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Abstract 

Angiogenesis is essential for remodeling and repairing existing vessels, and this process requires 

signaling pathways including those controlled by transforming growth factor beta (TGF-β). We 

have previously reported crosstalk between TGF-β and the protein kinase With No lysine (K) 1 

(WNK1). Homozygous disruption of the gene encoding WNK1 results in lethality in mice near 

embryonic day E12 due to impaired angiogenesis and this defect can be rescued by endothelial-

specific expression of an activated form of the WNK1 substrate kinase OSR1. However, 

molecular processes regulated via a collaboration between TGF-β and WNK1/OSR1 are not well 

understood.  Here we show that WNK1 interacts with the E3 ubiquitin ligases SMURF1/2. In 

addition, we discovered complex inter-regulation between WNK1 and SMURF1/2 and we 

demonstrate that WNK1 activity regulates TGF-β receptor levels, in turn, controlling TGF-β 

signaling.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 1, 2024. ; https://doi.org/10.1101/2024.07.31.606092doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.31.606092
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

Introduction 

 

Transforming growth factor beta (TGF-β) signaling is involved in regulating several key 

physiological processes such as angiogenesis, among others [1]. Homozygous disruption of the 

gene encoding the protein kinase With No lysine (K) 1 (WNK1) results in a lethal developmental 

failure in mice around embryonic day E12, due to impaired angiogenesis [2,3]. WNK1 is the most 

broadly expressed of a family of four related multi-functional and atypical protein-serine/threonine 

kinases, notable for their unique catalytic lysine location [4]. WNK1 phosphorylates substrates, 

the best characterized of which are oxidative stress- responsive 1 (OSR1) and STE20/SPS-1-

related proline-alanine-rich kinase (SPAK, STK39), critical for maintaining cellular ion 

homeostasis [5,6,7,8,9]. We have previously reported collaboration among WNK1, and players 

involved in regulating TGF-β signaling pathways [10,11].   

 

TGF-β-induced endothelial-mesenchymal transition initiates cytoskeletal turnover and a drastic 

down-regulation and disintegration of tight junctions to promote migration in endothelial cells 

[12,13]. Upon TGF-β stimulation, the TGF-β receptor type II redistributes into tight junctions which 

leads to recruitment of the E3 Ubiquitin ligase SMURF (SMAD Ubiquitination Regulatory Factor) 

1 to the activated complex to mediate dissolution of tight junctions [12,13]. Occludin is a tight 

junction protein; while occludin is not necessary for the formation of tight junctions, occludin is 

vital in regulating tight junction integrity [14,15,16]. Furthermore, recent studies have shown that 

occludin is also involved in endothelial neovascularization and angiogenesis [17]. In addition, the 

related E3 ubiquitin ligase SMURF2 downregulates TGF-β signaling by targeting the TGF-β 

receptor ALK5 and itself for degradation [18,19].  

 

In this study, we identify multiple molecular events that underlie WNK1-mediated context 

specificity of TGF-β signaling. We show that interactions between WNK1 and SMURF1/2 and  

show that WNK1 forms discrete signaling microdomains (sometimes referred to as WNK bodies 

[20]) for reciprocal regulation of WNK1 and E3 ubiquitin ligase SMURF1/2. In addition, we 

discover complex inter-regulation between WNK1 and SMURFs during TGF-β signaling.  
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Results 

WNK1 colocalizes with SMURF1/2: SMURF1/2 are WW-domain-containing enzymes belonging 

to the NEDD4 (Neural precursor cell Expressed, Developmentally Down-regulated 4) family of E3 

ubiquitin ligases. SMURFs mediate endothelial-mesenchymal transition during cardiovascular 

development, and they also regulate TGF-β signaling by targeting the TGF-β receptor and SMAD 

transcription factors for degradation [18,19,21,22,23,24,25,26,27]. Previous work from our 

laboratory showed that WNK1 is involved in TGF-β pathway-dependent modulation of SMAD2/3 

protein stability [10,11]. In epithelial cells, SMURF2 regulates steady-state levels of SMAD2/3 

[22,24,25,26] and SMURF1 controls cellular responsiveness to the TGF-β/SMAD2 pathway [27]. 

