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Osteoarthritis (OA) is a long-term condition that causes joint pain and reduced
movement. Notably, the same pathways governing cell growth, death, and differentiation
during the growth and development of the body are also common drivers of OA.
The osteochondral interface is a vital structure located between hyaline cartilage and
subchondral bone. It plays a critical role in maintaining the physical and biological
function, conveying joint mechanical stress, maintaining chondral microenvironment, as
well as crosstalk and substance exchange through the osteochondral unit. In this review,
we summarized the progress in research concerning the area of osteochondral junction,
including its pathophysiological changes, molecular interactions, and signaling pathways
that are related to the ultrastructure change. Multiple potential treatment options were
also discussed in this review. A thorough understanding of these biological changes and
molecular mechanisms in the pathologic process will advance our understanding of OA
progression, and inform the development of effective therapeutics targeting OA.
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INTRODUCTION

Osteoarthritis (OA) is the most common joint disorder that affects more than 303 million
people worldwide (James et al., 2018), characterized by a series of symptoms, including synovial
inflammation, malacia, fibrillation, clefting, and degradation of articular cartilage, subchondral
bone sclerosis, and outgrowth of osteophytes (Brandt, 1988; Hulth, 1993). The pathogenesis of
OA involves crosstalk between bone, muscle, tendon, synovium, and fat pad. All the elements
above take part in the integrated occurrence and development of the disease (Yuan et al., 2014).
In particular, the osteochondral interface, which is the interface between hyaline cartilage and
subchondral bone of the joint, was recently shown to increase molecular exchange, or ease of fluid
transport, change of thickness, and neurovascular growth with increasing stages of OA (Findlay and
Kuliwaba, 2016; Pouran et al., 2017; Qin et al., 2019), suggesting that the osteochondral interface
is a region of active tissue remodeling during the disease process. Several studies have shown that
the genes involved in normal bone development, such as endochondral ossification, chondrocyte
hypertrophy, and joint formation are activated during the progression of OA (Lin et al., 2009;
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Onyekwelu et al., 2009; Saito et al., 2010; Singh et al., 2020).
It is noteworthy that, in some cases, modification of these
developmental genes can impact the severity of OA (Dou
et al., 2020). A thorough understanding from a structural
and developmental biology perspective may provide important
insights into the mechanism behind disease etiology, which may
contribute to the development of novel strategies in treating
OA. In the present review, we will give an update on research
concerning the osteochondral interface changes during OA,
including its morphology, histology, molecular interaction, and
signaling pathways.

THE OSTEOCHONDRAL INTERFACE IS
AN ACTIVE TISSUE RESPONSIBLE FOR
MAINTAINING THE JOINT
HOMEOSTASIS

The growth plate, also known as the epiphyseal plate or physis,
is the area of developing tissue near the ends of the long bones
in children and adolescents. During the process of growth and
development, the superficial layer of the proliferation zone, which
is close to the articular surface, proliferates outwards. In this
process, the sedimentation and absorption of calcium occur at a
similar rate, so that the objective of growth and development is
achieved. Mature bone does not absorb the sedimented calcium
salt and forms the calcified cartilage zone (CCZ), a thin interlayer
of hard tissue between the hyaline articular cartilage and the
subchondral bone (Aghajanian and Mohan, 2018).

According to different concentrations in glycosaminoglycan,
collagen, the orientation of the collagen fibers, and density
of cells, the adult articular surface is separated into deep
non-calcified cartilage, tidemark, CCZ, cement line, and the
subchondral bone plate (Suri and Walsh, 2012; Figure 1). Among
them, the non-calcified cartilage layer, also known as the hyaline
cartilage layer, contains a superficial layer, a transitional layer, and
a radiate layer (Benninghoff and Research, 1925; Lehner et al.,
1989; Modl et al., 1991). The occurrence of tidemark is the sign
of articular cartilage maturity. The CCZ connects the radiate
layer with tidemark, which is the histologic division between the
two layers. The calcified zone tightly connects the subchondral
bone with the cement line. This close combination between the
two layers dramatically increases the contact area and strength
of the area. It also helps to disperse instantaneous stress to the
subchondral bone (Wang et al., 2009; Suri and Walsh, 2012).

The osteochondral interface serves as the mechanical function
as the wavy surface of the osteochondral interface tightly anchors
the uncalcified cartilage to the subchondral bone. It also functions
as the loading transition media from cartilage to the bone
surface. The intermediate stiffness of CCZ facilitates the pressure
conduction within the osteochondral interface, thus reducing
the stress concentration due to the difference of the elastic
module between the two materials. Under stressed conditions,
the wavy contour and the collagen II in the osteochondral area
can efficiently confront the shear force, thus safely conveying the
pressure to CCZ. It is interesting to note that fractures often

occur in the tidemark region in adults (Meachim and Bentley,
1978), however, in case of adolescents where there is still no
clear separation in CCZ, the fracture tends to occur alongside
the cement line and irregular surface of the subchondral bone
(Matthewson and Dandy, 1978). This indicates CCZ plays an
important role in preventing the elongation of cracks on the
osteochondral interface.

The osteochondral zone also serves as the node for molecular
transport, as well as crosstalk between uncalcified cartilage
and subchondral bone. Earlier studies reported that the CCZ
was incapable of transporting liquids and gas (Collins, 1949;
Brower et al., 1962; Maroudas et al., 1968; Honner and
Thompson, 1971; Ogata and Whiteside, 1979), suggesting that
nutrients reached cartilage only through the articular surface
via passive diffusion. However, this notion has recently been
challenged by several lines of research. Pouran et al. (2017) tested
equine and human samples using ultra-high micro-computerized
tomography (micro-CT) and reported that decreased cartilage,
CCZ, or subchondral bone thickness, as well as an increased
porosity of subchondral plate or CCZ, are all positively correlated
with diffusion transport. Multi-regression analysis of equine
samples also showed a strong correlation between increased
porosity, decreased thickness of subchondral bone or CCZ,
and diffusion transport. However, these studies showed the
correlation between porosity and diffusion in the equine sample
but not in the human sample. Arkill and Winlove (2008)
measured the diffusion speed quantitatively and reported that
the CCZ of the horse was permeable to both fluorescein
and rhodamine (m.w.∼400 Da), from both contact sides. The
diffusion speed was 9 × 10−9 cm2 s−1, which is one-fifth of
that in uncalcified cartilage. The effective diffusion coefficient
of fluorescein in CCZ was 0.26 µm2/s, which was comparable
to 0.9 µm2/s in horse calcified cartilage samples (Arkill and
Winlove, 2008). Although the diffusion in the deep cartilage
and subchondral bone is one hundred times slower than in the
shallow layer of cartilage (Maroudas et al., 1968; Leddy and
Guilak, 2003; Nimer et al., 2003), these small biomolecules are,
however, infused very quickly throughout the joint. Arbabi et al.
(2016) developed a finite elemental analysis, which confirmed
the previous studies. An MRI imaging and human experiment
also indicated that molecular signals could pass through the
subchondral bone plate into the CCZ and hyaline cartilage (Berry
et al., 1986; Imhof et al., 1999; Lyons et al., 2006).

