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Abstract
Mining interesting patterns from DNA sequences is one 
of the most challenging tasks in bioinformatics and 
computational biology. Maximal contiguous frequent 
patterns are preferable for expressing the function and 
structure of DNA sequences and hence can capture the 
common data characteristics among related sequences. 
Biologists are interested in finding frequent orderly ar-
rangements of motifs that are responsible for similar ex-
pression of a group of genes. In order to reduce mining 
time and complexity, however, most existing sequence 
mining algorithms either focus on finding short DNA se-
quences or require explicit specification of sequence 
lengths in advance. The challenge is to find longer se-
quences without specifying sequence lengths in ad-
vance. In this paper, we propose an efficient approach 
to mining maximal contiguous frequent patterns from 
large DNA sequence datasets. The experimental results 
show that our proposed approach is memory-efficient 
and mines maximal contiguous frequent patterns within 
a reasonable time.
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Introduction
Mining patterns from DNA sequences refers to the task 
of discovering sequences that are similar or identical 
between different genomic locations or different geno-
mes. How to efficiently discover long frequent con-
tiguous sequences poses a great challenge for existing 
sequential pattern mining algorithms. The problem of 

finding the maximal contiguous frequent pattern is im-
portant in bioinformatics and has been used for predict-
ing biological functions held in genomic sequences 
[1-4]. In the beginning, the problem of finding common 
subsequences from sequences of more than 2 was 
studied [1, 2]; then, many tried to solve more general 
sequential pattern mining problems.
  A typical a priori algorithm, such as Generalized 
Sequential Pattern algorithm (GSP) [5, 6], adopts a mul-
tiple- pass, generation-and-test approach. In one pass, 
all single items (1-sequences) are counted. From the fre-
quent items, a set of candidate 2-sequences are 
formed, and another pass is made to identify their 
frequency. The frequent 2-sequences are used to gen-
erate the candidate 3-sequences, and this process is re-
peated until no more frequent sequences are found. 
Normally, a hash tree-based search is employed for effi-
cient support counting. Finally, non-maximal frequent 
sequences are removed. Based on this idea, a more ef-
ficient algorithm, called PrefixSpan [7], has been pro-
posed, which examines only the prefix subsequences 
and projects only their corresponding postfix sub-
sequences into the projected database (PDB). In each 
PDB, contiguous sequences are grown by exploring lo-
cal length-1 frequent sequences. A memory-based 
pseudo-projection technique is developed to reduce the 
cost of projection and speed up processing. When min-
ing long frequent concatenated sequences, however, 
this method becomes inefficient in terms of time and 
space. Therefore, it is impractical to apply PrefixSpan to 
mine long contiguous sequences, like biological 
datasets.
  Pan et al. [8] proposed to use a variable length span-
ning tree to mine maximal concatenated frequent sub- 
sequences and developed algorithms, called Macos-
FSpan and MacosVSpan, based on the PrefixSpan 
approach. MacosVSpan is efficient for mining long con-
catenated frequent sub-sequences, whereas Macos-
FSpan has some limitations, because it constructs 
length-4 fixed length candidate sequences first and re-
cursively mines length-5, length-6 candidate sequences, 
etc. This is very time consuming, because in a practical 
DNA sequence database, a sub-sequence may occur 
multiple times in the same sequence. Another problem 
is that both MacosVSpan and MacosFSpan use the 
pointer-offset pair to represent the suffixes inside the 
in-memory pseudo PDB, which is not enough to repre-
sent the huge number of suffixes in a physical PDB. 
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Table 1. A DNA sequence database

