische Alb grassland 
soils. Significant differences in soil parameters between the different management regimes were not recorded 
(ANOVA, P >​ 0.5 in all cases).

Soil bacterial communities.  Composition and diversity of soil bacterial communities were assessed by 
pyrotag sequencing of 16S rRNA genes. After quality filtering, denoising, and removal of potential chimeras and 
non-bacterial sequences, approximately 2,700,000 high quality sequences with an average read length of 525 bp 
were obtained for further analyses. All sequences were classified below phylum level. Based on richness estima-
tor data (Michaelis-Menten fit; Supplementary Material Table S3) 78–88% of the operational taxonomic units 
(OTUs) at 80% identity (phylum level) and 27–55% of the OTUs at 97% identity (species level) were covered by 
the surveying effort (for rarefaction curves, see Supplementary Material Figs S1 and S2).

Obtained sequences clustered into 203,530 OTUs (97% identity) and were assigned to 51 bacterial phyla, 574 
orders and 1,215 families. The dominant phyla and proteobacterial classes (>​1% of all sequences across all samples) 
were Actinobacteria (23.75% ±​ 8.55%), Alphaproteobacteria (20.43% ±​ 5.21%), Acidobacteria (18.39%% ±​ 9.19%), 
Deltaproteobacteria (7.22% ±​ 2.84%). Bacteroidetes (5.15% ±​ 2.60%), Chloroflexi (5.09% ±​ 2.10%), 
Betaproteobacteria (4.64% ±​ 2.38%), Gammaproteobacteria (4.32% ±​ 1.23%), Gemmatimonadetes (1.88% ±​ 0.92%), 
Firmicutes (1.18% ±​ 3.20%), and Nitrospirae (1.14% ±​ 1.10%). These phylogenetic groups were present in all sam-
ples and accounted for more than 95% of all sequences analyzed in this study (Fig. 1). These results are consistent 
with previous studies on grasslands24 and temperate beech forests25. The most abundant phylotype (3.99% ±​ 2.44) 
is an uncultured member of the Subgroup 6 of the Acidobacteria. The five most abundant phylotypes that could 
be assigned to a genus are Bradyrhizobium (2.66% ±​ 1.45%), Candidatus Solibacter (2.00% ±​ 1.86%), Haliangium 
(1.39% ±​ 0.74%), Variibacter (1.36% ±​ 0.58%) and Gaiella (1.34% ±​ 1.31%) of all sequences, respectively.

Land use Exploratory n pH C:N ratio
Gravimetric 

water content (%) Clay (g kg−1) Silt (g kg−1) Sand (g kg−1)

Forest

All plots 150 4.5 ±​ 1.1A 13.8 ±​ 3.2A 33.5 ±​ 18.1 289.0 ±​ 203.3A 440.5 ±​ 247.1 67.5 ±​ 386.7

Schorfheide-Chorin 50 3.4 ±​0.1a 18.1 ±​ 2.8a 12.0 ±​ 4.3a 48.5 ±​ 18.9a 74.0 ±​ 49.2a 875.0 ±​ 60.6a

Hainich-Dün 50 4.6 ±​ 0.9b 12.8 ±​ 1.1b 33.5 ±​ 6.4b 307.0 ±​ 99.3b 634.5 ±​ 95.6b 54.5 ±​ 17.5b

Schwäbische Alb 50 5.2 ±​ 0.8b 12.9 ±​ 0.9b 52.5 ±​ 10.0c 501.0 ±​ 104.8c 445.0 ±​ 107.6c 42.5 ±​ 46.0b

Grassland

All plots 150 6.7 ±​ 0.7B 10.3 ±​ 0.9B 31.5 ±​ 39.4 425.0 ±​ 192.4B 418.0 ±​ 159.3 74.5 ±​ 228.2

Schorfheide-Chorin 50 6.4 ±​ 0.9a 10.4 ±​ 1.1a 54.5 ±​ 60.5a 159.5 ±​ 87.0a 317.0 ±​ 191.7a 489.5 ±​ 220.8a