ZONAL PROPERTIES OF CALCIFIED
CARTILAGE AND DEEP ZONE
CARTILAGE LAYER

Normal Joint
In the deep uncalcified cartilage, several chondrocytes, with a
spheroidal shape, accumulate to form a line that is perpendicular
to the joint surface (Benninghoff and Research, 1925). Collagen
fibers are denser and more tightly packed on the surface,
while the collagen content is higher than that of the deep
layer (Muir, 1995). CCZ zone is identified as a calcium
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FIGURE 1 | Loss of integrity in the osteochondral interface in osteoarthritis. The illustration shows the process from a normal healthy joint turning into the end-stage
OA joint. The normal knee joint (left top picture) showed the integrated image of the joint. The articular cartilage covers the contact interface between the two
adjacent joint surfaces. Chondrocytes are aligned properly in the three layers. The collagen fibers are intact and robust, perpendicular to the surface in the
osteochondral junction in the deep layer. The thin layer of the CCZ is located beneath the hyaline cartilage. Tidemark duplication is presented in the tidemark. The
cement line is wavier than the tidemark. Subchondral bone is located under the calcified cartilage layer. The osteocyte network is intact. In the early stage of OA,
Chondrocytes produce multiple kinds of inflammatory signals. Cartilage swelling or edema is also common in the early stage. Chondrocyte proliferation begins in this
stage. The subchondral bone remodeling also begins in this stage, resulting in the increased porosity of the subchondral bone plate. With the disease progression,
the neurovascular invade the osteochondral interface. The tidemark and cement line expresses more tortuosity than before. And gradually, the collagen network in
the cartilage is disrupted. Calcified cartilage thinning is common in the mid-late stage. Bone cyst and osteophyte formation are also common in the stage. And at the
end stage, total breakage of the cartilage fibrin is commonly found. Hypertrophic and apoptotic cells are universally seen in the area. The bony island is seen in the
calcified cartilage. Vascular elements and nerves grow into the uncalcified cartilage zone. Apoptotic osteocytes and disruption of the osteocyte network are the main
change in the subchondral bone plate.

mineralized cartilage layer located between the subchondral
bone plate and the non-calcified hyaline cartilage (Ferguson
et al., 2003; Frisbie et al., 2006). The difference in the degree
of mineralization between CCZ and the subchondral bone
plate is determined by the content of the extracellular matrix
of cartilage (Frisbie et al., 2006). CCZ consists of sparsely
distributed chondrocytes expressing a hypertrophic phenotype,
which are arranged in columns, and are wrapped in a calcified
hyaline cartilage matrix (Hunziker et al., 2002). The mineral
content of CCZ is higher than that of the subchondral bone
(Daley et al., 2019). The hypertrophic chondrocytes secrete
matrix vesicles, alkaline phosphatase, and collagen X, which are

responsible for mineralizing the extracellular matrix (Gannon
et al., 1991; Hunziker, 1992). The extracellular matrix of the
CCZ contains collagen types II and X, proteoglycan, and
carbonated hydroxyapatite. The collagen fibers in CCZ are
arranged perpendicular to the articular surface, passing through
the tidemark, and connect with fibrils in the deep layer of
articular cartilage. However, it is unclear whether these collagen
fibrils pass through the cement line (Madry et al., 2010).

Quantitative analysis has shown that the mean, maximum,
and minimum thickness of CCZ in the femoral condyle is
104.162 ± 0.87, 277.12 ± 8.6, and 9.83 ± 6.72 µm, respectively
(Wang et al., 2009), which may be influenced by several factors.
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An increase in the thickness of CCZ has been reported to
correlate with the duplication and thickening of tidemark, while a
decrease in the thickness of CCZ is correlated with increased age
and more loading bearing surface of the femoral head (Bullough,
2004). Interestingly, there is a sex-specific difference between
males and females. Nielsen et al. (2019) analyzed the femoral
heads of patients who had died accidentally and revealed that
the thickness and volume of CCZ in the femoral head has a
significantly negative correlation with age in females (P < 0.05)
but not in males (P = 0.07 and 0.7, respectively). The cells
are sparsely distributed in CCZ in the femoral condyle, most
of which show a hypertrophic phenotype. The cell density of
CCZ is ∼50 cells/mm2, which was lower than that of the
uncalcified cartilage (P < 0.05) (Wang et al., 2009). Human-
based research on the amino acid composition of the cartilage
and X-ray diffraction (XRD) showed that, unlike uncalcified
cartilage, type I collagen is the major component of the organic
part. Type II collagen only accounts for ∼20% of CCZ in the
medial femoral condyle. Hydroxyapatite remains the significant
inorganic component, whereas its proportion (∼60%) in the total
dry weight is less than that of subchondral bone (P < 0.05)
(Zhang et al., 2012). The non-mineralized regions of the CCZ are
composed of two distinct patterns, which include discrete larger
non-mineralized plaques in denser deposits, and many smaller
linear cavities within the whisker-like mineral deposits. Non-
mineralized patches with linear distribution, ranging from 20 to
75 nm, are dispersed in randomly distributed dense deposits. In
each of the denser deposits, a quasi-periodic mineralized fiber
network and unmineralized spots and channels are shown, which
are approximately 3–6 nm in diameter. The non-mineralized
space took up ∼22% space of the total CCZ volume in the
distal femur. Substances can be transported through these non-
mineralized cavities, which may contain organic matter that is
invisible under an electron microscope. The pore size for solute
and fluid transport may be reduced due to the existence of
organic matter (Oegema et al., 1997; Arkill and Winlove, 2008;
Pan et al., 2009).

To date, studies on the gene expression profile in the
CCZ layer are limited. The zonal difference of the uncalcified
cartilage expression is observed in the cartilage (Grogan
et al., 2013). Secreted Phosphoprotein 1 (SPP1) and Matrix
Extracellular Phosphoglycoprotein (MEPE) are the two highly
expressed genes in the deep zone cartilage compared with the
superficial and intermediate cartilage zone. Furthermore, it has
been reported that peroxisome proliferator-activated receptor
gamma (PPARG) and epidermal growth factor receptor/silencing
mediator for retinoid and thyroid hormone receptors-extended
(EGFR/SMRTE) signaling pathway are enriched in the deep zone
cartilage. PPARG signaling pathway is relevant to adipose and
glucose metabolism, and EGFR/SMRTE signaling pathway is
closely related to cell proliferation, differentiation, and apoptosis.
In mature human cartilage, chondrocytes are the only cell type
in the cartilage (Hunziker et al., 2014; Goldring and Goldring,
2016). In the deep non-calcified cartilage, the chondrocytes tend
to form a line, following the collagen orientation. Although
studies have reported that three subtypes, including pre-
hypertrophic chondrocytes, hypertrophic chondrocytes, and

proliferative chondrocytes exist in the growth plate (St-Jacques
et al., 1999; Saito et al., 2010; Prein et al., 2016), new chondrocyte
subtypes in mature cartilages were recently identified, including
senescent cells and cartilage progenitor cells (Koelling et al.,
2009; Jiang and Tuan, 2015; Jin et al., 2015; Worthley et al.,
2015; Childs et al., 2017; Jeon et al., 2017). These cell subtypes
contribute to tissue homeostasis in different ways. Senescent
cells accumulate as people age and were found to be quiescent
in the cell cycle (Jeon et al., 2017). While cartilage progenitor
cells with self-renewal ability are capable of differentiating into
chondrocytes, this subtype of the chondrocytes helps maintain
cartilage repair and homeostasis in OA (Koelling et al., 2009;
Jiang and Tuan, 2015).