Sid Sequence

10 ATCGTGACT

20 CATCGATTG

30 CATCGTGAGA

40 TCGTGATTG

50 GCGTGATTACT

Kang et al. [9] have claimed that their algorithm is more 
efficient than the MacosVSpan algorithm, but it was 
based on MacosFSpan, which needed multiple scans of 
the database. Recently, Zerin et al. [10] have proposed 
an indexed-based method to find the frequent con-
tiguous sequences with single database scanning. This 
approach builds the fixed-length spanning tree in a way 
similar to Kang et al. [9], but it records the sequence 
IDs and starting position of the fixed length patterns 
with frequency in the leaf node of the tree. Although this 
approach shows better results than its predecessors in 
terms of space, time complexity is still not acceptable.
  A practical DNA sequence database contains a large 
number of sequences, where a sub-sequence may oc-
cur multiple times in the same sequence. Therefore, we 
envisage using the concept of the suffix tree in terms of 
the variable length spanning tree of Pan et al. [8] to 
have the full advantages of prefix matching. Another as-
pect to consider is the size of real DNA sequence data-
bases, which is ever increasing. For the cases where a 
DNA sequence database can not fit into the main mem-
ory, disk-based mining has been studied, based on par-
titioning [11-14]. Most of these techniques, however, on-
ly consider local frequency counting, although many fre-
quent patterns may look infrequent due to local support 
pruning. In this paper, we propose a suffix tree-based 
approach for maximal contiguous frequent sub-sequen-
ce mining from DNA sequence datasets by means of a 
variable length spanning tree. We also introduce a com-
bined main memory- and disk-based approach for min-
ing maximal contiguous frequent patterns from extra 
large DNA sequence databases that can not fit into the 
main memory.

Methods

Concepts and definitions

Let ∑ = {A, C, G, T} be a set of DNA alphabets, where 
A, C, G, and T are called DNA characters or four bases; 
A is for adenine, C for cytosine, G for guanine, and T 
for thiamine. A DNA sequence S is an ordered list of 
DNA alphabets. S is denoted by <c1, c2… cl> where ci 
∈ ∑ and │S│ denotes the length of sequence S. A 
sequence with length n is called an n-sequence. DNA 
sequence database D is a set of tuples <Sid, S> where 
Sid is a sequence identifier and S is the corresponding 
sequence.
  A sequence α = <a1, a2,…, an> is called a con-
tiguous sub-sequence of another sequence β = <b1, 
b2, …, bm>, and β is a contiguous super-sequence of 
α, denoted as α⊆β, if there exists integers 1 ≤  j1 
≤  j2 ≤ … ≤  jn  ≤ m and ji+1 = ji + 1 for 1 ≤ i 

≤ n-1 such that a1 = bj1, a2 = bj2, …, an = bjn. We can 
also say that α is contained by β. In our paper, we 
use the term “(sub)-sequence” to describe a “contig-
uous (sub)-sequence” in brief. A contiguous frequent 
sub-sequence X is said to be maximal if none of its su-
per-sequences Y is frequent.
  Given a DNA sequence database D and a minimum 
support threshold δ, the problem of maximal con-
tiguous frequent sub-sequence mining is to find the 
complete set of maximal contiguous frequent patterns 
from that database. For example, let our running DNA 
sequence database be D in Table 1, and the minimum 
support threshold δ ≥ 2. Sequence <ATCGTGACT> is 
9-sequence since its length is 9. Sequence <ATCG> is 
a contiguous frequent sub-sequence because it is con-
tained by sequences 10, 20, and 30. S = <CGTGATT> 
is a frequent contiguous sub-sequence of length 7 since 
both sequences 40 and 50 contain it. Moreover, it is 
one of the maximal frequent contiguous sub-sequences, 
because there is no contiguous frequent super-se-
quence of <CGTGATT> with a minimum support of 2.
  Definition (Projection): Let a sequence S = (α + β); 
then, α is a prefix of S and β is called a projection 
of S w.r.t. prefix α.
  Definition (Projected database): Let α be a frequent 
contiguous sequence in a sequence database S. Then, 
α-PDB is the collection of postfixes of sequences in S, 
w.r.t. prefix α.
  For the database in Table 1, for example, <C>-PDB 
consists of eight postfix sub-sequences: <GTGACT>, 
<T>, <ATCGTT>, <GTT>, <ATCGTGAGA>, <GTGAAG>, 
<GTGATTG>, and <GTGATT>. We have the following 
lemma regarding the PDB for the mining of maximal 
contiguous frequent patterns.
  Lemma (Projected database): Let D be a DNA se-
quence database such that α is prefix(s) of the se-
quences in the database. Considering the sub-sequence 
and super-sequence relationship in terms of contiguity, 
the size of α-PDB cannot exceed the size of D, which 
means |Dα| ≤ |D|.
  Proof: The lemma is regarding the size of a projected 
database. Obviously, the α-PDB can have same suffix 
sequences as the original database D only if α appears 
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Fig. 1. The MCFS algorithm. 