Hainich-Dün 50 7.1 ±​ 0.9b 10.1 ±​ 0.5b 22.0 ±​ 5.4b 452.0 ±​ 130.3b 489.5 ±​ 122.7b 53.5 ±​ 23.1b

Schwäbische Alb 50 6.2 ±​ 0.5a 10.2 ±​ 0.7b 41.0 ±​ 11.1a 571.0 ±​ 134.0c 386.0 114.6a 41.0 ±​ 45.0b

Table 1.   Edaphic properties among different land uses and exploratories (median ± SD). Significant 
differences between study regions are indicated by lowercase letters and between forest and grassland by capital 
letters according to Dunn’s test (P <​ 0.05).
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Biogeographic variations of soil bacterial diversity and community composition.  Diversity (rep-
resented by the Shannon index H’) and community structure of soil bacteria (PERMANOVA, P <​ 0.001) differed 
between the three Biodiversity Exploratories. The Hainich-Dün exploratory harbored the most diverse bacte-
rial community (H’ =​ 10.22) compared to Schorfheide-Chorin (H’ =​ 9.72) and the Schwäbische Alb (H’ =​ 9.92). 
Furthermore, grassland soils are significantly more diverse than forest soils (H’ =​ 10.12 and H’ =​ 9.48, respectively, 
with P <​ 0.001), which supports previous findings of Nacke and colleagues9, who reported that bacterial commu-
nities were more diverse in grasslands at phylum level. As samples derived from forests soils were more acidic 
than grassland soil samples (P <​ 0.001), the difference in pH might explain the difference in diversity (Table 1).

The most dominant bacterial orders of the complete dataset differed in their distribution across the three explor-
atories. These differences most likely arose from differrences in edaphic properties in the exploratories. Therefore, 
we tested for correlation of environmental factors by NMDS analysis based on Bray-Curtis dissimilarities. Fitting the 
edaphic properties to the ordination revealed the pH as the strongest driver of the community. Additional canonical 
correspondence analysis (CCA) using pH as constrain showed that pH explains 26% of the variation in community 
structure (P <​ 0.001, Supplementary Figure S3). We additionally found a separation of soil bacterial communities 
by sampling region (PERMANOVA, P <​ 0.001) and the two land use types grassland and forest (PERMANOVA, 
P <​ 0.001) (Supplementary Figure S4). Therefore, we were interested in a detailed analysis of the factors driving the 
changes in the structure of bacterial communities in each exploratory. We further split the data between grasslands 
and forests due to the strong separation between the community structure of both land use types.

Figure 1.  Abundances of bacterial orders in Schorfheide-Chorin, Hainich-Dün and Schwäbische Alb 
grassland and forest soils. Mean abundances of the most abundant bacterial orders (>​1% of the total bacterial 
community) for each exploratory and land use are given. Rare: sum of bacterial orders contributing <​1% to the 
total bacterial community per exploratory.



www.nature.com/scientificreports/

4Scientific Reports | 6:33696 | DOI: 10.1038/srep33696

Key drivers of bacterial communities.  To identify the key drivers of soil bacterial community structure 
for each land use type in each exploratory, we performed NMDS analysis for the six subsets. The soil pH was the 
only property, which affected the community structure in each subset (Fig. 2). Another property influencing the 
community structure in grasslands and forests was soil texture (amount of clay, sand and/or silt), which repre-
sents pore size, water and gas fluxes, and nutrient availability26,27. Moreover, soil texture is important for niche 
separation and protection from predation28.