Therefore, we examined actions of WNK1 on TGF-β-pathway-dependent functions of SMURF1/2 

in endothelial cells.  First, we tested whether either SMURF1 or 2 co-localize with WNK1 in 

primary human umbilical vein endothelial cells (HUVECs). Interestingly, we found that a fraction 

of WNK1 and SMURF1/2 were observed in large punctate structures [26] (Figure 1A, 1B).  

WNK1 kinase activity regulates association of WNK1/OSR1 with SMURF2: Given the 

colocalization between WNK1 and SMURF1/2, we asked whether WNK1 interacts stably with 

SMURF1/2 in HUVECs and found SMURF2 in endogenous immunoprecipitates of WNK1 (Figure 

2A). We found that the WNK1-regulated kinase OSR1 also weakly co-immunoprecipitated with 

SMURF2 (Figure 2B). OSR1 contains a conserved C-terminal (CCT) domain, which can bind 

substrates and other proteins via short conserved RFxV motifs [28,29]. We then asked whether 

this interaction is mediated via the OSR1 CCT domain and these motifs in SMURFs. We found 

marginal decreases in OSR1 co-immunoprecipitating with SMURF2 in primary HUVECs upon co-

incubation with a blocking peptide which blocks OSR1 CCT interactions with RFxV motifs (Figure 

2B). We previously found that WNK1/OSR1 regulate the turnover of tight junctions [10]. 

Therefore, we asked whether SMURF2 interacts with the tight junction protein occludin and found 

that the interaction between occludin and SMURF2 was enhanced upon inhibition of human 

dermal microvascular endothelial cells (HDMECs) with the pan-WNK inhibitor WNK463 [10].  This 

interaction was also diminished upon co-incubation with the blocking peptide (Figure 2C). These 

observations suggest that OSR1 interacts with occludin and weakly with SMURF2 via the CCT 

domain and that WNK activity regulates the interaction between WNK1/OSR1 and SMURF2. 

 

WNK1/OSR1 regulates SMURF1/2 and vice versa: Given the interaction between WNK1 and 

SMURFs, we then asked if WNK1 impacts amount of SMURFs. We found that depletion of WNK1 
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decreased steady state SMURF2 protein (Figure 3A, 3B, 3D, 3E). In addition, depletion of WNK1 

prevented the expected decrease in steady-state SMURF1 protein. However, upon co-treatment 

with the proteasomal inhibitor MG132, we observed a decrease in SMURF1 protein (Figure 3A, 

3C). Treatment of cells with the SMURF1 inhibitor A01 [30] lead to a significant increase in WNK1 

expression (Figure 3D, 3F). The amount of SMURF2 protein expressed in the absence of added 

ligands or inhibitors was related to WNK1 expression (Figure 3D, 3F, 3G). In contrast, depletion 

of OSR1 caused no differences in amounts of either SMURF1 or SMURF2 (Figure 3A, 3B, 3C, 

3G, 3H). Decreased SMURF2 was observed only in OSR1-depleted cells that were also treated 

with either the proteasomal inhibitor MG132 or the SMURF1 inhibitor A01 (Figure 3A, 3B, 3C, 

3G, 3H). In contrast, SMURF1 increased in OSR1-depleted cells that were also treated with 

MG132 (Figure 3A, 3C). These results suggest a complex inter-regulation among WNK1, OSR1 

and SMURF1/2.  

WNK1 kinase activity mediates SMURF2-dependent regulation of ALK5: We asked whether 

the kinase activity of WNK1 is important for regulation of SMURF2 and found that treatment with 

WNK463 decreased SMURF2 protein, similar to the effect of WNK1 knockdown (Figure 4A). We 

also found that baseline SMURF2 was enhanced by treatment with the proteasomal inhibitor 

MG132; WNK463 co-treatment efficiently decreased SMURF2 protein (Figure 4B, 4C). These 

results suggest that the observed effects on SMURFs are dependent on WNK1 activity. 