MCFS, Maximal Contiguous 

Frequent Suffix tree algo-

rithm; PDB, projected data-

base.

in every sequence in D. Otherwise, if only those suffixes 
in D that are super-sequences of α will appear in the 
α-PDB, then α-PDB cannot contain more sequences 
than D. For every sequence γ in D such that γ is a 
super-sequence of α, γ appears in the α-PDB in 
whole only if α is a prefix of γ. Otherwise, only a 
sub-sequence of γ appears in the α-PDB. Therefore, 
the size of α-PDB cannot exceed the size of D.
  For example, if we consider the <A>-PDB from the 
example database, it contains 9 suffixes: TCGTGACT, 
CT, TCGATTG, TTG, TCGTGAGA, GA, TTG, TTACT, and 
CT. So, can we see that the suffixes CT, TTG, and GA 
sub-sequences among the suffixes. So, in terms of con-
tiguity, TCGTGACT, TCGATTG, TCGTGAGA, and TTACT 
are the super-sequences. Therefore, <A>-PDB contains 
only four suffixes. So, the size of the PDB cannot ex-
ceed the size of original database. This claims that any 
PDB created from a database that fits into the main 
memory will certainly be fitted into the main memory.

Maximal contiguous frequent suffix tree algo-
rithm

We describe our algorithm, called Maximal Contiguous 
Frequent Suffix tree algorithm (MCFS), to discover max-
imal contiguous frequent patterns from DNA sequence 
datasets. Let us assume for now that the DNA se-
quence database can be fit into the main memory. The 
method proceeds as follows: 1) construct four projected 
databases, namely <A>, <T>, <C>, and <G>, to mine 

contiguous frequent patterns; 2) insert the suffixes of 
PDBs into a suffix tree; 3) traverse the whole suffix tree 
and find the set of frequent contiguous patterns; 4) 
check the properties of maximality and find the set of 
maximal contiguous frequent patterns.
  In order to efficiently discover frequent sub-sequen-
ces, we design a suffix tree structure that stores all the 
potential sub-sequences and their corresponding sup-
ports. A ‘potential frequent sub-sequence’ is a sub-se-
quence that has at least two matches with other suf-
fixes inside the PDBs. Each PDB has its own corre-
sponding sub-tree, defined as follows. The root of the 
tree is the entry point. Each node consists of three 
fields: item, support, and link to the next node. Item 
registers which item this node represents. Concate-
nation of all items along the path from the root to this 
node represents a sub-sequence. Support registers the 
support of this suffix sub-sequence from the root node 
to this node. This means that if we traverse a particular 
path from top to bottom, then the path from the root to 
this node represents a sub-sequence, and support of 
the last node in the path becomes the support of the 
sub-sequence. The height of the suffix tree is not fixed, 
because the lengths of the suffixes are variable.
  Our proposed algorithm (Fig. 1) proceeds in three 
steps. The first step scans the original database and 
constructs four PDBs. While creating PDBs of A, T, C, 
and G, a register is maintained that checks for duplicate 
suffixes without sorting the suffixes. If a suffix appears 
more than once in a PDB, the suffix is inserted into a 
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Table 2. Minimized physical projected databases (DBs)

