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A systematic investigation of three different electron–electron entanglement measures,
namely the von Neumann, the linear and the occupation number entropy at full
configuration interaction level has been performed for the four helium-like systems
hydride, helium, Li+ and Be2+ using a large number of different basis sets. The
convergence behavior of the resulting energies and entropies revealed that the latter
do in general not show the expected strictly monotonic increase upon increase of
the one–electron basis. Overall, the three different entanglement measures show good
agreement among each other, the largest deviations being observed for small basis sets.
The data clearly demonstrates that it is important to consider the nature of the chemical
system when investigating entanglement phenomena in the framework of Gaussian type
basis sets: while in case of hydride the use of augmentation functions is crucial, the
application of core functions greatly improves the accuracy in case of cationic systems
such as Li+ and Be2+. In addition, numerical derivatives of the entanglement measures
with respect to the nucleic charge have been determined, which proved to be a very
sensitive probe of the convergence leading to qualitatively wrong results (i.e., the wrong
sign) if too small basis sets are used.
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1. INTRODUCTION
While the foundations of quantum theory were laid out already at
the beginning of the 20th century (Planck, 1901; Einstein, 1905),
their influence on chemical science become only apparent after
the influential work of Schrödinger in the 1920’s (Schrödinger,
1926a,b,c,d), correctly predicting the non-relativistic energy
eigenvalues for hydrogen-like systems from first principles.
Schrödinger’s formulation of the quantization as an eigenvalue
problem of a wave equation essentially marked the starting
point of modern electronic structure theory aimed at the quan-
tum mechanical description of many-electron systems (Szabo
and Ostlund, 1996; Levine, 1999; Helgaker et al., 2000; Cook,
2005).

The vast majority of approaches operate within the framework
of a number of approximations being the treatment of stationary
systems (time–independence), neglect of effects resulting from
special relativity (Dyall, 2007) and neglect of nuclear quantum
effects (Born and Oppenheimer, 1927). Furthermore, in the sim-
plest case the ne-electron probability function is approximated
via a Slater determinant (Slater, 1929), which corresponds to
the antisymmetric superposition of all possible products of ne

one-electron functions |ψi〉

� = 1√
ne!

ψ1(r1) ψ2(r1) ψ3(r1) . . . ψne(r1)

ψ1(r2) ψ2(r2) . . . . . . ψne(r2)

. . . . . . . . . . . . . . .

ψ1(rne) ψ2(rne) ψ3(rne) . . . ψne(rne)

(1)

with r1, r2, . . ., rne being the coordinates of the ne electrons.
The one–electron functions |ψi〉 are known as molecular or spin
orbitals and are generated via linear combination (Lennard-Jones,
1929) of primitive functions referred to as atomic orbitals.

Application of the corresponding electronic Hamiltonian on
the Slater determinant leads to the formulation of the Hartree-
Fock (HF) method (Hartree, 1928a,b; Fock, 1930), in which a
numerical solution of Schrödinger’s equation is obtained via a
variational principle: by optimizing the coefficients used in the
linear combination of atomic orbitals in an iterative way, the low-
est energy and hence, the best approximation to the wave function
is obtained.

Although the HF energy is in many cases close to the exact
non-relativistic energy (>99%), the error resulting from the use
of a product ansatz may lead to dramatic deviations of observ-
ables derived from from the Hartree-Fock wave function. The
reason of this short-coming is the fact that in the HF approach
electrons interact with each other only via their mean fields,
i.e., the motion of the electron is uncorrelated and the energy
difference between the Hartree-Fock result and the exact, non-
relativistic energy of the system (formally calculated using a
complete one–electron basis) is known as correlation energy.

During the last decades research in theoretical chemistry
focused extensively to overcome this limitations and impressive
progress was achieved in formulating and optimizing a vari-
ety of so-called post-HF methods (Szabo and Ostlund, 1996;
Levine, 1999; Helgaker et al., 2000; Cook, 2005). Instead of using
a single Slater determinant these methods employ a number of
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determinants to formulate the wave function. The exact solution
to the Schrödinger equation in a given one–electron basis can be
obtained via a linear combination of all possible Slater determi-
nants (Helgaker et al., 2000), but due to the enormous number
of determinants the application of this approach known as Full
Configuration Interaction (FCI) is still limited to the smallest
systems.

At this point it should be noted that in these approaches
the treatment of correlation effects rests solely in the respon-
sibility of the wave function, whereas the Hamiltonian of the
system remains unmodified. The fact that a “correlation opera-
tor” cannot be defined implies that electron correlation is a purely
methodical effect resulting from the use of an inadequate trial
wave function in the Hartree-Fock approach. Consequently, the
phenomenon of electron correlation is widely believed to have no
resemblance in the physical world.

However, during the last two decades a different view of
correlation has emerged in the context of quantum informa-
tion theory (Nielsen and Chuang, 2010; Fayngold and Fayngold,
2013) by considering electron correlation as an entanglement
phenomenon (Schrödinger, 1935). Following Collins’ conjec-
ture (Collins, 1993) the correlation energy of a system is pro-
portional to the respective entropy of entanglement, typically
expressed via the von Neumann entropy or related measures. It
can be shown (Ghirardi and Marinatto, 2004; Kais, 2007; Wang
and Kais, 2007) that a wave function composed of a single Slater
determinant does not violate Bell’s inequality, implying that the
Hartree-Fock ansatz treats a disentangled state, whereas the wave
function used in post-HF methods such as FCI accounts for
entanglement effects.

