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Abstract: We examined physiological predictors of performance on the CrossFit Murph challenge
(1-mile run, 100 pullups, 200 pushups, 300 air squats, 1-mile run). Male CrossFit athletes (n = 11,
27 ± 3 years) performed a battery of physical assessments including: (1) body composition, (2) upper
and lower body strength, (3) upper body endurance, (4) anaerobic power, and (5) maximal oxygen
consumption. No less than 72 h later, participants completed the Murph challenge, heart rate was
monitored throughout, and blood lactate was obtained pre-post. Correlations between physiological
parameters and total Murph time, and Murph subcomponents, were assessed using Pearson’s
correlations. Murph completion time was 43.43 ± 4.63 min, and maximum and average heart rate
values were 185.63 ± 7.64 bpm and 168.81 ± 6.41 bpm, respectively, and post-Murph blood lactate was
10.01 ± 3.04 mmol/L. Body fat percentage was the only physiological parameter significantly related
to total Murph time (r = 0.718; p = 0.013). Total lift time (25.49 ± 3.65 min) was more strongly related
(r = 0.88) to Murph time than total run time (17.60 ± 1.97 min; r = 0.65). Greater relative anaerobic
power (r = −0.634) and less anaerobic fatigue (r = 0.649) were related to total run time (p < 0.05).
Individuals wanting to enhance overall Murph performance are advised to focus on minimizing body
fat percentage and improving lift performance. Meanwhile, performance on the run subcomponent
may be optimized through improvements in anaerobic power.
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1. Introduction

CrossFit is defined as “a high-intensity fitness program incorporating elements from several
sports and types of exercise” [1]. The sport of CrossFit is a rapidly-expanding genre of fitness, reaching
approximately 15,000 affiliates worldwide [2]. The foundation of CrossFit prides itself upon constantly
varied, high intensity functional movements to improve fitness and health. Each CrossFit workout is
designed to task the body with significant stimuli to produce meaningful mechanical and metabolic
adaptations. The Murph challenge is highly-celebrated within the CrossFit community, receiving its
name from Lt. Michael P. Murphy, who was killed in Afghanistan in 2005 and received a Medal of
Honor posthumously. The Murph starts with a 1-mile run, followed by 100 pullups, 200 pushups,
and 300 squats, and finishes with another 1-mile run, and is traditionally completed wearing a 20-Ib
vest. The pullups, pushups, and squats can be done in any order and the objective of the challenge is
to complete the sequence as fast as possible. The diverse nature of these tasks stresses a variety of
physiological competencies (e.g., metabolic, mechanical, etc.).

Metabolically, energy may be produced via anaerobic or aerobic means, with exercise duration
and intensity being the greatest determinants of energy systems reliance. Specifically, anaerobic energy
systems are favored during high-intensity exercise lasting < 120 s, after which aerobic metabolism
predominates. Time to completion of the Murph usually ranges from 22 to 60 min [3], and thus Murph
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completion is largely reliant on aerobic metabolism. However, the intermittent nature of the lift session
that involves transitioning between pushups, pullups, and air squats may be influenced by anaerobic
performance and the ability to recover from high intensity exercise [4]. As such, inter-individual
differences in the ability to perform anaerobic work and manage hydrogen ion accumulation [5], as well
as aerobic power, may help to explain performance on the Murph challenge.

Mechanical elements such as muscular strength and endurance may also influence Murph
performance. Muscular strength is defined as “the maximum force-generating capacity of a muscle or
group of muscles” [6], while muscular endurance is defined the ability of a muscle or muscle group
to perform repeated contractions against a load for an extended period of time [6]. It is possible that
maximal strength has a positive correlation with consecutive repetitions when using the same muscle
groups at a sub-maximal level [7]. The importance of muscular endurance pertaining to the Murph is
justified through specificity. The lift session requires the muscles of the chest, back, and legs to fire
repeatedly until the repetition goal is met for each movement.