In grassland soils, the C:N ratio influenced bacterial community structure in the Schwäbische Alb and 
Schorfheide-Chorin, but not in the Hainich-Dün. This is supported by a PFLA-based study on soil bacterial com-
munities, in which edaphic properties such as soil texture, pH, and C and N concentration were involved in struc-
turing soil bacterial communities10. The land use intensity index (LUI) was only correlated with the Schwäbische 
Alb grassland community. However, the LUI only accounts for the amount and not for the source of fertilization. 
In the Schwäbische Alb grasslands, most plots received organic fertilizer (manure, dung), whereas fertilization 
in the Hainich-Dün and Schorfheide-Chorin was predominated by mineral fertilizer application. These findings 
support a recent study, in which soil microbial communities of farming systems receiving organic fertilizer were 
different compared to those of conventional, minerally fertilized systems and control soils29. In agreement with 
Geisseler and Scow30, clear trends suggesting bacterial community structural shifts due to long-term mineral 
fertilizer application, were not found in our survey.

In forest soils, the tree species was correlated with bacterial community structure in all exploratories, 
while the silvicultural management index (SMI) only significantly influenced the community structure in the 
Schorfheide-Chorin (Fig. 2). Soil bacterial communities under broadleaved (Fagus and Quercus) and coniferous 
(Pinus and Picea) trees formed distinct patterns. This is in accordance with results of previous studies9,20. Nacke 
et al.9 analyzed a subset of soil samples derived from the Schwäbische Alb and found that the bacterial commu-
nity structure was different under beech (Fagus) and spruce (Picea). This is consistent with a study comparing 
bacterial communities under coniferous and broadleaved trees20. We did not observe a difference between the 
two broadleaved tree species, although differences in soil community structure between broadleaved trees have 
been described for Fagus versus Tilia and Acer31. These effects might be partly due to the reduced soil acidification 
and higher turnover rates of the leaf litter of Tilia and Acer32. Coniferous tree species such as spruce (Picea abies) 
and pine (Pinus sylvestris) are known to significantly decrease the soil pH (reviewed in ref. 33) due to the special 
chemical structure of evergreen litter or capture of atmospheric acidic compounds34. This would result in an indi-
rect pH effect on soil bacteria. Additionally, this might be one of the reasons why tree species play an important 
role in the structuring of bacterial communities in all forest samples analyzed.

According to our hypothesis that bacterial community structure and diversity would be affected in similar 
ways under the same land use, we compared the bacterial diversity, represented by the Shannon index (H’), 
between the different management regimes (Supplementary Material Table S4). Differences in diversity were 
detected for the tree species in the Schwäbische Alb and Schorfheide-Chorin.

Interestingly, the management regimes in grasslands (meadow, pasture, mown pasture) and forests (unman-
aged forest, age-lass forest, selection forest) exhibited no significant effect on bacterial diversity (PERMANOVA, 
P <​ 0.05). This is in contrast to a previous study by Will et al.22, who found a higher bacterial diversity in grass-
land soils of low land use intensity in the Hainich-Dün. In contrast, Tardy et al.17 investigated bacterial diversity 
along gradients of land use intensity and observed the highest bacterial diversity in moderately managed soils. 
The authors suggest that this effect is related to the stress response of the bacterial community. In highly stressed 
environments, as under high land use intensity, diversity decreases due to the dominance of competitive species 
and competitive exclusion, while in unstressed environments diversity decreases due to the dominance of adapted 
species through selection. In accordance with our hypothesis, we could find soil conditions such as pH that con-
sistently drive bacterial community structure as well as diversity, while management regimes and therefore land 
use intensity have no significant influence. In addition, we could show that pH is the best predictor of bacterial 
communities.

Bacterial functioning in grassland and forest soils.  We further hypothesized that bacterial function-
ing was driven in a similar manner as bacterial community structure and diversity. To clarify this hypothesis, 
we focused on pathways involved in the cycling of carbon, nitrogen, phosphorus, and sulfur (Fig. 3) and com-
pared the relative abundances of key enzyme-encoding genes between the two land uses grassland and forest. 
Abundances of the enzyme-encoding genes were derived from a novel bioinformatic tool Taxa4Fun23. Tax4Fun 
transforms the SILVA-based OTUs into a taxonomic profile of KEGG organisms, which is normalized by the 
16S rRNA copy number (obtained from NCBI genome annotations). As soils harbor unknown or uncultured 
organisms, not all 16S sequences can be mapped to KEGG organisms. Spearman correlation analysis of func-
tional profiles derived from whole metagenome sequencing and profiles deduced from 16S rRNA gene sequences 
revealed a median of the correlation coefficient of 0.8706 for soils23. This indicated that Tax4Fun provides a good 
approximation to functional profiles obtained from metagenomic shotgun sequencing approaches. This is espe-
cially valuable to deduce functional profiles for a large number of samples derived from complex environments, 
as achieving representative coverage for each sample of a large sample set by metagenome shotgun sequencing 
would be a daunting task.

