
ARTICLE

Genomics & Informatics http://dx.doi.org/10.5808/GI.2012.10.1.51
Vol. 10(1) 51-57, March 2012 pISSN 1598-866X eISSN 2234-0742

*Corresponding author: E-mail hojinc@kaist.ac.kr
Tel +82-42-350-3561, Fax +82-42-350-3510
Received 27 January 2012, Revised 8 February 2012,
Accepted 13 February 2012

An Efficient Approach to Mining Maximal Contiguous
Frequent Patterns from Large DNA Sequence Databases

Md. Rezaul Karim1, Md. Mamunur Rashid1,
Byeong-Soo Jeong1 and Ho-Jin Choi2*

1Department of Computer Engineering, College of
Electronics and Information, Kyung Hee University,
Yongin 446-701, Korea, 2Department of Computer
Science, Korea Advanced Institute of Science and
Technology, Daejeon 305-701, Korea

Abstract
Mining interesting patterns from DNA sequences is one
of the most challenging tasks in bioinformatics and
computational biology. Maximal contiguous frequent
patterns are preferable for expressing the function and
structure of DNA sequences and hence can capture the
common data characteristics among related sequences.
Biologists are interested in finding frequent orderly ar-
rangements of motifs that are responsible for similar ex-
pression of a group of genes. In order to reduce mining
time and complexity, however, most existing sequence
mining algorithms either focus on finding short DNA se-
quences or require explicit specification of sequence
lengths in advance. The challenge is to find longer se-
quences without specifying sequence lengths in ad-
vance. In this paper, we propose an efficient approach
to mining maximal contiguous frequent patterns from
large DNA sequence datasets. The experimental results
show that our proposed approach is memory-efficient
and mines maximal contiguous frequent patterns within
a reasonable time.

Keywords: DNA sequence, maximal contiguous frequent
pattern, pattern mining, suffix tree

Introduction
Mining patterns from DNA sequences refers to the task
of discovering sequences that are similar or identical
between different genomic locations or different geno-
mes. How to efficiently discover long frequent con-
tiguous sequences poses a great challenge for existing
sequential pattern mining algorithms. The problem of

finding the maximal contiguous frequent pattern is im-
portant in bioinformatics and has been used for predict-
ing biological functions held in genomic sequences
[1-4]. In the beginning, the problem of finding common
subsequences from sequences of more than 2 was
studied [1, 2]; then, many tried to solve more general
sequential pattern mining problems.
 A typical a priori algorithm, such as Generalized
Sequential Pattern algorithm (GSP) [5, 6], adopts a mul-
tiple- pass, generation-and-test approach. In one pass,
all single items (1-sequences) are counted. From the fre-
quent items, a set of candidate 2-sequences are
formed, and another pass is made to identify their
frequency. The frequent 2-sequences are used to gen-
erate the candidate 3-sequences, and this process is re-
peated until no more frequent sequences are found.
Normally, a hash tree-based search is employed for effi-
cient support counting. Finally, non-maximal frequent
sequences are removed. Based on this idea, a more ef-
ficient algorithm, called PrefixSpan [7], has been pro-
posed, which examines only the prefix subsequences
and projects only their corresponding postfix sub-
sequences into the projected database (PDB). In each
PDB, contiguous sequences are grown by exploring lo-
cal length-1 frequent sequences. A memory-based
pseudo-projection technique is developed to reduce the
cost of projection and speed up processing. When min-
ing long frequent concatenated sequences, however,
this method becomes inefficient in terms of time and
space. Therefore, it is impractical to apply PrefixSpan to
mine long contiguous sequences, like biological
datasets.
 Pan et al. [8] proposed to use a variable length span-
ning tree to mine maximal concatenated frequent sub-
sequences and developed algorithms, called Macos-
FSpan and MacosVSpan, based on the PrefixSpan
approach. MacosVSpan is efficient for mining long con-
catenated frequent sub-sequences, whereas Macos-
FSpan has some limitations, because it constructs
length-4 fixed length candidate sequences first and re-
cursively mines length-5, length-6 candidate sequences,
etc. This is very time consuming, because in a practical
DNA sequence database, a sub-sequence may occur
multiple times in the same sequence. Another problem
is that both MacosVSpan and MacosFSpan use the
pointer-offset pair to represent the suffixes inside the
in-memory pseudo PDB, which is not enough to repre-
sent the huge number of suffixes in a physical PDB.