Projected DBs Suffixes

<A> TCGTGAGA, TCGTGACT, TCGATTG, TTACT

<T>
CGTGATTG, CGTGAGA, CGTGACT, GATTACT, 

CGATTG 

<C>
ATCGTGAGA, GTGATTACT, ATCGATTG, GTACT, 

GTGATTG

<G> CGTGATTACT, TGATTG, TGAGA, TGACT

Table 3. Contents of the frequent file

Contiguous 

frequent patterns
Support

Contiguous 

frequent patterns
Support

ATTG 2 TGA 4

ATCG 3 TGATT 2

ATCGTGA 2 TT 2

ACT 2 TCGTGA 3

CT 2 GTGA 4

CGTGA 4 GTGATT 2

CGTGATT 2 GATT 2

CATCG 2 GATTG 2

Fig. 2. Complete A-subtree. 

temporary buffer with support. If a suffix X has n repli-
cas in α-PDBs, for example, we move X to the tempo-
rary buffer with support n. This kind of suffix uses very 
little space and thus can be stored in the memory. 
Then, we check the suffixes and merge the sub-se-
quence suffixes with super sequence suffixes according 
to lemma 1. In this way, the size of physical PDB does 
not exceed the size of the original database. Inside the 
PDBs, we do not register the value of sequence ID or 
offset, because we can directly insert suffixes into the 
suffix tree.
  The second step creates and inserts suffixes into suf-
fix tree. During the insertion process, four situations 
arise regarding the maximality problem. First, if the in-
serting sequence is contained by some suffixes in the 
PDBs, it will match a branch of the suffix tree; then, we 
delete it from the result set and increase support up to 
the matching point to stop inserting. Second, if the in-
serted sequence contains some sequence in the tree, 
denoted as α, one of its suffixes will match the branch 
representing α; then, we increase the support of α and 
delete it from the result set and continue to insert other 
suffixes. Third, if there exists a suffix totally matching a 
prefix, say α of a PDB, we continue to find the longest 
subsequence β following α in S, which matches a 
root-path in α-subtree. Fourth, if there exists a suffix 
α that partly matches a prefix, we merge it with the 
suffix and increase the corresponding support up to the 
matching point. Otherwise, we just insert it into the suf-
fix tree as a new path. If a suffix has no matches with 
other suffixes inside a PDB, we just discard the suffix 
after the traversing.
  The third step scans the suffix tree and finds the set 
of all maximal contiguous frequent patterns. It first finds 
the set of contiguous frequent sub-sequences and then 
finds the set of maximal contiguous frequent patterns by 
checking the properties of maximality.

An illustrative example

Let us demonstrate the MCFS algorithm using the data-
base of Table 1. <A>-PDB contains only super-sequen-
ces of suffixes storing all sub-sequences physically. 

According to lemma 1, <A>-PDB contains 4 suffixes: 
TCGTGACT, TCGATTG, TCGTGAGA, and TTACT. ACT 
and ATTG will be moved to ‘frequent file’ with their cor-
responding supports 2. The remaining three projected 
databases can be constructed in a similar manner 
(Table 2).
  Now, the suffixes are inserted into the suffix tree. Fig. 
2 shows the suffix sub-tree that can be traversed to find 
the set of contiguous frequent patterns. The figure illus-
trates the mining technique of maximal contiguous fre-
quent patterns from A-subtree. Mining from T, C, and 
G-subtrees can be done in a similar way.
  The traversal of the suffix sub-tree proceeds as 
follows. First, we visit the paths from root to every de-
scending node, and we write the frequent contiguous 
sub-sequences in the frequent file. Table 3 shows the 
content of the frequent file with corresponding supports. 
The frequent file previously contained four frequent con-
tiguous sub-sequences with their support, which are 
ATTG (2), ACT (2), CT (2), and GATTG (2). After the final 
traversal on the sub-trees, the contents of the frequent 
file will be updated. Now, we scan the ‘frequent file’ 
presented by Table 3 and check if the maximality cri-
teria are met. Finally, we have five maximal contiguous 
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Table 4. Contents of the output file

Maximal contiguous frequent 

patterns
Support

ACT 2

ATCGTGA 2

CGTGATT 2

CATCG 2

GATTG 2 Fig. 3. Partitioning approach to discover maximal con-

tiguous frequent patterns for extra-large databases. MCFS, 

Maximal Contiguous Frequent Suffix tree algorithm; MCFPi, 

maximal contiguous frequent patterns.frequent patterns written into the output file (Table 4).