Unlike many CrossFit workouts, the Murph does not require any external weight aside from an
optional 20-pound vest. Instead, the Murph employs bodyweight exercises and thus inter-individual
differences in body composition may relate to performance time. Body composition can be examined
in many ways. The Body Mass Index (BMI; kg/m2) is the most common but faces the limitation of not
considering proportions of muscle and fat. Body fat percentage (%BF) can be estimated through a
variety of methods, and each technique has its unique pros and cons. Estimates of %BF can be attained
using the skinfold method, hydrostatic weighing, or dual-energy X-ray absorptiometry (DEXA), which
is the gold standard due to its ability to distinguish among muscle, bone, and fat.

Previous research has queried the contribution of the different fitness parameters described
above (i.e., aerobic and anaerobic power, muscular strength and endurance, and body composition) to
CrossFit workout performance [8–11]. However, to date there has been no research comparing the
aforementioned fitness parameters with performance on the Murph challenge, one of the most popular
CrossFit workouts. The objective of this study was to distinguish which physiological parameters
most strongly influence Murph performance. Due to the scientific novelty of the Murph challenge,
we also aimed to characterize cardiovascular (heart rate) and metabolic (blood lactate) responses to
performing the Murph. We hypothesized that aerobic power (VO2max) would be the greatest predictor
of Murph performance, and that the substantial physiological demand of completing the Murph would
be exhibited by near maximal heart rate values and substantial blood lactate accumulation.

2. Materials and Methods

2.1. Participants

Eleven healthy, active young (18–40 years) men with at least 6 months of CrossFit experience
(at least twice a week) volunteered to participate in the study, all of whom self-reported at least one
completion of the Murph. All interested individuals were given a full description of study procedures
and provided written consent to participate. All participants were free from acute or chronic illness
(e.g., cardiac, pulmonary, liver, or kidney abnormalities, cancer, hypertension, diabetes, or other known
metabolic disorders), free from orthopedic limitations, not taking any heart-rate altering medications,
and they did not smoke or participate in other forms of tobacco use.

The protocol was approved by the Institutional Review Board at Georgia Southern University.
The study consisted of two testing visits, before which participants were asked to refrain from vigorous
physical activity for 48 h and report to the testing facility in a hydrated state and having eaten their
last meal ~2–3 h prior. Upon the first visit, participants were then taken through a comprehensive
physiological screening battery including the following measures which are described in greater detail
below: body composition, upper and lower body muscular strength, muscular endurance, and finally
anaerobic and aerobic power.
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2.2. Body Composition

Body composition was measured via dual-energy X-ray absorptiometry (DEXA) (Lunar iDXA,
GE Healthcare, Madison, WI, USA). The DEXA machine was outfitted with enCORE version 16 and the
machine was calibrated prior to each scan as per manufacturer instructions (laboratory coefficient of
variation < 0.07%). During the test, subjects laid supine and remained motionless on the examination
table for 5–10 min. The information acquired from the DEXA included body fat percentage, total mass,
lean mass, fat mass, bone mineral density, and bone mineral content.

2.3. Muscular Strength

Upper and lower body muscular strength, as one-repetition maximum (1RM), were evaluated
using the bench press and back squat exercises, respectively. Before beginning the assessment,
participants were familiarized with each exercise to ensure proper form and technique. Using a light
weight (estimated 50% 1RM), participants completed 10 repetitions. After 3–5 min of rest, the weight
was increased to an estimated 75% of maximum and participants were asked to complete a single
repetition. The weight was increased by 5–10% and the participant completed another single repetition.
This process was repeated until the individual was no longer able to complete a repetition. The maximal
amount of weight with which the individual was able to successfully complete a repetition throughout
the entire range of motion was quantified as the 1RM. Ten minutes of rest was provided between upper-
(bench press) and lower- (squat) body assessments. The same protocol was used for the back-squat
exercise. As previously described, upper- and lower body muscular strength were combined to make
strength total [9] and relative strength was computed as strength total/body mass (kg).