52 Genomics & Informatics Vol. 10(1) 51-57, March 2012

Table 1. A DNA sequence database

Sid Sequence

10 ATCGTGACT

20 CATCGATTG

30 CATCGTGAGA

40 TCGTGATTG

50 GCGTGATTACT

Kang et al. [9] have claimed that their algorithm is more
efficient than the MacosVSpan algorithm, but it was
based on MacosFSpan, which needed multiple scans of
the database. Recently, Zerin et al. [10] have proposed
an indexed-based method to find the frequent con-
tiguous sequences with single database scanning. This
approach builds the fixed-length spanning tree in a way
similar to Kang et al. [9], but it records the sequence
IDs and starting position of the fixed length patterns
with frequency in the leaf node of the tree. Although this
approach shows better results than its predecessors in
terms of space, time complexity is still not acceptable.
 A practical DNA sequence database contains a large
number of sequences, where a sub-sequence may oc-
cur multiple times in the same sequence. Therefore, we
envisage using the concept of the suffix tree in terms of
the variable length spanning tree of Pan et al. [8] to
have the full advantages of prefix matching. Another as-
pect to consider is the size of real DNA sequence data-
bases, which is ever increasing. For the cases where a
DNA sequence database can not fit into the main mem-
ory, disk-based mining has been studied, based on par-
titioning [11-14]. Most of these techniques, however, on-
ly consider local frequency counting, although many fre-
quent patterns may look infrequent due to local support
pruning. In this paper, we propose a suffix tree-based
approach for maximal contiguous frequent sub-sequen-
ce mining from DNA sequence datasets by means of a
variable length spanning tree. We also introduce a com-
bined main memory- and disk-based approach for min-
ing maximal contiguous frequent patterns from extra
large DNA sequence databases that can not fit into the
main memory.

Methods

Concepts and definitions

Let ∑ = {A, C, G, T} be a set of DNA alphabets, where
A, C, G, and T are called DNA characters or four bases;
A is for adenine, C for cytosine, G for guanine, and T
for thiamine. A DNA sequence S is an ordered list of
DNA alphabets. S is denoted by <c1, c2… cl> where ci
∈ ∑ and │S│ denotes the length of sequence S. A
sequence with length n is called an n-sequence. DNA
sequence database D is a set of tuples <Sid, S> where
Sid is a sequence identifier and S is the corresponding
sequence.
 A sequence α = <a1, a2,…, an> is called a con-
tiguous sub-sequence of another sequence β = <b1,
b2, …, bm>, and β is a contiguous super-sequence of
α, denoted as α⊆β, if there exists integers 1 ≤ j1
≤ j2 ≤ … ≤ jn ≤ m and ji+1 = ji + 1 for 1 ≤ i