Most key enzyme-encoding genes involved in the cycling of C, N, S, and P are either more abundant in grass-
land or forest soils (Mann-Whitney test, P <​ 0.05, Supplementary Material Table S5). For example, genes that 
encode acid phosphatases were observed at 1.4-fold higher abundances in the functional profile of the forest soils 
than in the grassland soils, while alkaline phosphatases showed the opposite trend. We assume that this effect 
could be attributed to the difference in pH between the land use types, as we showed that pH is the best predictor 
for bacterial communities. The genes encoding urease were 1.2-fold more abundant in the grassland. The avail-
ability of urea was higher in the grassland samples, as these are partly fertilized with manure or dung or were 
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grazed by animals. Chitinase genes also showed a 1.2-fold higher abundance in grasslands compared to forest 
soils. This might result from the higher abundance of Actinobacteria in grassland soils, as this group is known 

Figure 2.  NMDS plots split by region and land use. NMDS plots based on Bray Curtis dissimilarities of 
grassland (a,c,e) and forest (b,d,f) bacterial communities. Environmental parameters that are significantly 
(P <​ 0.05) correlated are indicated as arrows (C:N: carbon: nitrogen ratio; water: gravimetric water content; 
sand: sand amount; silt: silt amount; clay: clay amount; LUI: land use intensity index in grasslands; SMI: 
silvicultural management index in forests). (a) Schorfheide-Chorin grassland samples; (b) Schorfheide-Chorin 
forest samples; (c) Hainich-Dün grassland samples; (d) Hainich-Dün forest samples; (e) Schwäbische Alb 
grassland samples; (f) Schwäbische Alb forest samples. Note that the NMDS axes have different scales for each 
ordination.
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to harbor a high number of chitinase genes35. Genes involved in polyaromatic hydrocarbon (PAH, here lignin) 
degradation are more abundant in grasslands. In forest systems, this process is primarily performed by lignino-
lytic fungi (mainly saprotrophic basidiomycetes), which are able to degrade wooden biomass36. One key enzyme 
for aerobic methane oxidation, methanol dehydrogenase, was notably more abundant in forest soils. Methane 
oxidation in forest soils is the largest biological sink for atmospheric methane4 and therefore plays a critical role 
in the flux of this greenhouse gas. Additionally, nitrous-oxide (N2O) reductase, which catalyzes the last step in 
denitrification and reduces N2O to N2, is also more abundant in forest soils (data not shown). These results indi-
cate that temperate forest ecosystems not only play a crucial role in the regulation and removal of methane, but 
also of the greenhouse gas nitrous oxide.

Interestingly, the key enzyme of nitrogen fixation, the nitrogenase, is less abundant in grassland than in forest 
soils. In this study, only bulk soil was sampled and therefore presumably only free-living nitrogen-fixing bacteria 
could be detected. It is possible, that nitrogen fixation by free-living bacteria plays a greater role in forest systems, 
whereas symbiotic and rhizospheric bacteria, which were not covered by the study, carry out the major part of 
nitrogen fixation in grassland systems.

The obtained results suggest that the different land uses grassland and forest not only select for distinct bacte-
rial populations, but also for specific functional traits within their bacterial communities. As the grasslands and 
forests analyzed in the present study are long-term established systems, it would be interesting to evaluate if a 
similar adaptation is also present in younger systems.