2.4. Upper-Body Endurance

Upper-body endurance was quantified as the greatest number of repetitions that the participant was
able to complete, through the full range of motion on the bench press exercise, using a load corresponding
to 50% of their 1RM [12]. Ten minutes after evaluation of muscular strength, the appropriate load was
calculated, and participants were asked to complete as many repetitions as possible while maintaining
good technique throughout. If the technique was altered, or a repetition was failed, the test was
terminated by the spotter.

2.5. Wingate Anaerobic Test

Anaerobic power was quantified using the Wingate anaerobic testing (WnAT) protocol.
After explaining the testing protocol, participants were taken to the testing ergometer (Monark, 894e,
Vansbro, Sweden) and handlebar position and seat height (~155-degree angle behind knee) were
fitted to each participant to maximize safety and comfort. Individuals were given a 4-min warm-up
where they were asked to pedal at a light load (~30 W). The load was then totally removed, and the
participants were asked to pedal “all-out” achieving the highest possible pedaling frequency of
which they were able. Once the pedaling frequency was reached, the participant pressed a button
which automatically reapplied the load (7.5% body mass). Participants then provided their best
effort to sustain the highest possible pedaling frequency for 30 s. Once 30 s was reached, the load
was removed, and participants cooled down for 3 min at a light load (30 W). Variables gathered
from this assessment include (a) absolute and relative peak power, (b) absolute and relative peak
power, (c) anaerobic fatigue ((peak power − minimum power) / peak power (×100)), and (d) total
work. Relative power was calculated as work (W) divided by body mass in kg. Participants were
given a 10-min rest period before moving on to cardiorespiratory fitness evaluation.

2.6. Cardiorespiratory Fitness (VO2Max)

Aerobic power (VO2max) was assessed using a 4Front (Woodway, Waukesha, WI, USA) motorized
treadmill using a standardized graded testing protocol. The test started with a two-minute walking
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(3 mph) warm-up, after which speed was increased to 5 mph. Every two minutes thereafter, the speed
was increased by 2 mph until a rating of perceived exertion of 13 (Borg 6–20 scale) or greater was
reported. For the next testing stage, grade was increased to 4% and every two minutes thereafter grade
was increased by 2% per stage until volitional exhaustion was achieved. This protocol is consistently
used in our laboratory in this population (i.e., young healthy men) due to its known ability to elicit
fatigue within 8–12 min, as per the recommendation of the American College of Sports Medicine [13].
Heart rate (HR, via wireless telemetry) (Polar, H10, Bethpage, NY, USA) and ratings of perceived
exertion (RPE) were recorded in the last 15–20 s of each testing stage. Attainment of VO2max was
confirmed by satisfying two of the three following criteria: Respiratory Exchange Ratio (RER) > 1.1,
RPE > 17, and/or achievement of 90% age-predicted maximum heart rate. Verbal encouragement
was provided in a standardized manner throughout the test. Oxygen uptake was measured and
averaged in 15-s intervals and VO2max was classified as the highest average of two consecutive
readings. Maximal heart rate was defined as heart rate peak. Immediately after the test, participants
were given a two-minute cooldown period where they were asked to walk at 3 mph.

2.7. Visit 2

The second testing visit was scheduled at least 72 h after the first physiological assessment battery.
On the day of the second testing visit, participants were asked to perform the Murph challenge,
as quickly as possible. The treadmill and platform for the lifting section of the Murph was separated by
3 m. Briefly, subjects completed a 1-mile treadmill run (at a self-selected pace that participants were able
to modify throughout) followed by 10 sets of 10 pullups, 20 pushups, and 30 air squats, immediately
followed by another 1-mile treadmill run. If there came a time when participants could not complete
the 10-20-30 set/repetition scheme, the repetitions were partitioned (i.e., 5 pullups, 10 pushups, 15 air
squats) until the goal number of repetitions were met. This repetition scheme was chosen as per the
recommendation of multiple CrossFit facilities and coaches. When performing the pullups, participants
were able to use the strict or kipping technique. For each pullup repetition, the study investigator
ensured that the participant started with adequate elbow extension and finished with their chin above
the bar. Heart rate was monitored throughout the testing session via wireless telemetry in order to
characterize the heart rate response to the Murph challenge. Immediately before and then again three
minutes after completion of the challenge, blood lactate was evaluated via fingerstick (Lactate Scout+,
EFK Diagnostics, Cardiff, UK) in order to assess the metabolic implications of performing the Murph.