OA Joint
Although the increased thickness of CCZ has been associated
with the progression of OA (Pritzker et al., 2006; Goldring
and Goldring, 2016), several new studies have recently raised
conflicting opinions. One study used anterior cruciate ligament
dissection in the rat model and found that the tidemark
roughness, rather than the CCZ area, is correlated with cartilage
degeneration (Schultz et al., 2015). Another observational study
revealed the CCZ change in human OA progression. In the early
to medium stage of OA, the thickness of CCZ was generally
increased (Bullough, 2004; Goldring, 2009), whereas the change
of CCZ was different from that in the uncalcified cartilage or the
subchondral bone. At the end stage of OA, the thickness of CCZ
was decreased (Deng et al., 2016). The thickness change of the
CCZ reflects the active remodeling process in OA. The rigorous
mechanism involved in this process has not been determined
precisely and may be related to the pro-angiogenic factors
generated from chondrocytes in the radial layer of degenerative
hyaline cartilage (Walsh et al., 2007). The microcracks and
microfracture may also play essential but obscure roles in
bone remodeling (Goldring, 2009). Intriguingly, the increased
thickness of CCZ was also correlated with the area of vascular
channel invasion, whereas the vascular channel number in this
area was not relevant to the Osteoarthritis Research Society
International (OARSI) grade or the thickness of CCZ. In the
intermediate stage of OA, bone cover around the vessel was also
found. Furthermore, the thickness of the subchondral bone was
found to be correlated with the thickness of CCZ; the previous
findings together indicated that these two tissues might function
interactively in the OA (Deng et al., 2016). The discontinuity was
also observed in the CCZ, thus resulting in the direct crosstalk
between uncalcified cartilage and subchondral bone plate, as well
as bringing about the changes in the molecular exchange (Lories
and Luyten, 2011). The direct contact between bone and cartilage
in the osteochondral interface deepens the interaction between
chondrocytes and osteocytes and leads to holistic changes as
the disease progress. It has been reported that the collagen of
the deep zone cartilage is disrupted due to several important
factors, including MMPs and other enzymes. The abundance of
overall collagen content is decreased and the orientation of the
collagen is disrupted (Goldring and Goldring, 2016). However,
from the current literature, whether collagen change in the OA
CCZ remains unknown. Chondrocyte density is also changed
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during OA progression. It has been reported that in the late stage,
the chondrocyte density is decreased due to apoptosis, autophagy,
and chronic low-grade inflammation (Loeser, 2013; Rahmati
et al., 2017). Mineralization, fluid exchange, and porosity of CCZ
are also changed during OA progression. Detailed changes are
presented in the following sections.

In the mild or moderate stage of OA, the morphology and
arrangement of the chondrocytes remain relatively unaffected
(Pritzker et al., 2006). However, in the late OA stage,
chondrocytes lose their line arrangement and form clusters.
The chondrocytes density in the deep zone is also increased.
This could be attributed to the activation and recruit of the
chondrocyte progenitor cells (Lv et al., 2020). Gene expression
varies greatly among different zones of the cartilage in OA
progression. The deep zone chondrocytes expression undergoes
some typical characteristic changes. Multiple gene expressions,
including COL10A1, LECT1, MATN3, IBSP, and SPP1 are
upregulated in the OA chondrocytes in the deep zone (Fukui
et al., 2008b) indicating the endochondral ossification like signals
are activated in this zone. Meanwhile, hypertrophic-related
genes, including COL10A1 and WNT5B are also expressed
characteristically in the deep zone. The expression of cartilage
matrix genes, including type II collagen and aggrecan, are
downregulated while the minor cartilaginous genes, including
type III collagen and fibronectin, are upregulated (Fukui et al.,
2008a). An overview of these changes is illustrated in Figure 1.

TIDEMARK REGION

Normal Joint
In the original description of tidemark, Fawns and Landells
considered the tidemark as an irregular basophilic line that can be
stained with hematoxylin and eosin (Fawns and Landells, 1953;
Simkin, 2012). Tidemark is also present in the unstressed areas
but becomes wavy and thick in the stressed areas (Madry et al.,
2010). Among the many theories of tidemark origin, one of the
most popular is that it is the remains of the original growth plate
(Simkin, 2012). This hypothesis is in line with the fact that the
tidemark developed at the time and place where the growth plates
accomplished their purpose. Tidemark is not seen in children but
appears in all adults after puberty.

After maturity, the tidemark may not stay in its original
position. New tidemarks often appear with changes in loading
mechanics and the aging of OA joints. These new layers are like
the original layer in every respect, but only one can mark the
position where the original growth plate was located. Instead,
reduplication must reflect an ongoing process (Broom and Poole,
1982; Havelka et al., 1984; Simkin, 2012). Tidemark thicknesses
were ∼9 mm in the load-bearing areas and ∼4 mm in non-
stressed regions. Age is not correlated with the thickness in
stressed and non-stressed areas (P > 0.05) (Chen et al., 2011).
However, a study of the femoral head shows that after the age
of 65, the numbers and thickness of tidemark will be increased
regardless of the stressed or non-stressed areas of the joint
(Bullough, 2004). Sex is also an influencing factor. The surface
area of the tidemark in males is remarkably more extensive

than that of females (P < 0.05) (Nielsen et al., 2019). The
duplication of tidemark is correlated with the attenuation of
the entire articular cartilage. The tidemark is also an essential
structure that binds cartilage with CCZ. A scanning electron
microscope (SEM) study of human mandibular condylar cartilage
reported that the uncalcified cartilage was connected with CCZ
by collagen fibrils, which were shaped in a specific gradient
(Chen et al., 2011). A histochemistry study indicated that there
are three laminae in the tidemark. Two-dimensional material
property maps also showed that a wavy band with a relatively
low elastic modulus exists between CCZ and hyaline cartilage.
Moreover, the superficial and the deeper layer are parallel with
each other (Gupta et al., 2005). Some studies held the view that
tidemark is made of two layers. Histological staining differences
indicate that superficial and deeper layers of tidemark differ in
their chemical properties. However, the central lamina tends to
have a mixture of both layers according to its tinctorial nature.
This phenomenon gives the impression that the proximal and
distal layers may partially interpenetrate to form a central lamina,
but there is no dyeable component that is not exhibited by at
least one of the other two laminae, so it is hard to distinguish
between the possible laminaes. Although cells were often seen to
be closely adjacent to the tidemark, no cells were found embedded
in the tidemark (Lyons et al., 2005). This finding corresponds to
those of Bullough and Jagannath (1983) that chondrocytes were
observed partly wrapped in the tidemark mineralized surface,
but were not entirely sealed within it. Another study focusing
on the osteochondral interface showed that the most significant
differences of indentation modulus, hardness, and mean calcium
content lies between hyaline cartilage and CCZ, which is much
more significant than that of the differences between CCZ and
the subchondral bone plate, implying a vital but obscure role
of tidemark (Gupta et al., 2005). Surprisingly, the toxic element
lead was found to has a high affinity to the tidemark (Zoeger
et al., 2006), but the mechanism behind its accumulation in the
tidemark remains unknown.