≤ n-1 such that a1 = bj1, a2 = bj2, …, an = bjn. We can
also say that α is contained by β. In our paper, we
use the term “(sub)-sequence” to describe a “contig-
uous (sub)-sequence” in brief. A contiguous frequent
sub-sequence X is said to be maximal if none of its su-
per-sequences Y is frequent.
 Given a DNA sequence database D and a minimum
support threshold δ, the problem of maximal con-
tiguous frequent sub-sequence mining is to find the
complete set of maximal contiguous frequent patterns
from that database. For example, let our running DNA
sequence database be D in Table 1, and the minimum
support threshold δ ≥ 2. Sequence <ATCGTGACT> is
9-sequence since its length is 9. Sequence <ATCG> is
a contiguous frequent sub-sequence because it is con-
tained by sequences 10, 20, and 30. S = <CGTGATT>
is a frequent contiguous sub-sequence of length 7 since
both sequences 40 and 50 contain it. Moreover, it is
one of the maximal frequent contiguous sub-sequences,
because there is no contiguous frequent super-se-
quence of <CGTGATT> with a minimum support of 2.
 Definition (Projection): Let a sequence S = (α + β);
then, α is a prefix of S and β is called a projection
of S w.r.t. prefix α.
 Definition (Projected database): Let α be a frequent
contiguous sequence in a sequence database S. Then,
α-PDB is the collection of postfixes of sequences in S,
w.r.t. prefix α.
 For the database in Table 1, for example, <C>-PDB
consists of eight postfix sub-sequences: <GTGACT>,
<T>, <ATCGTT>, <GTT>, <ATCGTGAGA>, <GTGAAG>,
<GTGATTG>, and <GTGATT>. We have the following
lemma regarding the PDB for the mining of maximal
contiguous frequent patterns.
 Lemma (Projected database): Let D be a DNA se-
quence database such that α is prefix(s) of the se-
quences in the database. Considering the sub-sequence
and super-sequence relationship in terms of contiguity,
the size of α-PDB cannot exceed the size of D, which
means |Dα| ≤ |D|.
 Proof: The lemma is regarding the size of a projected
database. Obviously, the α-PDB can have same suffix
sequences as the original database D only if α appears

Maximal Contiguous Pattern Mining in DNA Sequence 53

Fig. 1. The MCFS algorithm.

MCFS, Maximal Contiguous

Frequent Suffix tree algo-

rithm; PDB, projected data-

base.

in every sequence in D. Otherwise, if only those suffixes
in D that are super-sequences of α will appear in the
α-PDB, then α-PDB cannot contain more sequences
than D. For every sequence γ in D such that γ is a
super-sequence of α, γ appears in the α-PDB in
whole only if α is a prefix of γ. Otherwise, only a
sub-sequence of γ appears in the α-PDB. Therefore,
the size of α-PDB cannot exceed the size of D.
 For example, if we consider the <A>-PDB from the
example database, it contains 9 suffixes: TCGTGACT,
CT, TCGATTG, TTG, TCGTGAGA, GA, TTG, TTACT, and
CT. So, can we see that the suffixes CT, TTG, and GA
sub-sequences among the suffixes. So, in terms of con-
tiguity, TCGTGACT, TCGATTG, TCGTGAGA, and TTACT
are the super-sequences. Therefore, <A>-PDB contains
only four suffixes. So, the size of the PDB cannot ex-
ceed the size of original database. This claims that any
PDB created from a database that fits into the main
memory will certainly be fitted into the main memory.

Maximal contiguous frequent suffix tree algo-
rithm

We describe our algorithm, called Maximal Contiguous
Frequent Suffix tree algorithm (MCFS), to discover max-
imal contiguous frequent patterns from DNA sequence
datasets. Let us assume for now that the DNA se-
quence database can be fit into the main memory. The
method proceeds as follows: 1) construct four projected
databases, namely <A>, <T>, <C>, and <G>, to mine

contiguous frequent patterns; 2) insert the suffixes of
PDBs into a suffix tree; 3) traverse the whole suffix tree
and find the set of frequent contiguous patterns; 4)
check the properties of maximality and find the set of
maximal contiguous frequent patterns.
 In order to efficiently discover frequent sub-sequen-
ces, we design a suffix tree structure that stores all the
potential sub-sequences and their corresponding sup-
ports. A ‘potential frequent sub-sequence’ is a sub-se-
quence that has at least two matches with other suf-
fixes inside the PDBs. Each PDB has its own corre-
sponding sub-tree, defined as follows. The root of the
tree is the entry point. Each node consists of three
fields: item, support, and link to the next node. Item
registers which item this node represents. Concate-
nation of all items along the path from the root to this
node represents a sub-sequence. Support registers the
support of this suffix sub-sequence from the root node
to this node. This means that if we traverse a particular
path from top to bottom, then the path from the root to
this node represents a sub-sequence, and support of
the last node in the path becomes the support of the
sub-sequence. The height of the suffix tree is not fixed,
because the lengths of the suffixes are variable.
 Our proposed algorithm (Fig. 1) proceeds in three
steps. The first step scans the original database and
constructs four PDBs. While creating PDBs of A, T, C,
and G, a register is maintained that checks for duplicate
suffixes without sorting the suffixes. If a suffix appears
more than once in a PDB, the suffix is inserted into a