Soil pH is the best predictor of bacterial communities.  In the present study, pH was the only fac-
tor, which influenced the bacterial community regardless of exploratory and land use. Furthermore, it not only 
affected bacterial community structure, but also the functional profile of the soil bacteria. As already mentioned, 
CCA analysis revealed that pH explains 26% of total variance in the community profile (Supplementary Figure S3).  
Thus, the pH was the strongest predictor for bacterial community structure.

We hypothesized that bacterial community structure and functioning would be shaped in a similar man-
ner. Environmental correlations with the Tax4Fun-derived functional profile were tested by NMDS based on 
Bray-Curtis dissimilarities (Fig. 4). The results are similar to those obtained for the community structure. The 
pH played an important role in shaping the functional profile and explained 32% of the variance (tested by CCA, 
P <​ 0.001, Supplementary Figure S5). This supports our hypothesis that structure and functions of bacterial com-
munities are shaped by similar mechanisms. The functional profile also showed a separation between grassland 
and forest systems.

Additionally, we found that pH is the strongest predictor of soil bacterial diversity (P <​ 0.001, R2 =​ 0.4) 
(Fig. 5). It has already been shown that diversity of soil bacterial communities in the exploratories is positively 
correlated with pH9,22. However, our results indicate a more complex relationship between pH and diversity. 
Diversity was lowest at low pH, then increased and appeared to be stable between pH 5 and 7 and increases again 
under slightly alkaline conditions. This is in contrast to Fierer and Jackson7 and Lauber et al.8, who described a 
peak of soil bacterial diversity in near neutral soils.

Multinomial regression models revealed multiple responses of bacterial orders to soil pH.  To 
better understand the complex relationship of single bacterial groups and soil pH, we applied multinomial regres-
sion models on the 30 most abundant orders of the dataset (Supplementary Material Figure S6). Four general 

Figure 3.  Relative abundances of key enzymes in grassland and forest. Key genes for nitrogen, sulfur, and 
methane metabolism, carbon fixation pathways, cellulose, xylan, lignin and polyaromatic-hydrocarbon (PAH) 
degradation, acid and alkaline phosphatases and urease were combined. Their mean abundance (relative to the 
mean in the complete dataset) in grasslands soil was plotted against the mean abundance in forest soils. Size and 
color of the circles indicate the mean abundance in the complete dataset. Low abundance: small blue circles; 
medium abundance: medium yellow circles; high abundance: large red circles. The enzymes included in the 
analysis are given in Supplementary Material Table S5.
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responses were observed: (1) decrease in abundance with increasing pH (Acidobacteriales, acidobacterial sub-
group 3, Frankiales, Corynebacteriales), (2) increase in abundance with increasing pH (acidobacterial subgroup 6,  
Gaiellales, Acidimicrobiales, Propionibacteriales), (3) narrow pH range with high abundance (Rhizobiales, 
Rhodospirillales), and (4) relatively constant abundance across pH range (Bacillales, Gemmatimonadales, 
Sphingobacteriales) (Fig. 6). In their publication on niche theory, Austin and Smith37 described pH as a direct 
physiological gradient acting on organisms, resulting in unimodal, or skewed unimodal response curves 
restricted by growth limiting conditions at one end, and competition at the other end. This is supported by our 
observation of few highly abundant orders at low pH and many less abundant orders in near neutral soils. The 
ability to grow at low pH values is known as ATR (acid tolerance response) and confers a competitive advantage 
compared to other bacteria in soils.

