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Mechanism of posterior m
alleolar fracture
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A cadaveric study
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Abstract
Objectives: Ankle fracture treatment involves reduction of the bone fragments and stabilization of the joint by reversing the
mechanics of injury. For posterior malleolar fracture however, the true mechanism is not understood, leading to a lack of consistent
guidance on how to best treat this injury.

Methods: Fifteen cadaver ankles were subjected to fracture loading that replicated the Lauge-Hansen pronation-external rotation
mechanism. An axial load was applied to each specimen, which was mounted on a materials testing machine, and the foot was
rotated externally to failure. Digital video cameras recorded the failure sequence of specific anatomic structures.

Results:Posteriormalleolar fracture occurred in 7 specimens. Of these, 1was an intra-articular fracture, another was a fracture involving
the entire posterior tibial margin consisting of 2 fragments: that of the posterior tubercle and that of the posteromedial margin of the tibial
plafond,with the former judged tobeaconsequenceof avulsionby theposterior inferior tibiofibular ligament and the latter aconsequenceof
axial loading from the talus. In the remaining 5 specimens, the posterior malleolar fracture was a small extra-articular avulsion fracture.

Conclusions: Fractures at the posterolateral corner of the distal tibia were shown to be avulsion fractures attributed to the
posterior inferior tibiofibular ligament and produced by external rotation of the talus. A fracture involving the entire posterior tibial
margin consisting of 2 fragments can be produced by a combination of avulsion by the posterior inferior tibiofibular ligament and axial
loading from the talus.

Keywords: ankle fracture, posterior malleolar fracture, fracture mechanism, mechanical testing
1. Introduction

Functional outcomes following ankle fracture involving the
posterior malleolus have been reported to be poor,[1–3] and
fixation of the posterior marginal fragment remains a controver-
sial issue in the management of such ankle fractures. Historically,
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the size of the fragment has been a major determining factor, and
internal fixation has traditionally been recommended only for a
posterior fragment that involves at least 25% of the tibial
plafond.[2,4,5] However, in recent years, there have been
numerous reports of aggressive fixation even in cases of a
relatively small posterior malleolar fragment.[6–23]

The enthusiasm for surgical fixation of these fractures has
evolved from the current trend toward more aggressive
management of all periarticular fractures and the belief that
restoration of near-normal direct anatomic repair of the tibial
insertion of the posterior tibiofibular ligament will result in
better outcomes. There is also growing interest in surgical
repair of avulsion of the posterior tibiofibular ligament from
bone in the absence of avulsion fracture, an injury that cannot
be diagnosed by computed tomography (CT). One of the major
sources of the considerable enthusiasm for surgical fixation has
been the recent CT-based elucidation of posterior malleolar
fracture morphology.[24–27] In the treatment of fractures, not
only is an understanding of the fracture morphology important
but also that of the fracture mechanism. Knowing the
mechanism of injury helps guide appropriate fracture treat-
ment. The optimal reduction technique and stabilization
method can be chosen on the basis of the specific fracture
mechanism.[28–34]

Several mechanisms for posterior malleolar fracture have been
proposed: avulsion by the posterior inferior tibiofibular liga-
ment,[35–37] pressure from the externally rotating talus,[35,37]

pressure from the lateral malleolar fragment,[36] and axial
loading from the talus.[38] Several authors have recently inferred
the fracture mechanism on the basis of the CT-depicted
morphology,[24,27,39] and a large posterior malleolar facture
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with medial extension is often referred to as a posterior pilon
fracture[18,22,40–42] because it seems to be a result of axial loading
forces exerted when the talus is forced into the distal tibia. The
true mechanism of the posterior malleolar fracture is not fully
understood.
We previously reported that a short oblique fracture of the

distal end of the fibula can occur with the foot in the pronated
position and that the pattern of ankle fracture is related directly to
the applied load.[43] At the time of our study and subsequent
report, there was little debate regarding treatment of posterior
malleolar fracture. Later debate led us to re-examine the videos
and experimental records of posterior malleolar fracture that we
had obtained at the time of our previous study so that we might
elucidate the fracture mechanism. We report findings of our re-
examination herein.
Figure 1. Test configuration. The specimenwasmountedon the load frame of a
servohydraulic materials testing system, with the foot in pronation relative to the
tibia achievedby adding shims to the foot plate. (A) Anterior view. (B) Lateral view.
2. Materials and methods