54 Genomics & Informatics Vol. 10(1) 51-57, March 2012

Table 2. Minimized physical projected databases (DBs)

Projected DBs Suffixes

<A> TCGTGAGA, TCGTGACT, TCGATTG, TTACT

<T>
CGTGATTG, CGTGAGA, CGTGACT, GATTACT,

CGATTG

<C>
ATCGTGAGA, GTGATTACT, ATCGATTG, GTACT,

GTGATTG

<G> CGTGATTACT, TGATTG, TGAGA, TGACT

Table 3. Contents of the frequent file

Contiguous

frequent patterns
Support

Contiguous

frequent patterns
Support

ATTG 2 TGA 4

ATCG 3 TGATT 2

ATCGTGA 2 TT 2

ACT 2 TCGTGA 3

CT 2 GTGA 4

CGTGA 4 GTGATT 2

CGTGATT 2 GATT 2

CATCG 2 GATTG 2

Fig. 2. Complete A-subtree.

temporary buffer with support. If a suffix X has n repli-
cas in α-PDBs, for example, we move X to the tempo-
rary buffer with support n. This kind of suffix uses very
little space and thus can be stored in the memory.
Then, we check the suffixes and merge the sub-se-
quence suffixes with super sequence suffixes according
to lemma 1. In this way, the size of physical PDB does
not exceed the size of the original database. Inside the
PDBs, we do not register the value of sequence ID or
offset, because we can directly insert suffixes into the
suffix tree.
 The second step creates and inserts suffixes into suf-
fix tree. During the insertion process, four situations
arise regarding the maximality problem. First, if the in-
serting sequence is contained by some suffixes in the
PDBs, it will match a branch of the suffix tree; then, we
delete it from the result set and increase support up to
the matching point to stop inserting. Second, if the in-
serted sequence contains some sequence in the tree,
denoted as α, one of its suffixes will match the branch
representing α; then, we increase the support of α and
delete it from the result set and continue to insert other
suffixes. Third, if there exists a suffix totally matching a
prefix, say α of a PDB, we continue to find the longest
subsequence β following α in S, which matches a
root-path in α-subtree. Fourth, if there exists a suffix
α that partly matches a prefix, we merge it with the
suffix and increase the corresponding support up to the
matching point. Otherwise, we just insert it into the suf-
fix tree as a new path. If a suffix has no matches with
other suffixes inside a PDB, we just discard the suffix
after the traversing.
 The third step scans the suffix tree and finds the set
of all maximal contiguous frequent patterns. It first finds
the set of contiguous frequent sub-sequences and then
finds the set of maximal contiguous frequent patterns by
checking the properties of maximality.

An illustrative example

Let us demonstrate the MCFS algorithm using the data-
base of Table 1. <A>-PDB contains only super-sequen-
ces of suffixes storing all sub-sequences physically.

According to lemma 1, <A>-PDB contains 4 suffixes:
TCGTGACT, TCGATTG, TCGTGAGA, and TTACT. ACT
and ATTG will be moved to ‘frequent file’ with their cor-
responding supports 2. The remaining three projected
databases can be constructed in a similar manner
(Table 2).
 Now, the suffixes are inserted into the suffix tree. Fig.
2 shows the suffix sub-tree that can be traversed to find
the set of contiguous frequent patterns. The figure illus-
trates the mining technique of maximal contiguous fre-
quent patterns from A-subtree. Mining from T, C, and
G-subtrees can be done in a similar way.
 The traversal of the suffix sub-tree proceeds as
follows. First, we visit the paths from root to every de-
scending node, and we write the frequent contiguous
sub-sequences in the frequent file. Table 3 shows the
content of the frequent file with corresponding supports.
The frequent file previously contained four frequent con-
tiguous sub-sequences with their support, which are
ATTG (2), ACT (2), CT (2), and GATTG (2). After the final
traversal on the sub-trees, the contents of the frequent
file will be updated. Now, we scan the ‘frequent file’
presented by Table 3 and check if the maximality cri-
teria are met. Finally, we have five maximal contiguous