2.8. Statistical Analysis

Statistical analyses were performed using Statistical Package for the Social Sciences (IBM SPSS,
version 25, Armonk, NY, USA). Participant characteristics were calculated as means ± SD. Normality of
data were confirmed using Shapiro Wilk’s test and boxplots. Simple Pearson’s r correlations were used
to assess associations between Murph completion time and its subcomponents (i.e., run time and lift
time), and the physiological measures. A simple linear regression model was then created using the
significant correlative data. Statistical significance was set at an alpha level of 0.05.

3. Results

3.1. Participant Characteristics

Figure 1 is a CONSORT diagram showing recruitment efforts. Participant characteristics are
presented in Table 1. Participants’ age ranged from 21–31 years. Participants reported ~4 years of
CrossFit experience, with a substantial range from 13 to 120 months. Descriptive statistics for the
physiological parameters can be found in Table 2. DEXA-derived body fat percentage fell into the
60th percentile compared to age- and gender-matched norms [14]. According to the American College
of Sports Medicine (ACSM), the average VO2max of the participants was within the 55th percentile
for their age group when compared to general population [13]. Upper body strength assessed using
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bench press relative to body mass was 1.38, which is within the 85th percentile for their sex-specific
age range [13].

Table 1. Participant Characteristics (n = 11).

Mean (±sd)

Age (years) 27.18 ± 3.31
CrossFit Experience (months) 46.82 ± 30.70

Body Mass (kg) 83.32 ± 12.76
BMI (kg/m2) 26.74 ± 2.41
Height (cm) 176.09 ± 7.76

Table 2. Performance Measurements and Correlations with Murph Time.

Physiological Parameter Mean (±sd) r-Value p-Value

Body Composition

Body Fat (%) 17.45 ± 3.90 0.718 * 0.013

Muscular Strength and Endurance

Strength Total (kg) 267.09 ± 56.57 −0.023 0.947
Relative Strength Total 3.04 ± 0.71 −0.002 0.996

Upper Body Endurance (repetitions) 33.27 ± 5.46 −0.021 0.95

Anaerobic Power

Peak Power (W) 1054.25 ± 190.63 0.024 0.943
Relative Peak Power (W/kg) 12.42 ± 1.13 −0.347 0.296

Average Power (W) 765.91 ± 128.73 −0.014 0.968
Relative Average Power (W/kg) 9.00 ± 0.70 −0.436 0.180

Anaerobic Fatigue (%) 53.78 ± 6.65 0.165 0.628
Work (kJ) 21.97 ± 3.65 −0.074 0.828

Aerobic Capacity

VO2max (L/min) 4.14 ± 0.87 −0.061 −0.858
VO2max (mL/kg/min) 49.52 ± 7.13 −0.423 0.195

Physiological Responses

Post Lactate (mmol/L) 10.01 ± 3.04 −0.343 0.366
Change in lactate (mmol/L) 7.60 ± 3.50 −0.408 0.316

Max HR (bpm) 185.63 ± 7.64 −0.294 0.381
Average HR (bpm) 168.81 ± 6.41 −0.056 0.871

Murph Subcomponents

Run 1 (min) 7.46 ± 1.84 0.206 0.544
Run 2 (min) 10.10 ± 1.71 0.509 0.110

Total Run (min) 17.60 ± 1.97 0.652 * 0.030
Lift Time (min) 25.49 ± 3.65 0.880 ** <0.001