MCFS algorithm on extra large DNA sequence 
database

When a DNA sequence database is too large (e.g., 100 
GB or more) to fit into the memory, we have to store 
it on a disk. In this case, different mining techniques are 
needed, and partitioning is one such technique. Most 
disk-based partitioning techniques [11-14] find frequent 
patterns from each partition and check to discover all 
frequent patterns. This approach, however, has some 
drawbacks, because frequent patterns may look in-
frequent due to local support pruning. Suppose our da-
tabase is partitioned into two parts, D1 and D2. Sequen-
ces 10, 20, and 30 are in D1, and 40 and 50 are in D2. 
Suffix ACT occurs once in D1, so it is not frequent. 
According to them [12, 13], we have to discard it for lo-
cal support pruning. Another copy of ACT is in D2 
(ID-50), so we discard it from the partition as well. If we 
consider globally, then ACT will be a frequent pattern, 
if the minimum support threshold is 2. In this way, many 
frequent patterns can be lost by partitioning.
  In order to deal with this problem, we propose a 
technique using a combined approach of main memory 
and disk partitioning. During the first scanning over the 
database, we partition the original database residing in 
the disk into smaller parts so that each part can fit into 
the memory. In this process, the number of partitions 
should be minimized by reading as many DNA se-
quences into the memory as possible to constitute one 
partition. The set of frequent patterns in D is obtained 
by collecting the discovered patterns after running 
MCFS on these partitions. The actual maximal con-
tiguous frequent patterns can be identified with only one 
extra database pass through support counting against 
all the data sequences in each partition, one at a time. 
Therefore, we can employ MCFS to mine databases of 
any size, with any minimum support, in just two passes 
of database scanning - one for the original database 
and one for the portioned databases. Firstly, store every 
frequent pattern into a temporary buffer storage, namely 
‘frequent file,’ with their corresponding support, and in-

frequent patterns into temporary buffer storage, namely 
‘output file,’ with their corresponding support as well. 
After that, we collect all the infrequent patterns from 
each partition and combine them to count the corre-
sponding support of each infrequent pattern.
  The main goal of this approach is to process one 
partition in the memory at a time to avoid multiple 
scans over D from the secondary storage. Fig. 3 in-
dicates the technique of mining contiguous frequent 
patterns from disk-based extra large database. In the 
figure, D1, D2, …, Dn are the partitions of the original 
database. Fi is the contiguous frequent patterns, and IFi 
is the infrequent contiguous patterns from each parti-
tion. CFP is contiguous frequent patterns, and MCFPi is 
maximal contiguous frequent patterns. Fi, IFi, CFP, and 
MCFPi are all stored on the disk.

Results and Discussion

We compare the performance of our MCFS algorithm 
with MacosVSpan for mining maximal contiguous fre-
quent sub-sequences. In this comparison, we only con-
sider the memory-based approach, as done by most 
existing works. All programs were written and compiled 
using Microsoft Visual C++ 6.0, run with Microsoft 
Windows XP with a Pentium Duel Core 2.13 GHz CPU 
with 4 GB of main memory and 500 GB hard disk. As 
for practical DNA sequence databases, ‘Human ge-
nome’ (Homo sapiens GRCh37.64 DNA Chromosome 
Part 1, 2, 3) and ‘Bacteria DNA sequence dataset’ were 
downloaded from the NCBI website (http://www.ncbi. 
nlm.nih.gov/nuccore/). The human genome database 
contains 112,000 sequences, with sequence length 60. 
The bacteria dataset consists of 20,000 sequences, with 
sequence length 1,040.
  As for validating the combined memory-disk based 
approach, we aim to show only the run-time efficiency. 
We applied our main memory disk-based mining ap-
proach to Homo sapiens GRCh37.64 DNA Chromosome 
Part 1, 2, and 3. Part 2 has 98,000 sequences and a 
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Fig. 5. Retrieval performance w.r.t. change of minimum 

support (bacteria genome dataset). MCFS, Maximal Conti-

guous Frequent Suffix tree algorithm.