Maximal Contiguous Pattern Mining in DNA Sequence 55

Table 4. Contents of the output file

Maximal contiguous frequent

patterns
Support

ACT 2

ATCGTGA 2

CGTGATT 2

CATCG 2

GATTG 2 Fig. 3. Partitioning approach to discover maximal con-

tiguous frequent patterns for extra-large databases. MCFS,

Maximal Contiguous Frequent Suffix tree algorithm; MCFPi,

maximal contiguous frequent patterns.frequent patterns written into the output file (Table 4).

MCFS algorithm on extra large DNA sequence
database

When a DNA sequence database is too large (e.g., 100
GB or more) to fit into the memory, we have to store
it on a disk. In this case, different mining techniques are
needed, and partitioning is one such technique. Most
disk-based partitioning techniques [11-14] find frequent
patterns from each partition and check to discover all
frequent patterns. This approach, however, has some
drawbacks, because frequent patterns may look in-
frequent due to local support pruning. Suppose our da-
tabase is partitioned into two parts, D1 and D2. Sequen-
ces 10, 20, and 30 are in D1, and 40 and 50 are in D2.
Suffix ACT occurs once in D1, so it is not frequent.
According to them [12, 13], we have to discard it for lo-
cal support pruning. Another copy of ACT is in D2
(ID-50), so we discard it from the partition as well. If we
consider globally, then ACT will be a frequent pattern,
if the minimum support threshold is 2. In this way, many
frequent patterns can be lost by partitioning.
 In order to deal with this problem, we propose a
technique using a combined approach of main memory
and disk partitioning. During the first scanning over the
database, we partition the original database residing in
the disk into smaller parts so that each part can fit into
the memory. In this process, the number of partitions
should be minimized by reading as many DNA se-
quences into the memory as possible to constitute one
partition. The set of frequent patterns in D is obtained
by collecting the discovered patterns after running
MCFS on these partitions. The actual maximal con-
tiguous frequent patterns can be identified with only one
extra database pass through support counting against
all the data sequences in each partition, one at a time.
Therefore, we can employ MCFS to mine databases of
any size, with any minimum support, in just two passes
of database scanning - one for the original database
and one for the portioned databases. Firstly, store every
frequent pattern into a temporary buffer storage, namely
‘frequent file,’ with their corresponding support, and in-

frequent patterns into temporary buffer storage, namely
‘output file,’ with their corresponding support as well.
After that, we collect all the infrequent patterns from
each partition and combine them to count the corre-
sponding support of each infrequent pattern.
 The main goal of this approach is to process one
partition in the memory at a time to avoid multiple
scans over D from the secondary storage. Fig. 3 in-
dicates the technique of mining contiguous frequent
patterns from disk-based extra large database. In the
figure, D1, D2, …, Dn are the partitions of the original
database. Fi is the contiguous frequent patterns, and IFi
is the infrequent contiguous patterns from each parti-
tion. CFP is contiguous frequent patterns, and MCFPi is
maximal contiguous frequent patterns. Fi, IFi, CFP, and
MCFPi are all stored on the disk.

Results and Discussion

We compare the performance of our MCFS algorithm
with MacosVSpan for mining maximal contiguous fre-
quent sub-sequences. In this comparison, we only con-
sider the memory-based approach, as done by most
existing works. All programs were written and compiled
using Microsoft Visual C++ 6.0, run with Microsoft
Windows XP with a Pentium Duel Core 2.13 GHz CPU
with 4 GB of main memory and 500 GB hard disk. As
for practical DNA sequence databases, ‘Human ge-
nome’ (Homo sapiens GRCh37.64 DNA Chromosome
Part 1, 2, 3) and ‘Bacteria DNA sequence dataset’ were
downloaded from the NCBI website (http://www.ncbi.
nlm.nih.gov/nuccore/). The human genome database
contains 112,000 sequences, with sequence length 60.
The bacteria dataset consists of 20,000 sequences, with
sequence length 1,040.
 As for validating the combined memory-disk based
approach, we aim to show only the run-time efficiency.
We applied our main memory disk-based mining ap-
proach to Homo sapiens GRCh37.64 DNA Chromosome
Part 1, 2, and 3. Part 2 has 98,000 sequences and a