To test which mechanisms are involved in acid tolerance of soil bacteria, we chose those genes reported to 
be involved in acid tolerance in Rhizobia38 and Gram positive bacteria39 that were present in the functional 
profile. Additionally, we analyzed the genes present of the KEGG pathway for biosynthesis of unsaturated fatty 
acids (ko01040) as well as 3-trans-2-decenoyl isomerase. This enzyme is involved in the generation of unsatu-
rated fatty acids and was shown to increase acid tolerance in Streptococcus mutans by changing cell membrane 
composition40. We found that the genes for biosynthesis of unsaturated fatty acids were highly abundant in low 
pH samples (pH 3–4), while decenoyl isomerase did not follow this trend (Fig. 7). Therefore, this gene might 
not be generally involved in acid tolerance in soil. Additionally, most genes involved in alkali production, two 
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component systems and repair of macromolecules were more abundant in the low pH samples compared to more 
neutral samples. Several genes involved in DNA repair were probably also involved in the ATR of soil-inhabiting 
bacteria, as well as levansucrase, a gene involved in biofilm formation. Our results suggest that bacteria can apply 
an active mechanism to cope with stressful pH conditions. Alkali production increases the pH in the immediate 
environment, improving bacterial survival chances. Additionally, macromolecule repair-enzymes protect and 
repair DNA and proteins, and bacteria seem to enhance pH tolerance by altering their cell wall components or 
protect themselves within biofilms.

Conclusion
During the last years, several studies targeting soil microbial communities and their driving forces came to the 
same conclusion that soil pH is the major driver of bacterial communities. This statement, however, falls short 
as it provides no direct answer about the complex interaction of soil bacteria with pH. We showed that soil 
bacteria respond differently to changing pH conditions, being adapted to certain pH ranges or even stable over 
a broad pH range. Obtained data suggest that this adaptation is attributed to different mechanisms including 

Figure 6.  Response curves of selected bacterial orders towards pH. Each line represents the predicted 
abundance changes along the measured pH gradient, based on predictions derived from multinomial regression 
models. A detailed version of this graph including the 30 most abundant orders is available as Supplementary 
Material Figure S4.

Figure 7.  Heatmap based on mean abundances of genes putatively involved in ATR. Only genes with KEGG 
orthologs and present in the functional profile are shown. The KEGG pathway for biosynthesis of unsaturated 
fatty acids is included, also on the basis of the genes with KEGG orthologs in the functional profile. White: low 
relative abundance; yellow: mean relative abundance; red: high relative abundance.
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alkali production and alteration of cell wall components. In addition to soil pH, it is generally assumed that 
land use intensity drives bacterial community composition and diversity. However, the present study demon-
strated that land use intensity plays a minor role, or that its effect is concealed by the tree species effect in forest. 
Biogeographic variations and the corresponding changing edaphic properties resulted in distinct patterns of soil 
bacteria, which explains regional differences and also the distinct patterns of bacterial communities in grasslands 
and forests. This is in line with our first and second hypothesis.

Large comparative studies are required to unravel the diverse interactions between bacteria and their envi-
ronments, and how changes in community structure might reflect changes in bacterial functioning. With a total 
of 300 samples representing different land uses and gradients of land use intensity, this study provides compre-
hensive insights into soil bacterial communities present in temperate systems. Taking the enormous size and 
diversity of soil microbial communities into account, functional information on soil bacterial communities has 
been limited as it was so far mainly derived from small-scale comparative metagenomic approaches with a rather 
low coverage. However, the ability to focus on functional genes and enzymes offers novel insights in the nutrient 
cycling potential of soil bacterial communities. Consequently, the application of novel bioinformatic and statis-
tical approaches, such as Tax4Fun and multinomial log-linear models, in microbial ecology resulted in a more 
holistic understanding of the links between bacteria and their environment.

Materials and Methods
Study regions.  The present study was conducted as part of the German Biodiversity Exploratories initiative, 
which is a project investigating large-scale and long-term relationships of biodiversity and land use in Central 
European grasslands and forests21. Its unique design allows detailed analysis of bacterial communities along a 
regional north-south gradient in Germany. The study is based on 300 plots in three study regions (exploratories). 
They are located in the Schorfheide-Chorin, the Hainich-Dün and the Schwäbische Alb. Each study region covers 
the land use types forest and grassland. Grassland plots are 50 m ×​ 50 m and forest plots are 100 m ×​ 100 m in size.