OA Joint
The classical theory tends to correlate the duplication of tidemark
with the progression of OA (Hsia et al., 2013). However, a recent
study revealed that tidemark duplication does not only appear
in OA, but it was also found in a healthy joint. Moreover, the
number of tidemark duplication does not correlate with the
OARSI grade or the thickness of CCZ (P > 0.05). Nonetheless,
the level of roughness did have a relationship with OARSI and
the thickness of CCZ (P < 0.05) (Deng et al., 2016). This is in
accordance with the high-frequency ultrasound imaging finding
(Huang et al., 2018). These findings indicate a new approach
to view the changes in OA (Figure 1). The neurovascular
invasion is an important pathological feature of OA. Several
factors were involved in the vascular invasion through the
tidemark, including the migration and infiltration of the
macrophages, upregulation of the angiogenesis factors including
VEGF, and the localization of the anti-angiogenesis factors in the
superficial region, rather than the deeper osteochondral interface
(Mapp and Walsh, 2012).

Frontiers in Cell and Developmental Biology | www.frontiersin.org 5 May 2021 | Volume 9 | Article 659654

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-659654 May 10, 2021 Time: 16:22 # 6

Fan et al. Osteochondral Junction in Osteoarthritis

STRUCTURAL AND FUNCTIONAL
PROPERTIES OF THE CEMENT LINE

Studies on the composition of the cement line are limited. The 3D
reconstruction using a combination of serial sections of samples
and Rhino 4.0 image analysis software showed that the cement
line at their interface conjunction structure resembled a comb-
like structure in longitudinal sections, and it formed an irregular
arc path in cross-section (Wang et al., 2009). In one study, SEM
showed that the cement line is topographically indistinct from
the surrounding subchondral bone. A thorough demarcation
was observed between collagen I and II at the cement line
using lower magnification SEM and light microscopy (Gupta
et al., 2005), which corresponds to Zizak’s study (Zizak et al.,
2003). This disruption of fibers at the cement line suggested that
cartilage and bone are attached only by mechanical interlocking
due to the interdigitation of the CCZ and bone (Oegema et al.,
1997). However, through fluorescence microscopy, it was recently
reported that some collagen fibers were found penetrating both
the subchondral bone and CCZ in horse osteochondral samples
(Mansfield and Winlove, 2012). By using the high-resolution
second-harmonic generation (SHG) imaging method, it was also
revealed that collagen fibers are present across the cement line.
Notwithstanding, the distribution of collagen was not even, and
a non-fiber area was seen on a 50 µm scale. This study also
indicated that the fiber content of collagen I and II differs between
bone and cartilage, with the presence of the brighter image in the
bone area on SHG. Subchondral bone was also found to contain
thicker collagen fibers (Mansfield and Winlove, 2012).

STRUCTURAL AND FUNCTIONAL
PROPERTIES OF THE SUBCHONDRAL
BONE PLATE

Normal Joint
The subchondral bone plate is a part of the periarticular bone,
which also contains the trabecular bone and joint edge bone
(Goldring and Goldring, 2010; Hu et al., 2020). The main
composition of the subchondral bone plate is cortical bone, which
is poor neuro-vasculature and non-porous (Burr, 2004). The
mean thickness of the subchondral bone plate is 216 ± 68–
229 ± 52 µm in females and males, respectively. Hydroxyapatite
accounts for most of the inorganic substances with ∼80% in
dry weight (Zhang et al., 2012). The thickness and volume of
the subchondral bone plate do not vary according to age or sex
differences (Nielsen et al., 2016).

OA Joint
Subchondral bone undergoes noticeable morphological changes
throughout the OA process. Bone loss was found in the early
stage of the disease process (Madry et al., 2016), followed
by increased trabecular thickness, and finally cancellous bone
collapse in the late stages (Barr et al., 2015). A thin subchondral
plate has traditionally been associated with end-stage disease.
However, there is evidence that subchondral bone thinning may

be related to aging and OA (Yamada et al., 2002). Several studies
reported that the subchondral bone plate changes more rapidly
than trabecular bone in OA (Zamli et al., 2016). In the early
OA, both the thickness and porosity of the subchondral bone
plate are increased (Grynpas et al., 1991; Li et al., 1999; Palmer
et al., 2013) accompanied by the reduced mineralization of the
subchondral bone, and altered trabecular integrity (Kraus et al.,
2013). Interestingly, this pattern co-exists with areas of articular
cartilage damage (Iijima et al., 2016).

Unlike cartilage, subchondral bone quickly responds to
changing mechanical force and rebalances the physiologic status
through bone remodeling (Goldring and Goldring, 2016). Bone
remodeling functionally allows bone tissue to adapt to changing
mechanical forces and metabolic needs. However, it is also
the basis of OA and many other bone diseases (Fowler et al.,
2017; Stewart and Kawcak, 2018). Under normal physiological
conditions, bone remodeling of subchondral bone maintains a
dynamic balance through the osteogenic activity of osteoblasts
and osteoclast degradation activity. During OA development,
as the dynamic balance is destroyed, the metabolic activity
of osteoblasts changes, and the subchondral bone undergoes
structural changes (Lajeunesse and Reboul, 2003; Donell, 2019).
The progression of OA cartilage degradation is closely related
to bone remodeling and sclerosis of subchondral bone. The
bidirectional conversion and the changing speed of bone
remodeling were found in the subchondral bone (Maruotti et al.,
2017). Subchondral bone remodeling in OA includes increased
early bone turnover, microfracture, and later neovascularization
and osteosclerosis. In the early stages of OA, subchondral
bone resorption occurs, bone remodeling rate is increased
(Findlay and Atkins, 2014), the bone turnover rate in the bone
remodeling site is increased, and the subchondral bone plate
thickness is decreased (Burr and Gallant, 2012). In the late
stage of OA, bone resorption is reduced, and bone formation is
increased (Prasadam, 2009). The occurrence of microcracks or
microfractures has not been fully understood yet. In immature
joints, fractures are frequent in the subchondral bone, while in
mature joints, tidemark is the priority for microcracks (Broom
et al., 1996). Therefore, the microcracks were found not only
in the CCZ but also in the subchondral bone plate (Kraus
et al., 2013; Iijima et al., 2016). These microcracks could
be removed, repaired, and refreshed owing to the osteoclasts
periodically (Iijima et al., 2016; Fowler et al., 2017). Earlier studies
suggest that microcracks are a sign of OA. It was hypothesized
that microcracks initiated OA by targeted remodeling, featured
by the repair of microcracks in the CCZ (Goldring, 2009).
More recently, microcracks have been reported to have a
negative correlation with the progression of OA, indicating that
microcracks are a necessity in the homeostasis of the cartilage-
bone unit (Zarka et al., 2019). Based on previous findings,
some researchers attribute the microcracks as the canals for
osteoclast-chondrocyte crosstalk, the regulation of chondrocytes
by osteoclast in the subchondral bone promotes the loss of
cartilage integrity and OA progression (Hu et al., 2020).