The route to investigate correlation phenomena via entan-
glement measures of model systems enabling analytic solutions
of Schrödinger’s equation [such as the Crandall and Hooke
atoms (Manzano et al., 2010)] or real atomic species such as
helium-like systems (Huang and Kais, 2005; Manzano et al.,
2010; Dehesa et al., 2012; Benenti et al., 2013) treated with
post-HF methods has already attracted the interest of a num-
ber of researchers. In the latter case either very accurate one-
electron basis functions of the Kinoshita type or small Gaussian
or Slater type orbital (GTO, STO) basis sets have been employed
(Huang and Kais, 2005; Benenti et al., 2013). In the first case
very accurate estimations of energy and entanglement entropy
are possible, however it is difficult to extend the approach to
general systems. The use of a GTO basis on the other hand
is widely used in modern electronic structure theory, however
the Gaussian nature inherent to this type of basis is known to
limit the achievable accuracy. Furthermore, despite the availabil-
ity of high quality basis sets in the literature, only small one-
electron bases (e.g., 3-21G, 6-31G and cc-pV5Z) have been used
in the past to investigate entanglement phenomena in helium like
systems.

Further systems used to investigate entanglement and its rela-
tion to electron correlation are the hydrogen molecule (Gersdorf
et al., 1997; Huang and Kais, 2005; Wang and Kais, 2007; Esquivel
et al., 2011; Vesaghi et al., 2011) as well as other many-electron
(ne > 2) systems such as the unifrom electron gas (Ziesche,
1995), atom-like species (Esquivel et al., 1996; Sagar et al., 2002)

and small molecular compounds (Ramírez et al., 1997; Maiolo
et al., 2007; Esquivel et al., 2011). In all cases it was shown
that the entanglement measures show similar trends compared
to the correlation energy, but as in the case of helium-like sys-
tems only small GTO-type basis sets were considered in these
investigation.

Despite the rather small one–electron bases employed in previ-
ous studies, these works clearly demonstrate the relation between
correlation and entanglement providing numerical evidence con-
firming Collin’s conjecture. It is, thus, of considerable interest to
investigate this dependence upon an increase of the quality of the
one-electron basis. While the energy of the system is known to
decrease monotonically toward the exact, non-relativistic energy,
it is not obvious whether a similar tendency, namely a strictly
monotonic increase, is observed in case of the entanglement
measures. The latter would be required for a direct correlation
of these two properties as implied by Collin’s conjecture. Data
provided by Ramírez et al. (1997) using eight different Pople–
type basis sets of increasing size indicate, that the monotonic
decrease of the correlation energy upon increase of the number
of basis functions is accompanied with a monotonic increase of
the entanglement entropy. As only small, Pople-type basis sets
(highest angular momentum l = 2) have been used in this study,
which are in general not recommended in computations taking
correlation effects into account, a re–investigation of the basis
set convergence using high-quality correlation–consistent bases
of increasing size (highest angular momentum l = 7) appears
promising.

Since for helium-like systems the only variable capable of
influencing the entanglement is the charge of the nucleus Z, the
dependence with the respect to the nucleic charge is also of con-
siderable interest. A further question in this context is how well
the best GTO type bases predict the entanglement compared to
the more accurate Kinoshita type approaches? Shi and Kais have
demonstrated that the basis set expansion can be related to finite
size scaling and criticality of entropy as the nuclear charge is
varied (Shi and Kais, 2004).

The objective of this work was to systematically investigate
these questions by comparing different electron entanglement
measures for four helium-like systems as a function of the quality
of the basis sets as well as the nucleic charge.

2. METHODOLOGY
In order to compute entanglement properties of the systems
envisaged in this study, the wave function |�〉 of the pure two-
electron state has to be determined, which can be written as
follows

|�〉 =
2N∑

a = 1

2N∑
b = 1

ωabc†
ac†

b |0〉 (2)

where c† correspond to the fermionic creation operators, |0〉 is
the respective vacuum state. The indices a and b run over all 2N
orthonormal one electron states. Due to antisymmetry the expan-
sion coefficients ωab satisfy ωab = −ωab and ωab = 0 must be
fulfilled for a = b.
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The reduced one electron density matrix with respect to elec-
tron A is obtained via the partial trace of the density matrix over
the index of electron B:

ρA = TrB|�〉〈�| (3)

The entanglement of the ground state is then given by the von
Neumann entropy SvN using the reduced density matrix ρA,
which has been shown to be an appropriate measure of the
entanglement of two–particle systems (Gittings and Fisher, 2002;
Zanardi, 2002):

SvN = −Tr
(
ρA log2 ρA

)
(4)

An alternative measure often employed in literature (Manzano
et al., 2010; Dehesa et al., 2012) corresponding to a simplified
form of SvN is the linear entropy Slin obtained by retaining just
the leading term of the series expression of the logarithm:

Slin = −Tr [ρA (ρA − 1)] = 1 − Tr
(
ρ2

A

)
(5)

The linear entropy constitutes a lower bound to SvN and since it
does not require diagonalization of the density matrix, it is often
preferred to characterize the mixing of quantum states. It should
be noted that the use of Slin has no advantage in the current study
because ρA already is a diagonal matrix for all considered systems
and hence, a diagonalization step is not required.

The expansion coefficients of the CI wave function can be
computed using electronic structure programs capable of execut-
ing configuration interaction (CI) computations at the appropri-
ate excitation level. In case of two-electron systems configuration
interaction using single and double excitations (CISD) already
considers all possible excited states and hence, this level corre-
sponds to the FCI expression

|�CISD〉 = |�0〉 +
∑

ia

Tia|�i→a〉 +
∑
ijab

Tijab|�ij→ab〉 (6)

where |�0〉, |�i→a〉 and |�ij→ab〉 are the reference-state (i.e.,
Hartree-Fock) and the corresponding excited determinants, the
respective amplitudes are given as Tia and Tijab. Knowledge of the
latter enables the evaluation of the one-electron reduced density
matrix ρA and the computation of the entanglement measures
SvN and Slin. The correlation energy is obtained as the differ-
ence between the FCI energy and the HF result for the respective
reference state (restricted Hartree-Fock).