56 Genomics & Informatics Vol. 10(1) 51-57, March 2012

Fig. 5. Retrieval performance w.r.t. change of minimum

support (bacteria genome dataset). MCFS, Maximal Conti-

guous Frequent Suffix tree algorithm.

Fig. 4. Retrieval performance w.r.t. change of minimum

support (Homo sapiens GRCh37.64 DNA Chromosome Part

1). MCFS, Maximal Contiguous Frequent Suffix tree algori-

thm.

Fig. 6. Memory usage w.r.t. change of minimum support

(Homo sapiens GRCh37.64 DNA Chromosome Part 1).

MCFS, Maximal Contiguous Frequent Suffix tree algorithm.

Fig. 7. Memory usage w.r.t. change of minimum support

(bacteria genome sequence). MCFS, Maximal Contiguous

Frequent Suffix tree algorithm.

length of 60, and part 3 has 105,000 sequences with
sequence length of 60.
 With various values of minimum support, we com-
pared the run-time performance of three approaches:
MCFS (our algorithm), MacosVSpan [8], and Latest
Approach [9]. Figs. 4 and 5 show the retrieval perform-
ance with respect to the change of minimum support,
indicating that MCFS outperforms the other two.
　We also compared the memory usage of the three
approaches with various values of minimum support.
The search space was relatively smaller, because we
made use of sub-sequence and super-sequence rela-
tionships, and whenever reaching to the minimum sup-
port threshold, the sub-sequence for contiguous fre-
quent patterns was not searched. Figs. 6 and 7 show
the memory usage, indicating that our approach shows
relatively low memory usage compared to the other two.
Although both MacosVSpan and our MCFS algorithm
process one PDB after another and then produce the
maximal contiguous frequent patterns by traversing the

suffix tree, the size of the PDB cannot be larger than
the original database (according to our proposed lem-
ma); hence, the PDBs can be fit in the memory. This is
why MCFS consumes much less memory compared to
MacosVSpan.
 The Latest Approach [9] requires slightly larger mem-
ory, because it constructs the spanning tree by proc-
essing all of them at once. It does not consider the
memory usage while creating and producing the fixed-
length spanning tree. Since it first constructs the fixed-
length spanning tree and then expands these candidate
item sets to generate longer length candidate item sets,
it is not guaranteed to be fit in the memory.
 Finally, we validate our combined memory disk-based
approach by applying it to Homo sapiens GRCh37.64
DNA Chromosome Parts 1, 2, and 3. We assume that
Parts 1, 2, and 3 are partitioned and stored on the disk.
With various settings of minimum support threshold, we
measured the run-time performance (Fig. 8).
 In this paper, we have proposed an efficient algorithm,

Maximal Contiguous Pattern Mining in DNA Sequence 57

Fig. 8. Performance of MCFS algorithm w.r.t. increasing

minimum support in partitioning approach (on Homo sapi-
ens GRCh37.64 DNA Chromosome Part 1, 2, 3). MCFS,

Maximal Contiguous Frequent Suffix tree algorithm.

called MCFS, for mining maximal contiguous frequent
sub-sequences, which requires only one scan of the
original DNA sequence database. The proposed algo-
rithm has the following characteristics. First, it can ac-
cept any value of the minimum support threshold effec-
tively by means of one-time database access and con-
struction of a suffix tree. Second, it can effectively mine
the complete set of maximal contiguous frequent pat-
terns without specifying the sequence lengths in
advance. Third, the proposed method can produce re-
sults only by tree search, without expansion for pro-
duction of a candidate set. Fourth, from the experi-
mental results, we can see the scalability of our ap-
proach. As a result, it can be applied not only to a DNA
sequence with a small number of items (dimension) but
also amino acid sequences with a large number of
items whose sizes can be very large and other multi-di-
mensional sequence datasets. Our experiments show
that MCFS outperforms other existing approaches for
mining maximal contiguous sub-sequences. In the fu-
ture, we intend to extend this work to include gaps and
execute it on real biological datasets.