The grassland land use intensity-gradient was represented by three different management regimes (mead-
ows, pastures and mown pastures) that are non-fertilized or fertilized. Fertilization always represents higher 
land use intensity. The land use intensity index (LUI41) combines and equally weights the three components 
of land use in grasslands: (1) fertilization, (2) mowing, and (3) grazing. To account for interannual variation 
in management practices, the LUI was calculated from 2006 (start of the experiment) to 2011 (sampling year) 
(Supplementary Table S1). It is therefore used as an index for long-term management and thereby allows the 
evaluation of long-term effects on bacterial communities.

In forests, the land use intensity-gradient was represented by different forest management systems (age class 
forest, selection forest and unmanaged forest). Additionally, forest plots were dominated by one of the following 
tree species: (1) European beech (Fagus sylvatica), (2) sessile/pedunculate oak (Quercus petrea/Quercus robur), 
(3) Scots pine (Pinus sylvestris) or (4) Norway spruce (Picea abies). The silvicultural management index (SMI) was 
used to assess the impact of management intensity in forest systems (Supplementary Table S1). This index inte-
grates three characteristics of forest stands: (1) tree species, (2) stand age and (3) aboveground, living and dead 
wooden biomass42. Detailed information on land use, the applied management, dominant tree species, soil type 
and fertilization for every experimental plot is provided in Supplementary Material Table S2.

Sampling and soil properties.  Soil samples were collected from all 300 experimental plots in May 2011. In 
brief, plots were sampled along two 36 m transects in forests and along two 18 m transects in grasslands. The top 
10 cm of the soil layer were taken from 14 locations along the two transects in each plot with a split tube auger of 
5 cm diameter. At forest sites, the litter layer was removed with a metal frame (15 ×​ 15 cm) prior to sampling. The 
soil cores were pooled and sieved to remove stones >​0.5 cm and roots.

Ten grams of the pooled soil samples were used to determine the gravimetric water content, which repre-
sents the water content of the respective sample at the sampling time. The subsamples were weighted and dried 
at 105 °C to a constant weight. Air-dried soil samples sieved to <​2 mm were used for the determination of soil 
texture, soil pH, and carbon (C) and nitrogen (N) concentrations as described previously43. Detailed information 
on soil characteristics is given in Supplementary Material Table S1.

DNA extraction, amplification of 16S rRNA genes and pyrosequencing.  Total microbial com-
munity DNA was isolated from approximately 0.25 g soil per sample using the MoBio Power Soil DNA isolation 
kit (MoBio laboratories, Carlsbad, CA, USA) following the manufacturer’s recommendations. This method was 
recently shown to perform equally well over a range of different soils44. It produces similar amounts of DNA 
and 16S rRNA gene copies for each soil tested and does not overestimate any of the abundant phyla detected 
throughout the soils. Therefore, extraction biases were limited and comparability given for all DNA extractions. 
DNA concentrations were quantified using a NanoDrop ND-1000 UV-Vis Spectrophotometer (NanoDrop 
Technologies, USA) as recommended by the manufacturer.

The V3-V5 region of the 16S rRNA gene was amplified by PCR. The PCR reaction mixture (50 μ​l) contained 
10 μ​l 5-fold reaction buffer, 200 μ​M of each of the four deoxyribonucleoside triphosphates, 2% DMSO, 2% BSA, 
0.2 μ​M of each of the primers, 0.5 U of Phusion High fidelity DNA polymerase (Thermo Scientific, Waltham, MA, 
USA) and approximately 50 ng of isolated DNA as template. The V3-V5 region was amplified with the following 
set of primers containing the Roche 454 pyrosequencing adaptors and a unique MID per sample (underlined): 
V3for 5′-CCATCTCATCCCTGCGTGTCTCCGACTCAG-MID-TACGGRAGGCAGCAG-3′​45 and V5rev  
5′-CCTATCCCCTGTGTGCCTTGGCAGTCTCAG-MID-CCGTCAATTCMTTTGAGT-3′​46. The following 
thermal cycling scheme was used: initial denaturation at 98 °C for 3 min, 25 cycles of denaturation at 98 °C for 
10 s, annealing at 58 °C for 30 s, and extension at 72 °C for 30 s followed by a final extension at 72 °C for 10 min. All 
samples were amplified in triplicate, pooled in equal amounts and purified by gel electrophoresis using peqGOLD 
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Gel Extraction kit as recommended by the manufacturer (Peqlab Biotechnologie GmbH, Erlangen, Germany). 
PCR products were quantified using the Quant-iT dsDNA HS assay kit and a Qubit fluorometer (Invitrogen 
GmbH, Karlsruhe, Germany) as recommended by the manufacturer. The Göttingen Genomics Laboratory deter-
mined the 16S rRNA gene sequences employing the Roche GS-FLX+​ pyrosequencer with Titanium chemistry 
(Roche, Mannheim, Germany).