Multiple signaling pathways are related to subchondral
bone remodeling, mainly including TGF- β/Smad signaling
pathway, and MAPK signaling pathway (Zhou et al., 2020).
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By simulating osteoclastogenesis, the excessive TGF-β leads to
abnormal bone remodeling processes, including enhanced bone
resorption, increased porosity of subchondral bone plate, and
vasculature growth. In the progression of OA, bone remodeling
of subchondral bone results from abnormal osteogenesis, which
is caused by the excessive release of TGF-β which is related
to abnormal mechanical stimulation (Zhen et al., 2013). The
use of TGF-β-neutralizing antibody attenuates OA progression
and preserves the subchondral bone microarchitecture (Xie
et al., 2016). Excessive TGF-β can also result in the heterotopic
ossification of subchondral bone (Tanamas et al., 2010). This
is attributed to the disruption of the coupled bone remodeling
by upregulated TGF-β. As a result, bone mesenchymal stem
cells are recruited and differentiated in the bone marrow rather
than the bone surface. Inhibition of the TGF-β can also inhibit
the heterotopic ossification (Wang et al., 2018). In contrast,
the MAPK signaling pathway meditates the subchondral bone
formation by regulating the osteoblasts anabolism. Under
appropriate mechanical loading, the MAPK signaling pathway
and the classic Wnt/β-catenin signaling pathway promote the
expression (Robinson et al., 2006). The overexpression of
MAPK is closely correlated with the expression of MMPs
in the osteoblasts, which can cleave the collagen triple helix
domain, thus resulting in damage to the subchondral bone
(Sondergaard et al., 2010).

ENDOCHONDRAL OSSIFICATION LIKE
EVENTS IN THE OSTEOCHONDRAL
JUNCTION OF OA JOINTS

The growth plate, also defined as the epiphyseal plate or physis,
is the area of developing tissue near the ends of the long bones in
children and adolescents. The endochondral ossification occurs
in the bone-forming growth plates of children and adolescents.
Epiphyseal cartilage tissue is ossified around the primary and
secondary ossification center. During growth and development,
the surface layer of the proliferation zone near the joint
surface proliferates outward. Meanwhile, chondrocytes undergo
terminal differentiation to hypertrophic chondrocytes and have
the capacity to mineralize their ECM. The fate of the hypertrophic
chondrocytes remains controversial. Previous studies indicated
that the hypertrophic chondrocytes undergo apoptosis and
osteoblasts proliferate to form bone (Farnum and Wilsman,
1987; Aizawa et al., 1997; Kronenberg, 2003; Mackie et al.,
2011). However, recent studies using cell lineage tracing held a
different view. When hypertrophic cartilage becomes calcified,
the invasion process of blood vessels causes chondrocytes to
transdifferentiate into osteoblasts in three ways, including direct
trans-differentiation, dedifferentiation to redifferentiation, and
chondrocyte to the osteogenic precursors (Aghajanian and
Mohan, 2018), thereby remodeling the calcified cartilage template
into the bone. In this process, the sedimentation and absorption
of calcium occur at a similar rate, so that the objective of growth
and development is achieved.

Multiple features demonstrate the similarity between the
growth plate and the change of OA progression. In the

growth plate, the endochondral ossification events, including
sequential proliferation, chondrocyte hypertrophy, angiogenesis,
apoptosis, and ossification, ensures the growth and maturity
of the normal joint. The chondrocytes are aligned sequentially
during this differentiation process. Several signaling markers are
involved in this co-ordinated process, including Wnt and Notch
signaling pathways, fibroblast growth factors (FGF), insulin-like
growth factor (IGF-1), Indian Hedgehog (Ihh), and parathyroid
hormone-related protein (PTHrP) (Lamuedra et al., 2020). In
OA progression, the loss of integrity and remodeling of the
cartilage leads to recurrence of the developmental genes, thus
resulting in the endochondral ossification-like events in the
uncalcified cartilage as well as in the CCZ layer. Multiple
forms of endochondral ossification were reported during OA
development, including the chondrocalcinosis in the hyaline
cartilage, CCZ, and osteophyte formation. The occurrence of
chondrocalcinosis in the OA hyaline cartilage has been widely
reported (Fuerst et al., 2009; Xiao and Lin, 2016) and has a
strong relationship with OA of the knee (Wang et al., 2019).
Some researchers believe that the most direct expression of
endochondral ossification is the thickening of CCZ, which
leads to the thinning of hyaline cartilage (Xiao and Lin, 2016).
Microcracks both in CCZ and subchondral bone are common
occurrences (Radin and Rose, 1986; Burr and Radin, 2003)
and these cracks were shown to be spontaneously repaired
by forming a high-density mineralized infill (HDMI) phase.
These protrusions were first found in the uncalcified cartilage
tissue samples in racehorses (Boyde et al., 2011), and partial
decalcified sections justified their existence (Turley et al., 2014).
HDMI is always generated from the microcracks from CCZ and
subchondral bone. Moreover, it can grow up to two-thirds of
the thickness of the articular cartilage. These protrusions were
made up of high mineralized compositions, as described by
Boyde (2003). Similar findings were also found in the Icelandic
horse, which is a model animal for OA (Ley et al., 2014).
Recently, one paper reported the occurrence of the bony island in
human hip joints (Boyde et al., 2014). The osteophyte is another
important feature of OA. Endochondral ossification induced
by hypertrophic chondrocytes is an important process for the
formation of OA osteophytes. The hypertrophic chondrocytes
inside the developing osteophytes will first undergo cartilage
formation and accumulation of proteoglycans and other cartilage
matrix-related factors. The fibroblast-like cells in the surface layer
proliferate and differentiate to form chondrocytes. Hypertrophic
chondrocytes present at the center further differentiate and form
a bone marrow cavity through endochondral osteogenesis. The
fully developed osteophytes fuse with the original subchondral
bone. Eventually, the outer fibrous layer still exists, which
is covered by cartilage and expands the original joint range.
However, the mechanical properties of this kind of osteophytes
are far lower than the original joints because they were not
stimulated by the correct mechanical loading (Wong et al., 2016).

On the other hand, several research reports suggest OA
cartilage displays the altered expression of mineralized related
markers such as Osterix (Fuerst et al., 2009; Pulsatelli et al., 2013),
RUNX2, Collagen X, and HIF-2α. In healthy joints, chondrocytes
continuously release ATP (Graff et al., 2000), maintaining a
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high level of nucleotide pyrophosphatase-1 (NPP1) activity, and
steadily secrete a significant amount of extracellular matrix and
pyrophosphate (Johnson et al., 1999; Johnson and Terkeltaub,
2005). NPP1, which is correlated with downregulation of the
bone formation, was found to decrease with the progression of
OA (Bertrand et al., 2012). One study also indicated that NPP1
polymorphism was associated with hand OA (Suk et al., 2005),
indicating the gene could potentially function in OA. The OA-
like calcification pattern was found in the cartilage of mice as
well (Sakamoto et al., 1994; Bertrand et al., 2012). Accordingly,
NPP1 and pyrophosphate may play an essential but undefined
role in downregulating calcification in OA as well as other bone
diseases. All these features indicate the mineralization of articular
cartilage is a common event in OA disease progression. There
is a significant correlation between clinical symptoms and the
amount of mineralized cartilage in OA.

HYPERTROPHIC CHONDROCYTES IN
OA CCZ RESEMBLE THE
HYPERTROPHIC CHONDROCYTES IN
GROWTH PLATE

Hypertrophic chondrocytes are often observed in the layers of
long bone growth plates. Besides secreting specific proteins,
such as collagen X, these cells also experience programmed
apoptosis, making bone mineral and matrix deposition possible
(Zenmyo et al., 1996; Billinghurst et al., 1997; Shlopov et al.,
1997, 2000; Figure 2). The hypertrophic chondrocytes are not
usually found in healthy knee cartilage. However, the expression
of the hypertrophic markers and changes in morphology into
hypertrophic phenotype has been observed in OA chondrocytes
in both deep layers of cartilage and CCZ. The phenotypic
changes may be the result of articular chondrocytes adopting
a differentiation pathway similar to growth plate chondrocytes
and expressing hypertrophic changes (van der Kraan and van
den Berg, 2012). Another hypothesis is that after articular
chondrocytes are dedifferentiated, they exhibit similar behaviors
as terminally differentiated chondrocytes (hypertrophic), which
are commonly observed on the growth plates of growing
individuals (von der Mark et al., 1992; Dreier, 2010). Gene
knockout and transgenic animal model studies have increasingly
supported the role of chondrocyte terminal differentiation in the
progression of OA. Genetic modifications that stimulate changes
in chondrocyte hypertrophy are more likely to be associated with
a higher incidence of OA or accelerated development of OA
(van der Kraan and van den Berg, 2012).