In addition to the linear and von Neumann entropies derived
via density matrices, a third measure for the electron entan-
glement is used in the literature (Gersdorf et al., 1997; Maiolo
et al., 2007; Esquivel et al., 2011), which is based on the occu-
pation numbers of natural spin orbitals obtained from natural
bond orbital (NBO) analysis (Glendening et al.; Reed et al.,
1988; Weinhold, 2012). In this post-processing step the canon-
ical orbitals are localized via diagonalizing of localized blocks

of the density matrix. Using the resulting occupation numbers
ni the corresponding occupation number entropy Socc can be
obtained as

Socc = −
N∑

i = 1

(ni

2
log2

ni

2

)
(7)

where the division by two accounts for the double-occupancy of
each NBO in case of closed-shell systems (Wang and Kais, 2007).
Table 1 lists the occupation numbers obtained for hydride at HF
and FCI level using the simple correlation–consistent polarization
valence double zeta (cc-pVDZ) basis set. Due to the full occupa-
tion of only one orbital in case of Hartree–Fock the occupation
number entropy results as zero (no entanglement), whereas in
case of the FCI computation a finite value for Socc correspond-
ing to an entangled state is obtained. This finding results from
the fact that the total occupation is distributed over a number
of natural orbitals, which is, however, in stark contrast to the
commonly used concept of assigning pairs of electrons to indi-
vidual orbitals being equivalent to the disentangled Hartree–Fock
occupation.

Since NBO analyses are readily available in a number of elec-
tronic structure packages and the computation of the reduced
density matrix is not required, Socc provides an alternative
approach to characterize entanglement phenomena. In this case
the computation of the total density at the FCI level is required,
which may become a computationally limiting step when large
basis sets are used.

In addition to a systematic investigation of the entangle-
ment measures SvN , Slin and Socc their dependence with respect
to the nucleic charge Z of the system is of increased inter-
est, since for helium like systems the nucleic charge is the
only external variable influencing the resulting wave func-
tions. Although computer experiments enable non-integer vari-
ations of the nucleic charge Z, the quality of the result is
strongly linked to the employed basis sets. Test computations
of helium using basis sets developed for hydrogen and vice
versa resulted in very poor results for the total energy (data
not shown). Thus, any variation of Z should be performed
only in a region, where the basis set remains valid for the
atom in question. Following this line of thought it seemed
more appropriate to compute the derivative of the entanglement

Table 1 | Occupation numbers and occupation number entropy Socc

obtained from an NBO analysis obtained for H− at HF and FCI level

using the cc-pVdZ basis set.

Orbital HF FCI

1 2.00000 1.97877

2 0.00000 0.01499

3 0.00000 0.00208

4 0.00000 0.00208

5 0.00000 0.00208

Sum 2.00000 2.00000

Socc 0.00000 0.02136
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measures with respect to the nucleic charge via numerical
differentiation

∂S

∂Z

∣∣∣∣
i

≈ Si − 2 − 8Si − 1 + 8Si + 1 − Si + 2

12�Z
(8)

where the subscripted indices denote the increments/decrements
in �Z from the formal nucleic charge of the species correspond-
ing to the point i. Since this numerical differentiation requires
four data points above or below the formal charge of the sys-
tems, five individual QM computations are required to obtain
the entanglement entropies and their respective derivatives for
each basis set and system considered. In order to ensure that the
basis sets remain valid one-electron bases, a very small value for
�Z of 0.0005 a.u. was employed. The derivatives of the entan-
glement measures were found to be a very sensitive probe of the
quality of the computation, yielding qualitatively wrong results
(i.e., the wrong sign) when too simple one-electron bases were
used.

A variety of basis sets have been considered in this study. In
case of H− and He the small Pople-type bases 3-21G (Binkley
et al., 1980), 6-31G (Hehre et al., 1972) and 6-311G (Hariharan
and Pople, 1973; Krishnan et al., 1980) with and without polar-
ization (Frisch et al., 1984) and diffuse functions (Clark et al.,
1983) have been employed since they have been used in the past
to investigate entanglement phenomena. However, in case corre-
lated ab initio methods such as CI are to be employed the use
of Dunning’s correlation– consistent polarization valence n-tuple
zeta (cc-pVnZ) basis sets (Dunning, 1989; Kendall et al., 1992;
Peterson et al., 1994; Woon and Dunning, 1994; van Mourik
et al., 1999) is recommended and consequently, these bases and
their augmented variants (aug-cc-pVnZ, d-aug-cc-pVnZ, t-aug-
cc-pVnZ representing augmented, double- and triple-augmented
variations) constitute the main focus of this study. While in the
case of hydrogen n ranges from 2 to 6, a range from 2 to 8 is
available for helium. Furthermore, a second series of high level
basis sets referred to as mcc-pVnZ (n = 3 − 8; the letter m indi-
cating modified) developed by Mielke and coworkers (Mielke
et al., 1999, 2002, 2005) is available in case of hydrogen. This
modified form of basis developed to achieve an improved descrip-
tion of the H + H2 reaction barrier, has also been considered in
this study along with the corresponding augmented and double-
augmented sets. While not explicitly designed for the treatment of
atomic hydrogen species, the larger size of this series (n = 3 − 8)
compared to the conventional cc-PVnZ bases (n = 2 − 6) can be
expected to yield well-converged data for atomic systems as well.
The application of the diffuse augmentation functions is known
to have a significant impact on the description of anionic sys-
tems and it is expected that this fact is reflected by the different
measures of the electron–electron entanglement in the hydride
system. In case the number of augmented basis functions is higher
than given in the literature, the rule of Dunning and coworkers to
construct additional augmentation functions (van Mourik et al.,
1999) (by dividing the square of the exponent of the most diffuse
function by the exponent of the second most diffuse function)
was employed.