Analysis of pyrosequencing data.  Pyrosequencing-derived 16S rRNA gene sequences were processed 
using the QIIME software package version 1.847. Following the extraction of raw data, reads shorter than 300 bp, 
with long homopolymer stretches (>​8 bp), or primer mismatches (>​3) were removed. Subsequently, sequences 
were denoised employing Acacia version 1.53b48. Cutadapt49 was employed to truncate remaining primer 
sequences. Chimeric sequences were removed using UCHIME implemented in USEARCH version (8.0.1623) 
first in de novo and subsequently in reference mode using the SILVA SSURef 123 NR database as reference data-
base50,51. Afterwards, processed sequences were clustered with UCLUST version 1.2.22q in operational taxonomic 
units (OTUs) at 97% and 80% genetic identity representing species and phylum level, respectively52. OTUs were 
classified by BLAST alignment against the most recent SILVA database (see above). Rarefaction curves, alpha 
diversity indices (Chao1, Shannon, Simpson) and Michaelis-Menten-Fit were determined using QIIME accord-
ing to Wemheuer et al.53. The analysis was performed by using 5,311 sequences per sample (Supplementary 
Material Table S3). Non-metric multidimensional scaling plots were generated based on Bray Curtis dissimilari-
ties or weighed UniFrac distances in R using the metaMDS function to visualize differences in bacterial commu-
nity composition.

Statistical analyses.  All statistical analyses were conducted employing R version 3.154. The results of all 
statistical tests were regarded significant with P ≤​ 0.05, and only significant results are shown and described 
throughout the manuscript. The median is used throughout the manuscript instead of the mean value, except 
stated otherwise. For all statistical analysis, the dataset calculated for 97% identity (species level) was used.

The Mann-Whitney-test and non-parametric Kruskal-Wallis one-way analysis of variance (ANOVA) were 
used due to the non-normal distribution of the data. They were performed to test for differences in soil param-
eters and bacterial diversity between land use systems, exploratories and management regimes. The effects of 
environmental parameters onto the variance of bacterial communities were analyzed using the envfit function as 
described previously55. Canonical correspondence analysis (CCA) on single soil properties was carried out using 
the cca function and subsequently tested for significance applying the permu.test function with 1000 permuta-
tions. All these functions are contained in the vegan package56. Response curves of bacterial orders toward pH 
were calculated employing a multinomial log-linear model (function multinom contained in the nnet package).

Functional profiles were predicted from obtained 16S rRNA gene data using Tax4Fun23. Genes involved in 
acid tolerance (ATR) and encoding key enzymes in nutrient cycling were identified in the resulting profiles using 
their KEGG orthologs. The heatmap, based on the ATR-involved genes was calculated using the heatmap.2 func-
tion of the gplots package57. Differences in the abundances of key genes involved in nutrient cycling were ana-
lyzed employing the Mann-Whitney test in R. The mean abundances of genes in grasslands and forests (relative 
to mean abundance in complete dataset) were plotted against each other using ggplot of the ggplot2 package58.

Sequence data deposition.  Sequence data were deposited in the Sequence Read Archive (SRA) of the 
National Center for Biotechnology Information (NCBI) under the accession number SRP065604.
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