Previously, we found that WNK463 decreased expression of the type 1 TGF-β receptor ALK1 

[10]. Degradation of the TGF-β type I receptor, ALK5, is facilitated via recruitment of the SMURF2 

complex [12,13,18,19]. Given the regulation of WNK1 by SMURF2 and effects of WNK inhibition 

of ALK1, we asked whether WNK1 kinase activity also regulates ALK5.  We found that treatment 

with WNK463 did, in fact, decrease ALK5 protein as well (Figure 4D, 4E). We also found that 

knockdown of WNK1 decreased SMURF2 levels (Figure 4F). As expected, knockdown of 

SMURF2 increased ALK5 (Figure 4G, 4H).  Interestingly, SMURF2 knockdown also resulted in 

a corresponding increase in the phosphorylated active form of OSR1, suggestive of enhanced 

WNK1 activity (Figure 4G, 4I). Given the regulation of ALK5 by WNK1, and that of WNK1 by 

SMURF2, these data suggest that the increase in ALK5 by SMURF2 knockdown may, in part, 

result from increased WNK1 activity. Overall, these results suggest that WNK1 kinase activity and 

SMURF1/2 reciprocally regulate each other to affect responses to TGF-β (Figure 4J).  

 

Discussion 
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Unanticipated findings revealed that WNK1 and SMURFs reciprocally regulate each other to fine 

tune TGF-β signaling. Aggregated structures containing SMURF1/2 and WNK1 in our study are 

similar to those observed with respect to SMURF2 and clustering of SMURF2 is suggested to 

regulate its E3 ubiquitin ligase activity. [18,26]. We show that depletion or inhibition of WNK1 

decreases SMURF2. The amount of SMURF2 protein present upon inhibition of SMURF1 was 

dependent on WNK1 protein amount. One possible explanation is that SMURF1 regulates 

SMURF2 protein, and this is dependent on the relative expression of WNK1. SMURF2 inhibits its 

own ubiquitinase activity and is thereby stabilized. Therefore, it is possible that inhibition of WNK1 

may enhance the activity of SMURF1/2 and thereby lead to downregulation of itself, and ALK5 as 

observed in this study. Future studies will focus on addressing the mechanistic details of this 

potential mode of regulation. 

 

The WW-domains of SMURF/NEDD4 E3 ligases generally recognize and bind proline-rich 

sequences such as PY-motifs on substrate proteins [26]. Interestingly, PY-motifs are also found 

in WNK1 and WNK1 binds to and phosphorylates NEDD4-2, another member of the NEDD4 

family of E3 ubiquitin ligase [20,31,32]. NEDD4-2 negatively regulates TGF-β signaling by 

ubiquitin-mediated degradation of SMAD2 and TGF-β type I receptor [33]. Therefore, regulation 

of NEDD4-2 by WNK1 may also be involved to precisely control TGF-β signaling output to 

modulate cellular processes underlying angiogenesis. 

 

Signal transduction pathways regulated by TGF-β control a diverse array of cellular processes 

including angiogenesis [34]. Signaling specificity and versatility are present in the TGFβ signaling 

pathway and importantly, it exhibits differential, sometimes opposing responses depending on the 

cellular context [35,36,37,]. This occurs through diverse regulatory mechanisms and cross-

connections among several TGF-β mediators [34,35,36,37]. The duration and intensity of TGF-β 

signaling are tightly regulated by various processes, including proteasome-mediated degradation 

involving E3 ubiquitin ligases such as SMURF1/2, phosphorylation by several protein kinase 

signaling pathways, among others [34,35,36,37]. These observations suggest that dynamic 

convergence of inputs via individual TGF-β signaling nodes may fine-tune TGF-β signaling 

pathways to trigger diverse cellular outcomes. Consistent with this notion, our results suggest that 

WNK1 regulates multiple nodes of the TGF-β signaling pathway and affects TGF-β signaling 

output in a context-dependent manner. 
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In this study, we show that WNK1 collaborates with downstream TGF-β signaling component 

SMURF1/2 to regulate and fine-tune processes involved in TGF-β signaling such as turnover of 

TGF-β receptor in a context-dependent manner. Therefore, we propose that expression and 

activity of WNK1 may contribute, in part, to the context-specificity in TGF-β signaling. 