Type X collagen is the golden standard for chondrocyte
hypertrophy. It is usually expressed in hypertrophic areas
of the epiphyseal plate. However, its expression levels are
significantly upregulated in the protein and mRNA in OA
human cartilage. Other markers of hypertrophy, collagenase-
3 or Matrix metalloproteinase-13 (MMP-13), are also closely
related to hypertrophic chondrocytes in OA (Moldovan et al.,
1997). Chondrocyte hypertrophy is not strictly controlled by
a single transcription factor but appears to be regulated by

a regulatory system. Several transcription factors are involved
in the transition to chondrocyte hypertrophy, including Runx2
(Higashikawa et al., 2009), NFAT1 (Caldwell and Wang, 2015),
HIF-2α (Markway et al., 2013), β-catenin (Yang et al., 2020),
Smad2/3 (Alvarez and Serra, 2004), Smad1/5/8 (Nishida et al.,
2013), Interleukin-8 (Pesesse et al., 2014), and many other
factors. Interestingly, all these factors are reported to be
reactivated in OA development, suggesting that the changes
in the chondrocyte phenotype mimic endochondral ossification
signals. OPG and RANKL are also important factors for the
hypertrophic chondrocytes. OPG knockout mice develop severe
degenerative polyarticular disease, forming a thinner cartilage
layer, accompanied by the gradual loss of cartilage matrix (Bolon
et al., 2015). The study also found that cartilage in the mice
model has low proliferation capacity and high cell apoptosis rate,
with the low content of Type I and II collagen but high content
of type X collagen (Upton et al., 2012). The high RANKL/OPG
ratio is related to the up-regulation of catabolism (Kovács et al.,
2019). According to reports, the RANKL/OPG ratio is first
increased in early OA and then downregulated in late OA (Upton
et al., 2012). This is in accordance with the bone absorption
of subchondral bone in the early stage and bone formation
in the late stage.

Multiple important signaling pathways related to the growth
plate have been demonstrated to play important roles in OA.
However, the osteochondral interface, which is the remains of the
growth plate, and its relationship with the developmental genes
have not been thoroughly studied. During the endochondral
ossification process, the generation and dissolution of cartilage
tissue are tightly regulated by multiple growth factors and
hormones, among which EGFR signaling has been extensively
studied in the past two decades. It is reported that the EGFR
signaling pathway stimulates the extracellular matrix degradation
to transform from cartilage to bone (Qin and Beier, 2019).
The deficit EGFR mice were reported to suffer from delayed
primary ossification center formation together with an expanded
growth plate during early skeletal development, displaying
elongated epiphyseal growth plates with a major expansion of
the hypertrophic cartilage zone. EGFR signaling is important for
RANKL expression in the growth plate and thus is responsible
for osteoclastogenesis at the osteochondral interface (Zhang et al.,
2011). Most studies on EGFR signaling in OA have concluded
that, like some other growth factor signaling pathways, EGFR
plays a dual role in articular cartilage. On the one hand, it has
the effect of stimulating anabolism by stimulating proliferation
and survival. Since proliferation is minimal in adult cartilage,
this makes it an important factor for cartilage maintenance.
Moreover, the EGFR signaling pathway can improve the
lubrication function of the joint surface. This lubrication function
can prevent joint damage in the early stage of OA (Jia et al.,
2016). On the other hand, the EGFR signaling pathway also
promotes catabolism and synthesis of tissue cartilage matrix
(such as type II collagen and proteoglycans) by inhibiting the
Sox9 expression. Besides, EGFR also promotes the activity of
metalloproteinase matrix-degrading enzymes (Sun et al., 2018).
In summary, the final effect of EGFR on the body is related to the
balance of the above two effects, which is related to age, OA stage,
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FIGURE 2 | Osteoarthritic cells express growth plate signals. The osteoarthritic chondrocytes express hypertrophic chondrocyte phenotype, which is commonly
found in the growth plate of adolescents. The hypertrophic markers, including Col X, HIF-2α, Runx2, Osterix, and relevant hypertrophic genes are all altered
in the process.

and microenvironment. Further relationship between EGRF and
osteochondral interface should be investigated carefully.

In both embryonic and adult tissues, GDF5 regulates
chondrogenic cell growth and differentiation, and transgenic
mouse studies suggest that GDF5 promotes differentiation
of chondrocytes, causing hypertrophy, and enhances the
commitment of mesenchymal cells to the chondrocyte lineage.
Further, GDF5 stimulates proteoglycan synthesis in articular

cartilage explants. The genetic analysis reported that GDF5 is
a susceptibility gene for osteoarthritis (Miyamoto et al., 2007).
Researchers demonstrated that rat models with GDF5 deficiency
expressed abnormal morphology of the joint, including femoral
length, bicondylar width of the femur, the width of the tibial
plateau, width of the intercondylar notch, curvature radius of the
medial femoral condyle, depth of the trochlear groove, trochlear
groove sulcus angle, and other important joint parameters
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(Pregizer et al., 2018). But it is unclear whether GDF5 has
any role in the knee beyond determining its shape or soft
tissue composition. The susceptibility to OA may attribute to
the abnormal morphology of the joint shape, resulting in the
unbalanced mechanical loading. Decreased GDF5 levels in fully
formed adult knees may also influence OA risk by impairing
homeostasis in healthy joints or by accelerating degeneration
due to injury. Recently, the intra-articular recombinant human
GDF5 supplementation was reported to prevent and even reverse
OA disease progression in the rat medial meniscus transection
OA model (Parrish et al., 2017). The mechanism behind may be
correlated to the pivot role for GDF5 during the establishment
of hyaline cartilage and in the maintenance of the articular
cartilage (McHugh, 2017). However, the exact reason underlying
its treatment effect remains to be discovered. Other growth
plate genes are also associated with the susceptibility of OA,
including COL11A1, ANP32E, BMP5, and others (Reynard and
Barter, 2020). However, their correlation with the osteochondral
interface still needs to be addressed.