Body composition was assessed using dual-energy X-ray absorptiometry (DEXA). Strength Total was calculated as
the sum of bench press one-repetition maximum (1RM) and back squat 1RM. Upper Body Endurance was evaluated
as maximum amount of repetitions at 50% of bench press 1RM. Anaerobic power was determined by a 30-s Wingate
test. Anaerobic Fatigue was calculated as the decline with a higher number indicating greater fatigue. VO2 max was
performed on a treadmill. * Correlation is significant at the 0.05 level. ** Correlation is significant at the 0.01 level.
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Figure 1. CONSORT diagram illustrating participant recruitment efforts.

3.2. Physiological Responses and Predictors of Murph

Descriptors of performance measures, physiological responses, and Murph subcomponents along
with their respective correlations to Murph completion time are shown in Table 2. On average,
participants’ blood lactate increased to approximately 10 mmol/L. Average heart rate was 168 bpm,
which was ~85% of maximal values witnessed during VO2max testing. The participants’ time to
completion of the Murph was 43.43 ± 4.63 min and ranged from 36.56 to 54.21 min. All but three
participants were able to complete the lift portion of the workout using the 10-20-30 repetition scheme.
No apparent trends (advantages or disadvantages) were observed in the individuals who dropped to
the 5-10-15 repetition scheme and thus all data were analyzed together.

Correlational results indicated that body fat percentage was the only variable significantly
(p < 0.05) related to Murph completion time (Figure 2). When entered into the regression model, a
significant regression equation was found (F(1,8) = 8.444, p = 0.020), with an adjusted R2 of 0.453.
Participants’ predicted Murph time is equal to 28.816 + 0.822 (body fat percentage) min. Participants’
Murph time increased 49 s for each percent of body fat. Total lift time was more strongly related
(r = 0.88) to Murph completion time than was total run time (r = 0.652), but both were significant
predictors (p < 0.05; Figure 3).
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3.3. Physiological Predictors of Murph Subcomponents

Correlations between physiological variables and Murph subcomponents (i.e., run and lift times)
are shown in Table 3. Body fat percentage was the only parameter significantly related to both run and
lift times (p < 0.05). Lower anaerobic fatigue was correlated (p < 0.05) with better performance on run
one and total run time. Relative average power was significantly correlated (p < 0.05) with total run
time. Intriguingly, neither absolute nor relative VO2max were significantly related (p > 0.05) to any of
the run times.

Table 3. Performance Measurement and Correlations with Murph Subcomponents.

Physiological Parameter Run 1 Run 2 Total Run Total Lift

Body Composition

Body Fat (r) 0.337 0.797 ** 0.386 0.728 *
p 0.31 0.003 0.241 0.011

Muscular Strength and Endurance

Strength Total (r) 0.242 −0.167 0.051 −0.097
p 0.473 0.623 0.881 0.776

Relative Strength Total (r) 0.384 0.155 0.483 −0.32
p 0.244 0.648 0.132 0.338

Bench Endurance (r) −0.526 0.354 −0.188 0.135
p 0.096 0.285 0.581 0.693

Anaerobic Power

Peak Power (r) 0.04 −0.175 −0.138 0.091
p 0.907 0.606 0.685 0.791

Relative Peak Power (r) 0.026 −0.23 −0.181 −0.321
p 0.941 0.496 0.594 0.336

Average Power (r) −0.252 −0.143 −0.383 0.208
p 0.456 0.674 0.245 0.538

Relative Average Power (r) −0.48 −0.211 −0.634 * −0.126
p 0.135 0.533 0.036 0.713

Anaerobic Fatigue (r) 0.712 * −0.022 0.649 * −0.241
p 0.014 0.949 0.031 0.475

Work (r) −0.252 −0.215 −0.447 0.169
p 0.455 0.525 0.168 0.619

Aerobic Capacity

VO2max (r) −0.246 −0.129 −0.371 0.139
p 0.465 0.706 0.261 0.685

Relative VO2max (r) −0.386 −0.214 −0.568 −0.179
p 0.241 0.528 0.068 0.599

* Correlation is significant at the 0.05 level. ** Correlation is significant at the 0.01 level.