 

Methods 

Cell lines: Primary Human Dermal Microvascular Endothelial Cells (HMEC-1: ATCC, CRL-3243) 

were grown in complete MCDB media (Fisher Scientific, MT15100CV) supplemented with 10% 

fetal bovine serum (Sigma-Aldrich, F0926), 1% L-glutamine, 1% penicillin and streptomycin, 

1μg/mL hydrocortisone (Sigma Aldrich, H0888 or H6909), and 10 ng/mL epidermal growth factor 

(EGF: Cell Signaling Technology, 8916SC). Human Umbilical Vein Endothelial Cells (HUVEC: 

ATCC, PCS-100-013) were grown in complete VascuLife® EnGS media kit (Fisher Scientific, 50-

311-891) supplemented as per manufacturer’s instructions. All cells were maintained at 37°C and 

5% CO2. 

Co-immunoprecipitation: Cells were lysed in 1X lysis buffer (50mM HEPES, 0.1M NaCl, 0.5mM 

EDTA, 0.1% SDS) supplemented with protease inhibitor cocktail, PMSF, and phosphatase 

inhibitors (PhosStop). Cell extracts were harvested and cleared by centrifugation. 1X IP buffer 

(50mM HEPES, 0.1M NaCl, 0.5mM EDTA, and 1% CHAPS (Sigma Aldrich, C3023) 

supplemented with protease inhibitor cocktail, PMSF, and phosphatase inhibitors (Sigma Aldrich, 

4906837001) was added in a 2:1 ratio to the cell lysate. Samples were incubated with primary 

antibody (control sample incubated with rabbit IgG primary antibody) overnight at 4°C and then 

with Protein A/G PLUS-Agarose (Santa Cruz Biotechnology, sc-2003) beads for 1 hour with head-

to-tail rotation. This was performed either in the absence or presence of CCT blocking peptide 

peptide SAGRRFIVSPVPE (United Biosystems).  Samples were then washed three times with 

1X IP buffer before adding 5X SDS buffer (0.25% bromophenol blue, 0.5M DTT, 50% glycerol, 

10% SDS, 0.25M Tris-Cl) and heating at 90°C for 2 minutes. Samples were then run on 4-20% 

Mini-PROTEAN® TGX™ Precast Protein Gels (Bio-Rad, 4568096) or 12% polyacrylamide home-

made gels before being transferred to PVDF membranes. Membranes were then washed in TBS-

T before being blocked with TBS-based blocking buffer (LI-COR). Membranes were incubated 

with primary antibodies and then washed again before being incubated with species-specific, light 

chain-specific secondary antibodies (Jackson ImmunoResearch Labs, 115-655-174 and 211-

622-171) and imaged using LI-COR imaging.  
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Immunofluorescence: HUVEC cells were fixed on glass coverslips (Fisher Scientific, 12-545-80) 

with 4% paraformaldehyde for 20 minutes at room temperature. Coverslips were washed with 

sterile PBS and blocked in 5% normal goat serum (Life Technologies, 50-062Z) before incubating 

with primary antibodies for 1 hour at room temperature. Coverslips were washed with 1X PBS. 

Subsequently, cells were incubated with an Alexa Fluor® 488 conjugated goat-anti-mouse 

secondary antibody (Thermo Fisher Scientific, A11029) and Alexa Fluor® 594 conjugated goat-

anti-rabbit secondary antibody (Invitrogen, A11037) for 30 min at room temperature in dark, and 

the slides were mounted with DAPI Fluoromount-G (Thermo Fisher Scientific, 00-4959-52). 

Immunofluorescence images were acquired using a Zeiss LSM880 inverted confocal microscope 

(Carl Zeiss, Oberkochen, Germany). Images were deconvolved using AutoQuant® software 

(Media Cybernetics, USA).  