NEUROVASCULAR GROWTH IN THE
OSTEOCHONDRAL JUNCTION OF OA

Angiogenesis is necessary for bone growth. As the main source
of oxygen, nutrients, hormones, neurotransmitters, and growth
factors delivered to bone cells, the vasculature is essential
for proper bone development, regeneration, and remodeling.
However, the capillary vessels located at the channel in the
healthy joint branches to the osteochondral interface but were
rarely found to exceed the tidemark into hyaline cartilage (Woods
et al., 1970; Suri et al., 2007; Walsh et al., 2007). Recent studies
have shown that in OA, the fine neurovascular vessels were
found in the subchondral bone plate and osteophytes. The
nerves marked with the sensory and sympathetic cluster of
differentiation were also found in these areas (Wojtys et al.,
1990; Suri et al., 2007). Walsh et al. (2010) reported that in
the channel that touches the tidemark, the general morphology
of fibrovascular tissue is visible at the junction of the cartilage
and the fibrosis, fissures at the articular surface. These α-actin-
positive cells, represented in smooth muscles, could also be
the microvascular tunnels in the subchondral bone. Positive
blood vessels were also found within the subchondral space.
CD34-positive endothelium, PCNA-positive nuclei, and 4′-
6′-diamidino-2-phenylindole (DAPI) stained non-proliferating
nuclei have been stained in the vascular cells in a vascular channel
that crosses the tidemark. VEGF-, PDGF- or NGF-positive
cells were also found in the vessel channels of subchondral
bone (Pesesse et al., 2011). According to the previous findings,
tidemark duplication was associated with neurovascular invasion.
This process is usually related to the protrusions of CCZ to the
deep part of the hyaline articular cartilage. However, whether
the deeper extensions of blood vessels play a role of initiation or
consequence of mineralization of the cartilage and advancement
of the tidemark toward the surface remains the subject of ongoing
research (Bullough and Jagannath, 1983; Oegema et al., 1997).

The cause of neurovascular invasion remains unclear. There
are two commonly accepted mechanisms for the angiogenesis
of OA in the osteochondral interface, including increased
macrophage infiltration and reduced cartilage resistance to
angiogenesis (Mapp and Walsh, 2012). An immunohistochemical
study (Franses et al., 2010) showed that protease inhibitors and
VEGF are predominantly in the chondrocytes located in the
superficial layer of cartilage, are less common in the translational
layer, and rare in the radiate layer. The concentration of
vasculogenic factors, including VEGF, TIMP-1, TIMP-3, SLPI,
and PAI-1, were all upregulated in OA samples compared to the
healthy ones. Thus, these upregulated markers are correlated with
the severe degradation of cartilage. Interestingly, the expression
of VEGF, rather than the expression of the protease inhibitor, has
a close relationship with denser vascularity. These intriguing facts
revealed that the resistance of healthy cartilage relies more on
its microenvironment rather than the regulation of the protease
inhibitor. Although the upregulation of the protease inhibitor
indeed alleviated the angiogenetic function of VEGF in the
superficial layer of cartilage, chondrocytes that are located in
the radiate layer are unable to express anti-angiogenic protease
inhibitors that may cause blood vessels to invade the articular
cartilage (Franses et al., 2010; Figure 2).

ABNORMAL MOLECULAR EXCHANGE
AND CELLULAR CROSSTALK THROUGH
THE OSTEOCHONDRAL INTERFACE

Westacott et al. (1997) hypothesized that an increase in
subchondral activity can adversely affect cartilage metabolism.
However, if this assumption was correct, it would require altered
signaling molecules to be transported between the subchondral
bone and the cartilage cavity (Westacott et al., 1997). Earlier
studies reported that in the healthy knee joint of adult rabbits,
substances did not virtually diffuse into the hyaline cartilage
through CCZ and the subchondral bone. However, the number
of pores of subchondral bone were increased in OA (Duncan
et al., 1987; Clark and Huber, 1990; Li et al., 1999; Lyons et al.,
2006; Sniekers et al., 2008). Histological sections of tartrate-
resistant acid phosphatase (TRAP) staining showed that the area
of osteoclast resorption located in subchondral bone extended to
the CCZ, indicating chemotaxis induced movement of osteoclasts
(Duncan et al., 1987). An in vivo fluorescent study also showed
that multiple molecules could pass through the osteochondral
interface, and their diffusion rate varies with the degree of
mineralization and OA progression (Pan et al., 2009). Moreover,
it was believed that microcracks are conducive to substance
transport in OA. Hwang et al. (2008) used water as a medium and
drew a similar conclusion concerning hydraulic conductance.
The above findings indicate that the upregulated porosity is
related to the cartilage infiltration of OA.

Subchondral bone is another important aspect of bone and
cartilage signaling pathways, and its role in the progression of
OA has been increasingly becoming the focus of researchers and
clinicians. All cell types within this area, including osteoblasts,
osteoclasts, osteocytes, and bone-lining cells, may have a
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certain degree of crosstalk with chondrocytes. Subchondral
bone influences the overlying articular cartilage through both
biomechanical and biochemical pathways. Several mechanisms
have an impact on the osteochondral interface. By utilizing the
photobleaching (FLIP) method, Pan et al. found that both hyaline
cartilage degeneration and neurovascular invasion can increase
crosstalk via the altered molecular exchange (Nakamura and
Mizuno, 2010). The signal across the osteochondral junction can
be exemplified by hepatocyte growth factor (HGF), an angiogenic
factor that acts by phosphorylation of its receptor tyrosine-
protein kinase Met (C-Met) (Nakamura and Mizuno, 2010).
C-Met is not only expressed in the liver but also expressed
by chondrocytes, in which HGF is a regulator that helps the
excretion of proteoglycan and type II collagen (Pfander et al.,
1999). HGF is always found in the CCZ and radial zone of
hyaline cartilage in OA (Pfander et al., 1999; Reboul et al.,
2001). However, it seems that it was only found in a specific
subtype of chondrocytes with a truncated shape (Bullough and
Jagannath, 1983). In contrast, the bioactive HGF was only found
in osteoclasts in the cement line side of the subchondral bone
plate. This phenomenon shows that cytokines transfer across the
osteochondral interface to play a role.

An osteoblast-chondrocyte co-culture system can also provide
insights into crosstalk between both cell types (Sanchez et al.,
2005). Osteoblast and chondrocytes were cocultured in the
environment without bone remodeling signals. The results
showed that the osteoblasts in the subchondral bone induced
a decreased aggrecan gene expression, as well as elevated gene
expression of metalloproteinase-3 and -13 in chondrocytes. The
co-culture results indicated that the OA chondrocytes altered
the chondrocytes gene expression through crosstalk. Another
example is the stromal cell-derived factor 1/chemokine receptor
type 4 (SDF-1/CXCR4) axis. Qin et al. (2019) firstly revealed that
the increase of SDF-1 functions as a degeneration accelerator
through the recruitment of mesenchymal stem cells (MSCs) and
osteoblasts in the OA mouse model. Furthermore, this increase
of chemokine then crosses through the osteochondral interface
to the superficial layer of hyaline cartilage. Finally, SDF-1 from
subchondral bone bind to chemokine receptor type 4 (CXCR4)
in chondrocytes at the superficial layer. The binding of SDF-1 and
CXCR4 then induces the degeneration of articular chondroid-like
kinase 5 by promoting the transformation of growth factor-beta
receptor I from activin receptor-like kinase 5 to activin receptor-
like kinase 1 in chondrocytes. Thus, the inhibition of this axis has
therapeutic implications for a novel target in OA treatment.

THERAPEUTIC IMPLICATIONS
TARGETING OSTEOCHONDRAL UNIT

Targeting Chondrocyte Hypertrophy
Signals
Chondrocyte hypertrophy is an essential feature for OA, and it is
widely believed that the hypertrophic chondrocytes correlate with
the progression of OA. Recently, multiple studies have focused on
inhibiting chondrocyte hypertrophy as a target for OA treatment.