4. Discussion

4.1. Summary

The primary purpose of this study was to determine the physiological predictors of success for
the CrossFit Murph challenge. Participants within this study were physiologically robust, consistently
demonstrating aerobic and anaerobic competencies that were comparably superior to the average
population [13]. Interestingly, the only physiological parameter that significantly correlated with
Murph completion time was total body fat percentage, and not cardiorespiratory fitness (VO2max),
as hypothesized. Examination of Murph subcomponents (i.e., total run and total lift time) demonstrated
that lift time was more strongly associated with total Murph completion time than run performance.
A novel aspect of the present investigation was that we also examined physiological responses to
the Murph challenge. Heart rate and blood lactate responses observed during and after the Murph
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challenge highlight the high degree of cardiovascular and metabolic stress placed upon the body
when completing the Murph. Average heart rate indicates that throughout the workout, participants
were exercising at approximately 85% of their heart rate max for an extended period of time, causing
rapid accumulation of blood lactate due to a substantial reliance on anaerobic energy-producing
means. Collectively, these findings provide valuable information to CrossFit athletes by highlighting
the importance of body composition and the lift portion of the Murph as key variables in overall
Murph success.

4.2. Predictors of Murph Performance

Body fat percentage explained approximately half of the variance in Murph completion time.
Throughout previous literature, body fat percentage has been shown to be significantly correlated with
physical performance such as muscular strength, power, endurance, and anaerobic capacity [15–19].
Fat is noncontractile and does not contribute to force production, increasing the force and energy
requirements of the muscles, particularly for bodyweight movements [19]. With the requirements
of the Murph being entirely comprised of bodyweight exercises (pullups, pushups, air squats),
non-contractile tissue mass would be anticipated to detrimentally affect performance time. Similarly,
body fat percentage is a well-known predictor of running performance, as was demonstrated by a
2012 study by Barandun et al. (2012) in which body fat explained 44% of marathon race time [20].
Knechtle et al. (2014) and Tanda et al. (2013) also concluded that body fat percentage could be used
to predict half marathon and marathon race times, respectively [21,22]. In fact, the importance of
non-functional body mass as an impediment to Murph performance is highlighted by the fact that the
traditional Murph challenge is performed with a 20-lb vest. Whether the relationship between body
fat percentage and overall Murph performance would still be realized if the participants had worn a
weight vest is less certain and worthy of future inquiry.

4.3. Sub-Components Analysis

Total run time and total lift time explained 42% and 77% of total Murph time, respectively.
Interestingly, neither absolute nor relative strength, nor muscular endurance, was related to lift time.
Though it may be anticipated that muscular endurance would predict lift performance, it is important
to keep in mind that our measure of muscular endurance was made relative to an individual’s
maximal strength. Meanwhile, during the Murph challenge muscular endurance is assessed relative
to an individual’s body mass. Thus, an individual with relatively poor muscle strength may have
been classified as having fairly robust muscular endurance using our measurements, yet insufficient
muscular strength to lift their own body mass during the Murph challenge. Literature regarding
maximal muscular strength as related to relative muscular endurance has been mixed. Dean et al.
(1987) concluded that bench press strength accounted for ~50% of the variance in push-up performance,
whereas Invergo et al. (1991) and Mayher et al. (1991) concluded that there was no significant
relationship between push-up performance and 1RM bench press [23–25]. Our finding of a lack of
relationship between absolute and relative strength using bench press and lift performance during
the Murph challenge highlights the importance of specificity, even if theoretically training the same
physiological system (i.e., muscular endurance).