Materials used in the study were 15 cadaver ankles without any
intra-articular defect or degenerative change that had been
subjected to fracture loading that replicated the Lauge-Hansen
pronation-external rotation mechanism.[43] The specimens had
been obtained from apparently normal, fresh-frozen cadaveric
lower extremities and had been stored at �20°C until the time of
testing. Donors’ average age was 79.5 years (range, 59–97 years)
at the time of death (State Anatomy Board, Department of Health
and Mental Hygiene, Baltimore, MD). Our study was deemed
exempt from Institutional Review Board approval.
The testing protocol was previously reported with an emphasis

on distal fibular fracture,[43] however, details relevant to the
observed posterior malleolar fractures are recapitulated in this
report. In each specimen andwith use of a cutting jig, upper tibial,
and fibular osteotomies were performed at the level of the
proximal tibiofibular joint. The soft tissues were removed to
expose the superficial ligaments and interosseous membrane to
allow adequate visualization during testing.
A medullary nail was inserted into the proximal tibia and then

used to firmly attach the tibia to the jig. The proximal tibia and
fibula were positioned in a square potting cup, and poly (methyl
methacrylate) was poured into the cup to a level 2 to 3cm distal to
the proximal tibiofibular joint. The foot was clamped to a plate,
and the specimen was then mounted on the load frame of a
servohydraulic materials testing system (Model 858; MTS
Systems Corp., Eden Prairie, MN) (Fig. 1A). Shims had been
added to the foot plate so that it sloped 30° laterally and 15°
anteriorly so that the foot would be pronated 30° and dorsiflexed
15°. We mounted the 30° pronated foot on the slider apparatus at
10°medial inclination, which resulted in 20° pronation of the foot
relative to the tibia (Fig. 1A and B).
Axial force was applied to the shank at 100N/s and then

maintained at 700N, at which point the tibia was rotated
internally at a constant rate of 36°/s to 90° maximum excursion.
During testing, 3 digital video cameras were used to record the
failure sequence of specific anatomic structures. After completion
of each test, the specimen was dissected, and the posterior failure
pattern was recorded.
3. Results

Posterior injury occurred in 11 of the 15 specimens, with
posterior malleolar fracture occurring in 7 specimens and injury
of the posterior inferior tibiofibular ligament occurring in the
remaining 4. The posterior inferior tibiofibular ligament injuries
2

comprised 3 avulsions from the posterior tibial tubercle without
any bony fragmentation (Fig. 2) and 1 mid-substance rupture of
the posterior inferior tibiofibular ligament.
The posterior malleolar fractures included 1 intra-articular

fracture at the posterior distal tibial tubercle (Fig. 3A and B) that
was judged, on the basis of the video images, to be a consequence
of avulsion by the posterior inferior tibiofibular ligament. The
fragment was attached to the posterior inferior tibiofibular
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Figure 2. A specimen showing avulsion of the posterior inferior tibiofibular
ligament (arrow) from the posterior tibial tubercle (asterisk) without bone
fragmentation.
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ligament. Another was a fracture involving the entire posterior
tibial margin and consisting of 2 fragments, that of the posterior
tubercle and that of the posteromedial margin of the tibial
plafond. The former was judged, on the basis of the video images,
Figure 3. Intra-articular avulsion fracture attributed to the posterior inferior tibiofi
tubercle (arrow) and avulsed bone fragment (open arrow). (B) Lateral radiograph o

3

to be a consequence of avulsion by the posterior inferior
tibiofibular ligament and the latter a consequence of axial loading
from the talus (Fig. 4). The remaining 5 posterior malleolar
fractures were small extra-articular avulsion fractures attributed
to the posterior inferior tibiofibular ligament, to which the
fragments were attached. All specimens with a posterior
malleolar fracture included a short oblique fracture of the fibula
with the disruption of the anterior tibiofibular ligament complex
as well as medial injury.
The fractures as they occurred are shown in Videos 1