For Li+ and Be2+ the cc-pVnZ (Dunning, 1989; Kendall et al.,
1992; Peterson et al., 1994; Woon and Dunning, 1994) bases only
range from n = 2 to 5. Although the respective augmented forms
were also considered in this study, the application of the cc-
pCVnZ and aug-cc-pCVnZ basis sets (Prascher et al., 2011) was
considered to be more important for these systems. These bases
include further localized functions to improve the description of
the electron density close to the nucleus, which is in many cases
crucial for an accurate description of positively charged systems.

In order to demonstrate the increase in size of the chosen
bases, the composition of the various correlation–consistent basis
sets used in this study in terms of the commonly used reference
style (Gaussian primitives)/[contracted functions] is listed in the
supplementary material (Tables S1, S2).

All QM calculations were performed with the Gaussian09
package (Frisch et al., 2009). In order to eliminate any influ-
ence of parameters used in empirical approaches to generate
starting orbitals, a so-called “core guess” employing only the
core-Hamiltonian matrix was chosen to generate the initial
orbitals. To ensure a proper convergence of the wave func-
tions, the convergence criteria were set to 10−14 and 10−10 for
the Hartree-Fock and FCI calculations, respectively. While most
of the computations can be conveniently executed on a state-
of-the-art notebook (Intel Core i7, 2.9 GHz, 8 GB RAM), the
capacities of the MACH high performance computing facility
of the Austrian Center for Scientific Computing were required
in case of the largest basis sets used in this study. The execu-
tion times for the individual computations depend dramatically
on the size of the basis set, ranging from a few seconds up to a
few days.

3. RESULTS
In the following the results for the four systems hydride, helium,
Li+ and Be2+ are discussed. Only a graphical depictions of the
respective data are included in the main manuscript, however all
data obtained for the energy, the different entanglement measures
and their dependence with respect to the nucleic charge for the
different one–electron bases have been listed to high precision in
the supporting information (Tables S3–S7).

Helium: Since the helium atom is the prime example for a real
two-electron system, it is considered first in this section. Figure 1
depicts the total and correlation energies ECI and Ecorr, the entan-
glement measures SvN, Slin, and Socc and their derivatives with
respect to the nucleic charge as a function of the size n of the basis
set for the cc-pVnZ bases and the respective augmented variants.
The respective data along with the values obtained for a number
of Pople–type basis sets (3-21G, 6-31G, 6-311G with and with-
out polarization and/or diffuse functions) are given in Table S3.
The data agrees well with the scarce number of data available in
literature. The values obtained at 3-21 G and cc-pV5Z level agree
well with data reported by Huang and Kais (2005) given as 0.0149
and 0.0415 a.u. for Ecorr and as 0.0313 and 0.0675 in case of SvN,
respectively. (The difference in sign for Ecorr results from a differ-
ent definition in the calculation of the correlation energy). The
entropies compare also well to data obtained using an STO–type
basis reported by Benenti et al. (2013) as 0.0785 and 0.01606 for
the von Neumann and linear entropies of ground state helium.
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FIGURE 1 | Total and correlation energy ECI and Ecorr in atomic units;

von Neumann SvN , linear Slin and occupation number Socc entropies

and their derivative with respect to the nucleic charge Z obtained for

Helium at the FCI level using different basis sets.

Although the values differs significantly in case of SvN , Slin agrees
within 1%.

Both the total as well as the correlation energy show the
expected monotonic decrease upon increase of the one electron
basis. While the energies obtained from cc-pVnZ bases are found
at higher values, the plots of the augmented variants overlap even
when magnifying the region n = 5 − 8 (see inlay in Figure 1),
indicating only a small gain in accuracy when using double- and
triple–augmented bases. The total energy converges nicely toward
the value reported by (Manzano et al., 2010) using a high–level
Kinoshita-type ansatz (dashed line). The deviation between this
estimation and the best energy resulting from the largest basis set
t-aug-cc-pV8Z is 1.12642 · 10−4 a.u., i.e., about one tenth of a
milli–Hartree.

The entanglement measures SvN , Slin and Socc on the other
hand show dramatic differences compared to the energies of the
system. Foremost, the von Neumann and linear entropies do not
show the expected monotonically increasing trend upon increase
of the bases: in the cc-pVnZ case an increase is observed in
the region n = 2 − 5, while the entropies decrease for basis sets
beyond cc-pV5Z. In case of all augmented variants of the cc-pVnZ
bases, an oscillatory convergence of SvN and Slin is observed,
with minima and maxima occurring at n = 2 and 3, respec-
tively. Aside from a constant prefactor the von Neumann and
linear entropy show a very similar behavior. The values obtained
for Slin are similar to the estimation given by Dehesa et al.
(2012) using a high-level Kinoshita-type description, although
it appears that the linear entropy obtained via the GTO bases
converges toward a lower limit. Nevertheless, the value for Slin

resulting from the largest basis set t- aug- cc-pV8Z obtained as
0.015900 is well within the reported range (Dehesa et al., 2012)

of 0.015914 ± 4.4 · 10−5, the error–limit being the result of a
Monte-Carlo numerical integration. Similar as in the case of the
energy, the use of additional augmentation functions beyond the
first does only lead to minor improvements of the different entan-
glement measures being visible only on the fifth significant digit.