Aerobic capacity did not serve the paramount role in total Murph completion time that we
hypothesized. Furthermore, neither relative nor absolute VO2max were related to completion of first,
second, or total run time. Running performance is shown to be influenced by VO2max, running
economy, and lactate threshold [26]. Interestingly, exploratory analysis revealed that anaerobic
measures including relative 30-s power and anaerobic fatigue were significantly correlated with total
run time. Anaerobic fatigue, expressed as a percent decline, highlights the decline in anaerobic power
throughout the 30-s Wingate test; therefore, a low anaerobic fatigue value would be favored, meaning
that there was little decrement to anaerobic power. Previous research has shown that different anaerobic
parameters can be used to improve running performance by improving running economy and lactate
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tolerance, even in distances that are relying on the aerobic system for energy production. Vorup et al.
(2015) observed that, following an eight-week program of strength and speed endurance training,
endurance-trained runners experienced a significant increase in time to exhaustion, maximal aerobic
speed, and peak blood lactate, though there was no change in VO2max or pulmonary oxygen uptake
at submaximal running speeds [27]. Nummela et al. (2006) observed a significant relationship between
the velocity of a maximal anaerobic running test and the velocity of a 5-km time trial, concluding
that distance running performance and running economy are related to neuromuscular capacity to
produce force [28]. Baumann et al. (2012) reported similar results as Nummela, stating that anaerobic
energy production explains a significant amount of variation seen in 5-km-race performance [29].
The ability to tap into anaerobic energy-producing means may have provided some participants with
an advantage during the run portions of the Murph, highlighting the value of high-intensity training
programs focused on improving lactate tolerance to improve run performance in the Murph challenge.

4.4. Limitations

A limitation of the study is that the Murph was performed in a controlled setting with only
one subject per trial. With the Murph traditionally being performed in a CrossFit facility within a
group, this decreases external validity of the study. This was a significant consideration during our
study design process, but after much deliberation we chose to preference internal validity through
superior controls, as previous research groups have done [8,9]. Internal validity of our findings
was also preserved through the use of the specific 10-20-30 repetition scheme when performing the
Murph, although relationships between physiological characteristics and Murph success may differ if
a different partitioning protocol is employed. Previous Murph experience might also have affected
completion times, though no relationship was observed between CrossFit experience and Murph
performance (data not shown). Another possible limitation is that subjects were given a timeframe
of 3 to 14 days between the two testing visits. The difference in recovery time may influence the
performance of the Murph for the second visit; however, given our conservative 72 h window we felt
subjects would likely be fully recovered, as was confirmed by participants in oral communication.
Additionally, an assessment of lower extremity muscular endurance may have provided greater insight
into predictors of Murph success. After much debate we decided not to measure lower extremity
muscular endurance so as to avoid undue fatigue during the latter portion of the physiological testing
battery. Indeed, even though the testing battery was administered as per the recommendations of the
National Strength and Conditioning Association, performance on the Wingate and VO2max tests may
have been impacted already. Our use of the treadmill for the running portion of the Murph may also be
viewed as a limitation of the present study. Inter-individual differences in experience with running on a
treadmill as well as our use of a 0% rather than 1% grade, which may more accurately reflect the energy
cost of outdoor running [30], may have impacted our results. Finally, our relatively modest sample
size is another undeniable limitation, although as highlighted in the CONSORT diagram (Figure 1)
recruiting and enrolling participants for such an involved study was quite difficult and our sample
size was not dissimilar to previous research in the field [9].

5. Conclusions

In summary, our findings demonstrate that the performance of the Murph challenge can be
predicted using DEXA-derived body fat percentage. Neither metabolic (aerobic/anaerobic power) nor
mechanical (muscle strength/endurance) variables exhibited a significant relationship with overall
Murph time to completion. Additionally, we demonstrated that completion of the lift portion for the
Murph task was of greater relevance for overall completion time than run time. Although they were
not related to total Murph time, low anaerobic fatigue and high relative anaerobic power increases
the chances of completing the run portions of the Murph at a faster pace. Interpreted together, these
findings emphasize the value of minimizing body fat percentage and optimizing lift performance for
overall Murph success.
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