Acknowledgments

This work was supported by the National Research
Foundation (NRF) grant (No. 2011-0018264) of the
Ministry of Education, Science and Technology (MEST)
of Korea.

References
1. Chvátal V, Sankoff D. Longest common subsequences

of two random sequences. J Appl Probab 1975;12:
306-315.

2. Hirschberg DS. Algorithms for the longest common
subsequence problem. J Assoc Comput Mach 1977;
24:664-675.

3. Huo H, Stojkovic V. A suffix tree construction algorithm
for DNA sequences. In: Proceeding of IEEE Internatio-
nal Conference on Bioinformatics and Bioengineering
(BIBE’07), 2007 Oct 14-17, Boston, MA, pp. 1178-1182.

4. Tata S, Hankins RA, Patel JM. Practical suffix tree
construction. In: Proceeding of 30th International Con-
ference on Very Large Data Bases (VLDB’04), 2004
Aug 29-Sep 3, Toronto, pp. 36-47.

5. Agrawal R, Srikant R. Fast algorithms for mining asso-
ciation rules. In: Proceeding of 20th International Con-
ference on Very Large Data Bases (VLDB’94), 1994
Sep 12-15, Santiago de Chile, pp. 487-499.

6. Srikant R, Agrawal R. Mining sequential patterns: gen-
eralizations and performance improvements. In: Proce-
eding of 5th International Conference on Extending
Database Technology (EDBT’96), 1996 Mar 25-29,
Avignon, pp. 3-17.

7. Pei J, Han J, Mortazavi-Asl B, Chen Q, Dayal U, Hsu
MC. PrefixSpan: mining sequential patterns efficiently
by prefix-projected pattern growth. In: Proceeding of
IEEE International Conference on Data Engineering
(ICDE’01), 2001 Apr 2-6, Heidelberg, pp. 215-224.

8. Pan J, Wang P, Wang W, Shi B, Yang G. Efficient al-
gorithms for mining maximal frequent concatenate se-
quences in biological datasets. In: Proceeding of 5th
International Conference on Computer and Information
Technology (CIT’05), 2005 Sep 21-23, Shanghai, pp.
98-104.

9. Kang TH, Yoo JS, Kim HY. Mining frequent contiguous
sequence patterns in biological sequences. In: Proceed-
ing of 7th IEEE International Conference on Bioinfor-
matics and Bioengineering (BIBE’08), 2008 Oct 8-10,
Athens, pp. 723-728.

10. Zerin SF, Ahmed CF, Tanbeer SK, Jeong BS. A fast in-
dexed-based contiguous sequential pattern mining tech-
nique in biological data sequences. In: Proceeding of
2nd International Conference on Emerging Databases
(EBD’10), 2010 Aug 30-31, Jeju.

11. Appice A, Ceci M, Turi A, Malerba D. A parallel, dis-
tributed algorithm for relational frequent pattern discov-
ery from very large data sets. Intell Data Anal 2011;
15:69-88.

12. Lin MY, Lee SY. Fast discovery of sequential patterns
through memory indexing and database partitioning. J
Inf Sci Eng 2005;21:109-128.

13. Nguyen SN, Orlowska ME. A further study in the data
partitioning approach for frequent itemsets mining. In:
Proceeding of 17th Australasian Database Conference
(ADC’06), 2006 Jan 16-19, Hobart, Tasmania, pp. 31-
37.

14. Totad SG, Geeta RB, Prasanna CR, Santhosh NK,
Reddy PV. Scaling data mining algorithms to large and
distributed datasets. Intl J Database Manag Syst 2010;
2:26-35.