 

siRNA knockdown: Oligonucleotides encoding siRNA for human WNK1 (siWNK1: 5’ 

CAGACAGUGCAGUAUUCACTT 3’), control siRNA (Thermo Fisher Scientific, 4390844) as in 

[99], OSR1 siRNA (Thermo Fisher Scientific, s19303 Silencer® Select), and SMURF2 siRNA (sc-

41675, Santa Cruz Biotechnology). HDMEC cells were transfected with 20 nM siRNA using 

Lipofectamine RNAiMax reagent (Thermo Fisher Scientific, 13778150). After 24-72 hours of 

transfection, cells were provided with their respective treatments and were then harvested in 1X 

SDS buffer (0.05% bromophenol blue, 0.1M DTT, 10% glycerol, 2% SDS, and 0.05M Tris-Cl) with 

5% β-mercaptoethanol.  

 

Immunoblotting: Cell lysates containing 1X SDS buffer were homogenized with 27-G syringe and 

whole lysates were run on 4-20% Mini-PROTEAN® TGX™ Precast Protein Gels (Bio-Rad, 

4568096) or 6/10/12% home-made polyacrylamide gels before being transferred to PVDF 

membranes (Bio-Rad, 1620177). Membranes were then washed in TBS-T before being blocked 

with TBS-based blocking buffer (LI-COR). Membranes were incubated with primary antibodies 

and then washed again before being incubated with species-specific secondary antibodies and 

imaged using LI-COR imaging. 

Reagents: WNK463 (Selleck Chemicals, S8358), SMURF1 inhibitor A01 (Sigma Aldrich, 

SML1404), MG132 (Sigma Aldrich, M7449), TGF-β1 (Cell Signaling Technology, 8915LC), anti-

Vinculin antibody (Sigma Aldrich, V9131), anti-pOSR1 antibody (EMD Millipore, 07-2273), anti-

OSR1 polyclonal antibody (Cell Signaling, 3729S), anti-OSR1 monoclonal antibody (VWR, 

10624-616), anti-WNK1 antibody (Cell Signaling, 4979S), anti- GAPDH antibody (Cell signaling 

Technology, 97166L), anti-SMURF1 antibody (Santa Cruz Biotechnology, sc-100616), anti-
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SMURF2 antibody (Santa Cruz Biotechnology, sc-393848), anti-flag antibody (Sigma-Aldrich, 

F1804), Q256 WNK1 antibody was homemade as in [7], Optimem (Invitrogen, 51985-034), 

Lipofectamine 2000 (Life Technologies, 11668019), bumetanide (Sigma Aldrich, B3023), 96-well 

plates (Corning, 3904 or Greiner, 655090).  

 

Statistics and Reproducibility: The data are presented mean±SEM from at least three 

independent experiments with similar results. All presented micrographs (immunofluorescence 

images) are representative images from three representative experiments as indicated in the 

figure legends. For the quantification of immunofluorescence images, the number of cells used 

for each representative experiment is indicated and p values between two groups were 

determined using unpaired t-tests. Results are expressed as mean ± SEM. Single intergroup 

comparisons between 2 groups were performed with 2-tailed Student’s t-test as specifically 

mentioned in each case. p < 0.05 was considered statistically significant. 

 

Data sharing:  

We will follow all NIH policies with respect to sharing reagents, materials, and information with 

other investigators. Detailed protocols are provided to everyone who requests them. Upon 

publication, this manuscript will be submitted to the National Library of Medicine’s PubMed Central 

as outlined by NIH policy. 
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Figure Legends 

1. WNK1 colocalizes with SMURF1/2: A and B) Representative confocal images of immuno-

fluorescently labeled endogenous WNK1 (red), SMURF1/2 (green) and nucleus (DAPI: blue) in 

primary HUVECs upon 1-2 h TGF-β (10 ng/ml) stimulation. Merged panel (yellow) shows co-

localization between WNK1 and SMURF1/2. Scale bar = 20 µm; n=3. 