As expected the increase of the basis led in all cases to a
monotonic decrease of the energy, resulting from an improved
description of the correlation. Since correlation is associated
with entanglement, following Collin’s conjecture (Collins, 1993)
any entanglement measure should therefore show a monotonic
increase, which is, however, not always the case: A decrease of
the correlation energy upon increase of the basis is not always
linked to an increase of the correlation entropy. It can be seen,
however, that the entropies obtained from the different types of
the basis sets converge toward the respective basis set limit and
hence, it appears that Collins’ conjecture holds true in case a com-
plete basis is used, i.e., when employing a large (formally infinite)
number of linear independent basis functions.

The convergence of the occupation number entropy Socc dif-
fers from that of the other two entanglement measures, but it
shows an essentially similar behavior in case of the larger basis
sets (n = 5 − 8). Also in this case the convergence is not mono-
tonic, but shows maxima at n = 3 (augmented bases) and n = 4
(cc-pVnZ). On the other hand Socc is more sensitive with respect
to the use of augmentation functions, showing differences already
on the third to fourth significant digit.

The numerical derivatives of the entanglement measures
with respect to the nucleic charge proved to be more sensitive
than the entropies themselves. Although in case of correlation–
consistent bases all derivatives are negative, the cc-pVnZ set
performs particularly poor, especially for low values of n. Even
the aug-cc-pVDZ basis shows a notable deviation from the val-
ues obtained for the double- and triple augmented bases. While
in the case of cc-pVnZ a monotonic decrease of the deriva-
tive is observed, the convergence is again oscillatory in case
of the augmented variants for all three types of entanglement
measures.

The rather bad performance of Pople–type basis sets (see
Table S3) with respect to the high-level augmented cc-pVnZ bases
is not too surprising, since they have not been developed within
the scope of a correlated ab initio treatment. However, it should
be noted that in case of the simplest basis in this series, the 3-
21 G set, the sign of the derivatives of the entanglement measures
with respect to Z is positive, implying an increase of entanglement
upon increase of the nucleic charge. This qualitatively wrong
result is observed for all three entanglement measures considered
in this study and implies that the use the 3-21 G basis is highly
insufficient to properly take correlation/entanglement effects into
account. In case the use of Pople–type basis sets is required, a
larger veriant such as 6-311 G(2ḋ,2 p) appears to be the minimum
choice, leading to similar results for the entanglement entropies
than augmented cc-pV4Z bases despite the poor performance in
terms of the total energy.

Overall the data suggests that the application of the aug-cc-
pV6Z basis appears to be a sufficient compromise between accu-
racy and computational effort to obtain reasonably converged
entanglement measures in case of the helium system.
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Hydride: The convergence of the entanglement measures in
case of hydride are notably different compared to those of helium.
Figure 2 depicts the convergences of the energies, entanglement
entropies and their derivatives for the cc-pVnZ and mcc-pVnZ
bases as well as the respective augmented sets. The data obtained
for various Pople- and Dunning–type basis sets are listed in Table
S4, the results for the mcc-pVnZ bases are given in Table S5.

Although the energies ECI and Ecorr show again a mono-
tonic decrease in all cases as expected, monotonically increasing,
monotonically decreasing as well as oscillatory convergence of
the entanglement entropies is observed, again being in viola-
tion of Collin’s conjecture. The energy difference between the
largest basis used in this study (d-aug-mcc-pV8Z) and the value
reported by Manzano et al. (2010) amounts to 5.15801 · 10−5

a.u., (approximately 120th of a milli–Hartree), being on the same
order as the energy difference in the helium case.

Due to the absence of diffuse functions in case of the cc-
pVnZ and mcc-pVnZ sets, the total as well as the correlation
energy show large deviations, which is also reflected by signifi-
cantly lower values in case of all three employed entanglement
measures. Similar as in the helium case treated at the cc-pVnZ
level the entropies show a monotonic increase as the descrip-
tion of the system becomes more accurate. However even for the
largest sets in these series the entropies are far from converged.

Augmentation of the basis with diffuse functions leads to a
significant improvement of energies and entanglement entropies,
reflecting the importance of augmentations functions for an accu-
rate quantum chemical treatment of diffuse electron densities
observed in anions and systems carrying lone electron pairs. The
difference is still visible in case of the singly augmented bases
(aug-cc-pVnZ, aug-mcc-pVnZ) – the energies are still too high,

FIGURE 2 | Total and correlation energy ECI and Ecorr in atomic units;

von Neumann SvN , linear Slin and occupation number Socc entropies

and their derivative with respect to the nucleic charge Z obtained for

H− at the FCI level using different basis sets.

the corresponding entropies too low, except for the largest basis
set in this series (aug-mcc-pV8Z) which converges toward the
value of the best estimate (d-aug-mcc-pV8Z).

Comparison of the double– and triple–augmented version
of the cc-pVnZ bases reveals a significant difference. While in
case of the double augmented bases the entanglement entropies
show an almost constant dependency with respect to n, a mono-
tonic decrease with a notable deviation at n = 2 is observed for
the triple–augmented basis sets. Considering that the latter are
higher in quality (which is also reflected by lower energy values),
it becomes evident that the entanglement entropies are not an
absolute measure for the quality of the description of the system
when basis sets of insufficient size are used. This conclusion is
underlined by the convergence of the largest basis sets used for
H− (d-aug-cc-pVnZ, t-aug-cc-pVnZ, d-aug-mcc-pVnZ), yield-
ing almost identical data for n = 3 and beyond.

Again the findings are in contrast to Collins’ conjec-
ture (Collins, 1993) and underline the conclusion drawn earlier
in the helium case. Despite the dramatically different conver-
gence characteristics of the entanglement entropies, a conver-
gence toward the associated basis set limit is observed even for
the unaugmented bases (cc-pVnZ, mcc-pVnZ).