Matrix metalloproteinase inhibitors (MMPs) are a family of zinc-
dependent endopeptidases with more than 20 members, involved
in multiple diseases, including OA. Several MMP-13 inhibitors
were investigated for potential use in OA treatment. Although
they showed good results in in vitro experiments, they have not
been successful in clinical trials due to the heterologous effects
and musculoskeletal syndrome (Li et al., 2011; Winer et al., 2018).
Recent studies have been focusing on the topical use of MMP-
13 inhibitors in the lesions to enhance the efficacy and limit its
adverse effects (Jahangir et al., 2020). However, more clinical
trials are needed to justify its therapeutic effects in humans.

RNA silencing of relevant genes is also under development by
many researchers since it can specifically knock out or inhibit
the expression of specific genes, thus blocking the transformation
of the chondrocytes to the hypertrophic phenotype. There are
mainly two tools for suppressing protein expression through gene
silencing, including small interfering RNA (siRNA) and short
hairpin RNA (shRNA). This process is achieved by selectively
inactivating the corresponding mRNA of the target gene by
double-stranded RNA (dsRNA). RNA interference is activated by
double-stranded RNA transported into the cell cytoplasm. The
silencing mechanism can lead to the degradation of target mRNA
induced by siRNA or shRNA or the inhibition of specific mRNA
translation induced by small RNA (miRNA). Short hairpin
RNAs (shRNA) are reported to directly silence the hypertrophy-
related genes, including RUNX2, CBFB, and other genes. siRNA
targeting YAP is also used to prevent cartilage hypertrophy, and
this involves the inhibition of the β-catenin (Yang et al., 2017;
Gong et al., 2019). Despite the success of in vitro experiments,
most RNA silencing treatment methods still face the challenge of
finding a safe, efficient, and selective delivery pathway. Although
new siRNA nanocarriers have been tested in clinical trials, there
are still some challenges and multiple obstacles in RNA silencing
therapy that need to be overcome (Chakraborty et al., 2017; Saw
and Song, 2020).

Targeting Angiogenesis and Pain Signals
Nerve growth factor (NGF), represented by neurotrophin, was
primarily determined to support the survival, development,
and functioning of neurons. The neurotrophin family includes
neurotrophin 3 (NT-3), neurotrophin 4 (NT-4), and brain-
derived growth factor (BDNF) (Bothwell, 2016; Schmelz et al.,
2019). Among the potential novel strategies for pain control in
OA (Malfait and Miller, 2016), the clinical development of the
strategy for neurotrophin and nerve growth factor is the most
advanced. Its therapeutic effect lies not only in its role as a
growth factor for cells in the peripheral nervous system but as a
critical mediator of acute and chronic pain. Different biological
actions of NGF contribute to its pro-algesic effects, including
NGF-induced sensitization of peripheral nociceptive terminals
and NGF-induced sprouting of sensory nerves. Monoclonal
antibodies can be used to inhibit the function of NGF lies in
its high-affinity to homologous receptor, tropomyosin-related
kinase (Trk) A, thereby blocking its biological activity. As a
result, humanized monoclonal antibodies such as Tanezumab,
Fullanumab, and Fasinumab, have been successfully developed
by the pharmaceutical industry and have shown high efficacy in
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RCTs in pain management in OA patients (Miller et al., 2017).
Systematic reviews detailing the efficacy of NGF- monoclonal
antibodies in OA clinical trials have been published elsewhere
(Schnitzer and Marks, 2015; Kan et al., 2016; Chen et al., 2017).
Administration of NGF-Ab attenuates pain-related behavior in
animal models (Ghilardi et al., 2012). Compared with age-
matched asymptomatic controls, patients with symptomatic
knee arthritis also showed increased neurofibril density in the
synovium, elevated levels of NGF and TrkA (Kc et al., 2016).
However, researchers unexpectedly discovered an osteonecrosis-
like condition, which caused the FDA to shelve all experimental
plans for NGF-Ab from 2010 to 2012 (Hochberg, 2015; Schmelz
et al., 2019). The careful investigation revealed that most cases,
which were first recognized as osteonecrosis, suffered from
rapidly progressive OA. As the dose of tanezumab increases, the
risk of rapidly progressive OA will gradually increase. Meanwhile,
the combined use of tanezumab and NSAIDs and the presence of
pre-existing subchondral insufficiency fractures can also increase
the risk of rapidly progressive OA (Hochberg et al., 2016).
Similar findings have been verified in studies of drug safety
events in other NGF-Ab research (Hochberg, 2015). So far, the
pathophysiology of rapidly progressive OA caused by NGF-Ab
is poorly understood. The current possible mechanisms include
neuropathic arthritis, analgesic arthritis, and pre-existing low
bone integrity. However, the overall adverse event is quite low
and NGF-Ab is well-tolerated for patients (Schnitzer and Marks,
2015). More studies should be done to investigate the mechanism
behind the adverse effect to avoid this phenomenon.

Angiogenesis activators include VEGF Endoglin HGF IL-1,
−8, −18, TGF-β1/2/3 TNF-α, CTGF, Substance P, PGE2, Nitric
oxide, Histamine, FGF-2, FGF-1, ESAF, IGF-1, EGF, PDGF-
A, Transferrin, Cyr61, and MMP-9/gelatinase B, while anti-
angiogenic inhibitors include Thrombospondin-1, Leukemia
Inhibitory Factor, TIMP-1 et -2, TGF-β, TNF-α, Chondrocyte
inhibitor of angiogenesis, Chondromodulin-1, Troponin-I, and
Thrombospondin-3 (Gerber and Ferrara, 2000). Any factors that
inhibit activators or enhance inhibitors could be useful in the
therapeutic process. Xufang et al. reported that the intra-articular
injection of LV-VEGF shRNA would alleviate the progression
of OA by inhibition of VEGF (Zhang et al., 2016). Another
study used a local injection of bevacizumab, which showed
reduced articular cartilage degeneration, osteophyte formation,
and synovitis compared with intravenous administration and
control group (Nagai et al., 2014). Different molecular targets are
summarized in Figure 2.

FUTURE DIRECTIONS

Studies describing the osteochondral interface are limited due to
the ultra-thin structure and the difficulty in separating individual

cells within the solid bone-cartilage layer. Hence its relationship
with OA was obscure. However, with interdisciplinary research,
many new techniques that were used for detecting nano-scale
particles have been used to identify the relationship between the
osteochondral interface and the progression of OA.

Future research should focus on understanding the etiology
of the individual chondrocytes in the osteochondral interface.
There is also a need for research that focused on the
understanding of gene regulatory patterns at the commence of
OA and its ultrastructure change, as well as cell crosstalk and
cell subpopulation. With new techniques, including single-cell
sequencing (Ji et al., 2019), laser scanning confocal microscope
and laser capture and dissection microscope, proteomics, and
other novel instruments and concepts, disturbances regarding
gene and protein in extremely small scales can be identified.
The new findings would give us to a deeper understanding of
the importance of how the osteochondral interface change in
phenotype, genotype, proteomics as well as its metabolism, and
how the turbulence exacerbate the progression of the OA.

CONCLUSION

The osteochondral interface undergoes multiple pathological
changes during OA, and it includes morphological changes
including tidemark duplication and roughness, thickening of
CCZ, the occurrence of endochondral ossification, microcracks,
neurovascular invasion, enhancement of perfusion, and
elevated level of crosstalk through the osteochondral interface.
A thorough understanding of these changes and mechanisms
will support treatment approaches for this commonly
occurring disease.
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