2. WNK1 kinase activity regulates association of WNK1/OSR1 with SMURF2: A) 

Representative Western blot show endogenous co-immunoprecipitation of SMURF2 with WNK1 

show interaction between SMURF2 and WNK1 in HUVECs; n=3. B) Representative Western blot 

show endogenous co-immunoprecipitation of OSR1 and SMURF2 in HUVECs which is 

diminished upon co-incubation with the blocking peptide SAGRRFIVSPVPE (100 µM); n=3. C) 

Representative Western blot show endogenous co-immunoprecipitation of OSR1 and SMURF2 

with occludin in HUVECs upon treatment with WNK463 (1 µM) which is diminished upon co-

incubation with the blocking peptide SAGRRFIVSPVPE (100 µM); n=3.  

3. WNK1/OSR1 regulates SMURF1/2 and vice versa: A) Representative Western blot show 

SMURF1/2 expression upon WNK1 or OSR1 depletion by siWNK1 or siOSR1, respectively in 

HDMECs. It shows increase in SMURF1 levels upon treatment with proteasomal inhibitor MG132 

(10µM) for 6 hours which is prevented upon WNK1 or OSR1 depletion. B) Corresponding 

quantification of ‘A’ show decreased SMURF2 levels upon WNK1 and OSR1 depletion compared 

to siControl; n=3. C) Corresponding quantification of ‘A’ show decreased SMURF1 levels upon 

WNK1 and OSR1 depletion compared to siControl; n=3. D) Representative Western blot show 

SMURF1/2 expression upon WNK1 depletion in HDMECs co-treated with SMURF1 inhibitor A01 

(2 µM). E) Corresponding quantification of ‘D’ show decreased SMURF2 levels upon WNK1 

depletion similar to treatment with the SMURF1 inhibitor A01 (2µM) alone compared to DMSO or 

siControl; n=3. F) Corresponding quantification of ‘D’ show increased WNK1 upon treatment with 

SMURF1 inhibitor A01 (2µM) alone compared to DMSO or siControl; n=3. G) Representative 

Western blot show SMURF1/2 levels upon siRNA depletion of OSR1 in HDMECs. H) 

Corresponding quantification of ‘G’ show decreased SMURF2 levels with siOSR1 treatment 

followed by SMURF1 inhibitor A01 (2µM) treatment overnight compared to siControl or DMSO 
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control; n=3. Data are represented as Mean±SE; analyzed by unpaired two-tailed Student’s t-test 

or one-way ANOVA. *p<0.05, **p<0.005. 

4. WNK1 kinase activity mediates SMURF2-dependent regulation of ALK5: A) 

Representative Western Blot showing SMURF2 protein levels upon WNK463 overnight treatment 

(1 µM). B) Representative Western Blot showing SMURF2 protein levels upon overnight WNK463 

(1 µM) ± MG132 (10 µM). C) Corresponding quantification of ‘B’ showing decreased SMURF2 

levels upon co-treatment with WNK463 and MG132; n=3. D) Representative Western Blot 

showing ALK5 levels upon DMSO or WNK463 (1 µM) in HDMECs. E) Corresponding 

quantification of ‘D’ showing decreased ALK5 levels upon WNK463 (1 µM) treatment; n=3. F) 

Quantification of ALK5 in HDMECs treated with siControl or siWNK1; n=6. G) Representative 

Western Blot showing ALK5 and pOSR1 levels upon siControl or siSMURF2 co-treated with 

DMSO or WNK463 (1 µM) in HDMECs. H) Corresponding quantification of ‘G’ showing increased 

ALK5 levels upon siSMURF2 treatment; n=21. I) Corresponding quantification of ‘G’ showing 

increased pOSR1 levels upon siSMURF2 treatment; n=21. J) Model representing inter-regulation 

among WNK1, SMURF1/2 and ALK5. Data are represented as Mean±SE; analyzed by unpaired 

two-tailed Student’s t-test or one-way ANOVA. *p<0.05, **p<0.005, ***p<0.0005. 
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Figure 1: WNK1 colocalizes with SMURF1 and SMURF2 
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Figure 2: WNK1 kinase activity regulates association of 
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Figure 3: WNK1/OSR1 regulates SMURF1/2 and vice versa
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Figure 4: WNK1 kinase activity mediates SMURF2-dependent 

                regulation of ALK5
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