Comparison of SvN , Slin and Socc reveals essentially simi-
lar plots, showing only small differences between the graphs
obtained for a partiular basis set family. In case of the occupa-
tion number entropy the difference between the aug-mcc-pVnZ
and d-aug-mcc-pVnZ bases is smaller compared to the other two
entanglement measures.

The entropy derivatives ∂S/∂Z show the largest differences
among the individual types of bases, demonstrating once more
the sensitivity of this property on the chosen one-electron basis.
Essentially, only the best bases (d-aug-cc-pVnZ, t-aug-cc-pVnZ,
d-aug-mcc-pVnZ) show a consistent convergence, while the basis
sets of lower quality show noticeable deviations in case of all
employed entanglement measures.

Even worse, the unaugmented bases sets (cc-pVnZ and mcc-
pVnZ) show a particularly bad behavior for n < 5: similar as
in the helium case using the 3-21G basis, positive derivatives
are observed, which corresponds again to a qualitatively wrong
description of the electron entanglement. Interestingly, the same
behavior is observed in case of all Pople–type basis sets consid-
ered: if no diffuse functions are applied, positive values for ∂S/∂Z
are obtained (see Table S4). Despite the fact that the derivatives
are negative in case large n or the application of diffuse functions,
the data strongly suggests that at least double-augmented basis
sets with n = 5 are required to achieve converged results in case
of hydride, while the use of a single augmented basis with n = 6
appears to be sufficient for helium.

Li+ and Be2+: Energetic and entropic data as well as
the derivatives of the entanglement entropies are shown in
Figures 3, 4 for Li+ and Be2+, the respective data are listed
in Tables S6, S7. Since both systems show similar convergence
properties, the discussion is focused on both systems. Due to
the cationic nature of these systems and the associated contrac-
tion of the electron density, the inclusion of core functions is
known to significantly improve the description of the system,
which is reflected by the dramatic decrease in energy when using
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the cc-pCVnZ set: the energy obtained for the smallest basis
in this series (cc-pCVdZ) is significantly lower than that of the
largest basis of the cc-pVnZ series (n = 5). On the other hand,
the inclusion of augmentation function does not lead to any

FIGURE 3 | Total and correlation energy ECI and Ecorr in atomic units;

von Neumann SvN , linear Slin and occupation number Socc entropies

and their derivative with respect to the nucleic charge Z obtained for

Li+ at the FCI level using different basis sets.

FIGURE 4 | Total and correlation energy ECI and Ecorr in atomic units;

von Neumann SvN , linear Slin and occupation number Socc entropies

and their derivative with respect to the nucleic charge Z obtained for

Be2+ at the FCI level using different basis sets.

notable improvement. This trend is also reflected by the different
entanglement entropies, which again show essentially identical
convergence properties. While the use of augmentation func-
tions results only in minor changes of the entropies, a significant
improvement is observed in case core functions are included.

Nevertheless, since the cc-pCVnZ series is limited to n = 5, the
overall convergence in energy is not as accurate as observed for
helium and hydride, being approximately one order of magnitude
larger. The difference in energies obtained with the largest basis
set (aug-cc-pCV5Z) compared to the accurate data of Manzano
et al. (2010) is 5.814134 · 10−4 and 6.377994 · 10−4 for of Li+
and Be2+, respectively, being on the order of 0.5 milli–Hartree.
Nevertheless, the different entanglement measures appear well
converged at this level of the one–electron basis.

The derivatives of S with respect to Z show again the highest
sensitivity. For both systems the graphs obtained for the cc-pVnZ
bases intersect the graphs resulting from the cc-pCVnZ bases,
although at different sizes of the basis sets. Although it is not pos-
sible to identify the convergence limit of the entropy derivatives,
the shape of the graph resulting for the cc-pVnZ bases observed in
case of Be2+ hints toward an oscillatory convergence. Considering
also the large deviation in energy. It can be expected that the
derivatives converge toward higher numbers in case basis sets
with higher n were available for these systems. On the other hand
since the values for the derivatives are considerably lower than in
case of helium and hydride, the numerical differentiation given in
equation (8) might not be as accurate.

Comparison of the different systems: In Figure 5 a compari-
son of the data obtained for the four systems is depicted for the
low– and intermediate–quality bases 3-21 G and cc-pV5Z as well

FIGURE 5 | Total and correlation energy ECI and Ecorr in atomic units;

von Neumann SvN , linear Slin and occupation number Socc entropies

and their derivative with respect to the nucleic charge Z obtained for

H−, He, Li+ and Be2+ at the FCI level using the 3-21G, cc-pV5Z and the

’best’ bases.
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as the results obtained for the largest bases considered for each
system being d-aug-mcc-pV8Z for hydride, t-aug-cc-pV8Z for
helium and aug-cc-pCV5Z in case of Li+ and Be2+, respectively.
This data is referred to as “best set” in Figure 5.

It can be seen that in case of the total energy the difference in
quality between the individual data sets is not visible. This results
from the fact that the energy differences between the systems are
magnitudes larger than the deviations between the different basis
sets. However, comparison of the respective correlation energies
reveals dramatic differences. As a consequence of the increas-
ing nucleic charge, the electron density becomes more contracted
around the nucleus and correlation effects should become more
prominent. This behavior is reflected by the decrease of the cor-
relation energy upon increasing Z observed in case of the best
set, while in case of the 3-21 G and cc-pV5Z bases a wrong trend
is observed. The decrease of Ecorr from hydride to helium is too
pronounced resulting from the lack of diffuse functions in case
of H−, while the absence of core functions in case of the cationic
systems result in too small values for the correlation energy.

As expected the entanglement entropies prove to be sensitive to
the quality of the bases, especially in the 3-21 G case, which dra-
matically underestimates the entanglement in line with the poor
description of the correlation energy. The performance of the cc-
pV5Z series is already significantly improved, however, also in this
case the missing augmentation via diffuse functions leads to a
large error for the hydride system, while the deviation in case of
the other systems are small. Aside from small shifts of the individ-
ual values, all three entanglement measures result in very similar
plots.