Fig. 4. Retrieval performance w.r.t. change of minimum 

support (Homo sapiens GRCh37.64 DNA Chromosome Part 

1). MCFS, Maximal Contiguous Frequent Suffix tree algori-

thm.

Fig. 6. Memory usage w.r.t. change of minimum support 

(Homo sapiens GRCh37.64 DNA Chromosome Part 1). 

MCFS, Maximal Contiguous Frequent Suffix tree algorithm.

Fig. 7. Memory usage w.r.t. change of minimum support 

(bacteria genome sequence). MCFS, Maximal Contiguous 

Frequent Suffix tree algorithm.

length of 60, and part 3 has 105,000 sequences with 
sequence length of 60.
  With various values of minimum support, we com-
pared the run-time performance of three approaches: 
MCFS (our algorithm), MacosVSpan [8], and Latest 
Approach [9]. Figs. 4 and 5 show the retrieval perform-
ance with respect to the change of minimum support, 
indicating that MCFS outperforms the other two.
　We also compared the memory usage of the three 
approaches with various values of minimum support. 
The search space was relatively smaller, because we 
made use of sub-sequence and super-sequence rela-
tionships, and whenever reaching to the minimum sup-
port threshold, the sub-sequence for contiguous fre-
quent patterns was not searched. Figs. 6 and 7 show 
the memory usage, indicating that our approach shows 
relatively low memory usage compared to the other two. 
Although both MacosVSpan and our MCFS algorithm 
process one PDB after another and then produce the 
maximal contiguous frequent patterns by traversing the 

suffix tree, the size of the PDB cannot be larger than 
the original database (according to our proposed lem-
ma); hence, the PDBs can be fit in the memory. This is 
why MCFS consumes much less memory compared to 
MacosVSpan.
  The Latest Approach [9] requires slightly larger mem-
ory, because it constructs the spanning tree by proc-
essing all of them at once. It does not consider the 
memory usage while creating and producing the fixed- 
length spanning tree. Since it first constructs the fixed- 
length spanning tree and then expands these candidate 
item sets to generate longer length candidate item sets, 
it is not guaranteed to be fit in the memory.
  Finally, we validate our combined memory disk-based 
approach by applying it to Homo sapiens GRCh37.64 
DNA Chromosome Parts 1, 2, and 3. We assume that 
Parts 1, 2, and 3 are partitioned and stored on the disk. 
With various settings of minimum support threshold, we 
measured the run-time performance (Fig. 8).
  In this paper, we have proposed an efficient algorithm, 



Maximal Contiguous Pattern Mining in DNA Sequence 57

Fig. 8. Performance of MCFS algorithm w.r.t. increasing 

minimum support in partitioning approach (on Homo sapi-
ens GRCh37.64 DNA Chromosome Part 1, 2, 3). MCFS, 

Maximal Contiguous Frequent Suffix tree algorithm.

called MCFS, for mining maximal contiguous frequent 
sub-sequences, which requires only one scan of the 
original DNA sequence database. The proposed algo-
rithm has the following characteristics. First, it can ac-
cept any value of the minimum support threshold effec-
tively by means of one-time database access and con-
struction of a suffix tree. Second, it can effectively mine 
the complete set of maximal contiguous frequent pat-
terns without specifying the sequence lengths in 
advance. Third, the proposed method can produce re-
sults only by tree search, without expansion for pro-
duction of a candidate set. Fourth, from the experi-
mental results, we can see the scalability of our ap-
proach. As a result, it can be applied not only to a DNA 
sequence with a small number of items (dimension) but 
also amino acid sequences with a large number of 
items whose sizes can be very large and other multi-di-
mensional sequence datasets. Our experiments show 
that MCFS outperforms other existing approaches for 
mining maximal contiguous sub-sequences. In the fu-
ture, we intend to extend this work to include gaps and 
execute it on real biological datasets.
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