As became evident in the discussion of the individual systems
the derivatives of the entanglement measures with respect to the
nucleic charge proved to be very sensitive convergence measures.
In case of the 3-21 G basis set positive derivatives are obtained
in case of hydride and helium, which is in contrast to the depen-
dence of the individual entropies, which decrease upon increasing
Z. Clearly, the 3-21 G bases are too small to enable an adequate
correlated ab initio treatment and should, therefore, be avoided
in future studies of correlation and/or entanglement. Improving
the bases to the cc-pV5Z level leads again to a large error in case of
hydride, whereas the deviations for all other systems appear small
on this scale. However, as discussed earlier, the use of large basis
sets is highly recommended to achieve results near the basis set
limit.

Comparison of the entanglement entropies: The linear
entropy Slin comprises a simplified version of the von Neumann
entropy, obtained by expressing the logarithm via its series expres-
sion and retaining only the linear term. Thus, within a constant
the two measures should yield the same result. In order to investi-
gate the accuracy of this conjecture linear regression was applied
to plots of the von Neumann entropy versus the linear entropy,
the resulting correlation coefficients are listed in Table 2.

The correlation coefficients R imply an excellent linear behav-
ior between Slin and SvN , although due to the unequal spacing
of data points as demonstrated in Figure 6 the correlation coef-
ficients may appear slightly too favorable. Nevertheless, the lin-
earity implied in Slin is nicely fulfilled in case of all systems and
bases, which is, however, not the case for the occupation number

Table 2 | Correlation coefficients R resulting from linear regression of

the von Neumann and linear entropies.

SvN :Slin H− He Li+ Be2+

cc-pVnZ 0.9991901 0.9999984 0.9987390 0.9991970

aug-cc-pVnZ 0.9999984 0.9999999 0.9987450 0.9991194

d-aug-cc-pVnZ 0.9999997 0.9999999 – –

t-aug-cc-pVnZ 0.9999978 0.9999999 – –

mcc-pVnZ 0.9996481 – – –

aug-mcc-pVnZ 0.9999994 – – –

d-aug-mcc-pVnZ 0.9999995 – – –

cc-pCVnZ – – 0.9999991 0.9999987

aug-cc-pCVnZ – – 0.9999991 0.9999988

FIGURE 6 | Comparison of Slin and Socc as a function of SvN in case of

H− (left) and helium (right) treated with d-aug-cc-pVnZ and

t-aug-cc-pVnZ bases, respectively. While the linear entropy correlates
very well with the von Neumann entropy in all cases, the occupation
number entropy does not show a linear correlation in all cases.

entropy (see Figure 6). While in some cases a near-linear depen-
dence of Socc and SvN is observed as for example in the case of
hydride treated with the d-aug-cc-pVnZ series (R = 0.998937),
such an behavior is not observed in general as demonstrated
also in Figure 6 for helium treated at the t-aug-cc-pVnZ level.
However, if the outlier resulting from the smallest basis set in
the series is not considered, the linear dependence is significantly
improved (R = 0.993304). This finding is inline with the con-
clusion drawn earlier, that the agreement between Socc and SvN

improves for larger basis sets.

4. CONCLUSION
The conclusion that electron correlation is indeed a physical
effect related to the entanglement of electrons marks an impor-
tant finding for the understanding of electronic structure theory
and the systematic investigation of the convergence of entangle-
ment measures upon increase of the one–electron basis presented
in this study revealed a number of important properties of this
phenomenon.

The most essential one is definitively the finding that in con-
trast to the total and correlation energies entanglement entropies
do not show a monotonic convergence upon a systematic increase

Frontiers in Chemistry | Theoretical and Computational Chemistry November 2013 | Volume 1 | Article 24 | 8

http://www.frontiersin.org/Theoretical_and_Computational_Chemistry
http://www.frontiersin.org/Theoretical_and_Computational_Chemistry
http://www.frontiersin.org/Theoretical_and_Computational_Chemistry/archive


Hofer Basis-set convergence of e−e−-entanglement measures

of the one–electron basis along established series such as cc-
pVnZ and related bases. Monotonically increasing, monoton-
ically decreasing as well as oscillatory convergence has been
observed. These properties do not only vary for different sys-
tems, but changes in the convergence behavior have also been
observed in case different bases are applied to the same system.
This implies that although a relation between entanglement and
electron correlation can be established based on the violation of
Bell’s inequality, the respective energies and the employed entan-
glement measures do not directly depend on each other in case
too small bases are employed. This behavior demonstrated in
detail in Figure 7 by plotting the von Neumann entropy against
the respective correlation energy violates the conjecture given by
Collins (1993) and hence, it appears that this statement should be
extended, i.e., the correlation energy of a system is proportional
to the respective entropy of entanglement, if a sufficiently large
basis set is used ensuring data close to the basis set limit.

It should be noted at this point that in his article Collins
considered electron density representations derived from exper-
imental information such as X-ray diffraction. Although the
connection between entropy and an N-representable one-particle
density matrix has been discussed, errors resulting from finite–
sized bases in quantum chemical computations were not within
the scope of Collins’ discussion. Since the electron density data
obtained from experiment is not subject to basis set effects, the
requirement of considering complete basis sets can be interpreted
as an implicit prerequisite in Collins’ conjecture. Nevertheless, it
appeared desirable to explicitly highlight this point based on data
obtained from actual computations.

Using the largest bases available in literature good agree-
ment of energies and entanglement entropies with highly accu-
rate data obtained via a Kinoshita type formulation is achieved,
the deviations being on the order of about 0.05 to 0.5 milli-
Hartree. However, in order to achieve consistent data the nature
of the chemical system has to be taken into account when
selecting the basis set. In the case of anions the use of augmen-
tation functions to properly describe diffuse electron densities
is known to be important, which is well reflected by the con-
vergence of the individual entanglement measures. For cationic
systems the inclusion of core functions proved to be crucial—
the simplest basis set used in this study including core functions
(cc-pCVdZ) proved to be more accurate than the largest basis
without those functions (aug-cc-pV5Z) in case of Li+ and Be2+,
respectively.

FIGURE 7 | Correlation of SvN against Ecorr obtained for H− (left) and

helium (right) using for different types of basis sets. The varying
convergence properties clearly indicate that Collins’ conjecture does not
hold in case of small-sized one-electron bases.

The use of too small one–electron bases such as the widely
used 3-21 G and 6-31 G basis sets proved to be unsuitable for
the characterization of entanglement phenomena aside from
proof-of-concept-type calculations. In addition to the quantita-
tively poor entanglement entropies their derivatives with respect
to the nucleic charge proved to be qualitatively wrong in case
of the hydride and helium systems, resulting in ∂S/∂Z values
of wrong sign. The recommendation to use basis sets explic-
itly designed for correlated ab initio computations is, thus, well
reflected by the entanglement entropies. In general the entropy
derivatives proved to be sensitive convergence measures, despite
the numerical nature of the differentiation employed in this
study.

Finally, regression analyses confirmed that the linear entropy
Slin shows indeed a highly linear dependence with respect to the
von Neumann entropy SvN , whereas in the case of the occupation
number entropy Socc linearity can essentially only be observed for
sufficiently large basis sets.

Although the data presented in this study is focused on the
benchmarking of the entanglement measures with respect to the
investigated systems and employed one–electron bases, impor-
tant implications for physics and chemistry in general can be
drawn from the respective findings. In particular the standard
concept to describe the occupation of orbitals in chemical sys-
tems via the assignment of pairs of electrons to individual orbitals
corresponds essentially to the approximate Hartree-Fock pic-
ture. However, to achieve an accurate description of systems
as simple as helium, an effective occupation as observed in
the NBO analysis for the FCI case given in Table 1 has to be
considered. In addition to the difficulties arising from chang-
ing the established picture of single-orbital occupation used for
decades in teaching and research, the formulation of a phys-
ically/chemically satisfying interpretation of such an effective
occupation is a challenge of its own. The reason for this lies
in the inadequate concept that the electronic structure could be
described via single particle wave functions. Since this approach
is an approximation, it is of course a delicate matter to map the
more sophisticated full configuration interaction approach using
multiple Slater determinants back onto the approximate Hartree–
Fock level employing only a single determinant. Consequently,
any interpretation of entanglement phenomena in a framework
of single–particle occupation has to be unsatisfactory, especially
since the latter can be shown to not account for these effects
at all.

Despite the important finding that correlation effects have
a physical counterpart, providing experimental evidence of
electron–electron entanglement in real systems appears to be very
a challenging task. An experiment would have to be designed in
which the electrons of a test system such as helium are artificially
disentangled. In case such a state could be indeed generated in an
experimental setup, it can be expected that the associated energy
spectrum correspond to the energy differences of the Hartree–
Fock solutions obtained for various excited states and the ground
state.

A related question is the difficulty to give an interpretation of
the entanglement entropy and to identify the source leading to
the different values observed for various systems. For example

www.frontiersin.org November 2013 | Volume 1 | Article 24 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Theoretical_and_Computational_Chemistry/archive


Hofer Basis-set convergence of e−e−-entanglement measures

considering again the ’best set’ defined earlier the ratio of the
von Neumann entropies of H− and Be2+ is 17.1. This does,
however, not necessarily imply that the electrons in hydride
are more entangled by a factor of 17 than those in Be2+.
Despite the possibility to compute and analyse entanglement
properties from first principles via quantum chemical compu-
tations, no information regarding the underlying mechanism
can be obtained from the presented data. Aside from the cho-
sen one–electron basis the nucleic charge is the only external
parameter that influences the wave-function and thus, the entan-
glement/correlation of the electrons. Although disentanglement
is to some extend related to the phenomenon of decoherence, it
was recently discussed that these two properties are not always
occurring simultaneously (Ford and O’Connell, 2010). Recently,
it was shown that in addition to entanglement sudden death
(ESD, also referred to as early stage disentanglement) sudden
rebirth of entanglement from disentangled state can be observed
as well (Yönaç et al., 2007; Yu and Eberly, 2009). Despite the
fact that full configuration interaction does not provide any
information regarding the time–evolution of a system, sudden
death/birth of entanglement may provide a means to inter-
pret the decreasing von Neumann entropy upon increase of
the nucleic charge. Since only the electrons are included in
the quantum mechanical treatment, the nuclei have to be con-
sidered as environment. The increasing ratio of the electron–
nucleic potential compared to the electron–electron interaction
can be interpreted as a increase of decoherence resulting in a
higher probability of ESD to occur. Thus, it can be expected

that periods of disentanglement increase with increasing nucleic
charge.

In case it were truly possible to experimentally disentangle
electrons in real atomic systems, the question arises whether it
is also possible to devise an experiment setup capable of con-
trolling (or even increasing) the degree of entanglement of the
subatomic particles. While such experiments can hardly be envis-
aged at present, it is to be hoped that further investigations of
electron-electron entanglement will improve the understanding
of this phenomenon and promote further theoretical and experi-
mental research into this fascinating field. Future investigations
will, therefore, focus on the characterization of entanglement
measures and their respective convergence properties in excited
states as well as molecular systems such as the hydrogen molecule.
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