(Supplemental Digital Contents 1 (Avulsion fracture attributed
to the posterior tibiofibular ligament occurring after oblique
fracture of the distal fibula.), http://links.lww.com/OTAI/A7 and
2 (Fracture involving the entire posterior tibial margin and
consisting of 2 fragments: that of the posterior tubercle and that
of the posteromedial margin of the tibial plafond. The former was
judged, on the basis of the video images, to be a consequence of
avulsion by the posterior inferior tibiofibular ligament and the
latter a consequence of axial loading from the talus.), http://links.
lww.com/OTAI/A8).
4. Discussion

Although several researchers have attempted to understand the
mechanisms of ankle fracture on the basis of postinjury
radiographs or CT images, it is nearly impossible to determine
the fracture mechanisms from the fracture morphology and
position of the talus seen on such images.[27,39,44–46] Biomechan-
ical study, mechanical testing in particular, has provided strong
evidence for the specific mechanisms of injuries such as forearm
fracture,[47] acetabular fracture,[48] talar fracture,[49] and pilon
fracture.[50]

Although extensive biomechanical analyses have been per-
formed to clarify the various mechanisms of ankle fracture,[51–55]

few investigators have been able to simulate posterior malleolar
fracture.[52–55] In experiments performed to examine ankle
fractures, Schaffer and Manoli[54] were unable to produce
bular ligament. (A) Photograph showing the fracture site at the posterior tibial
f the same specimen showing the posterior malleolar fragment (white arrow).
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Figure 4. A specimen showing a fracture involving the entire posterior tibial margin and consisting of 2 fragments: (A) Photograph of the specimen showing a
fracture involving the entire posterior tibial margin and consisting of 2 fragments, that is, a fragment of the posterior tubercle and a fragment of the posteromedial
margin of the tibial plafond). Black arrows show the fracture site fromwhich the fragment of the posterior tubercle (open black arrow) was avulsed, and white arrows
show the fracture site where the fracture of the posteromedial margin of the tibial plafond (double-headed arrow) occurred. Note the fracture site at the lateral
malleolus (asterisk). (B) Lateral radiograph of the same specimen showing a posterior malleolar fracture with posterior subluxation of the talus.
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posterior malleolar fracture or damage to the posterior
tibiofibular ligament. Michelson et al[53] were also unable to
produce posterior malleolar fracture. Stiehl et al[55] produced
ankle fractures in 26 specimens, but posterior injury was not
observed in any. The true mechanism of posterior malleolar
fracture has remained unclear. In the study described herein, we
were able to confirm that the fractures at the posterolateral corner
of the distal tibia (i.e., Type I according to the CT-based
Haraguchi fracture classification[25]) were posterior inferior
tibiofibular ligament avulsion fractures resulting from external
rotation of the talus. Furthermore, we successfully produced a
fracture involving the entire posterior tibial margin and
consisting of 2 fragments (i.e., Haraguchi Type II[25]); with the
fragment of the posterior tubercle judged to be a consequence of
avulsion by the posterior inferior tibiofibular ligament and the
fragment of the posteromedial margin of the tibial plafond a
consequence of axial loading from the talus.
Recently, several authors inferred the fracture mechanism from

CT-depicted fracture morphology,[24,27,39,46,56] and a large
posterior malleolar facture with medial extension is often
referred to as a posterior pilon fracture[16,22,40–42] because, as
mentioned above, it seems to be the result of axial loading forces
exerted when the talus is forced into the distal tibia. Mechanisms
proposed for this fracture pattern differ: from an abduction
external rotation force combined with high axial loading,[57] to
forced hyperplantarflexion,[45,56] to rotational and axial loading
combined.[5] Vosoughi et al[46] classified the medial fragment of
the fracture involving the entire posterior tibial margin with 2
fragments into 2 categories: small avulsion-type fracture and
large pilon-type fracture. They speculated that the small medial
fragment is produced by the pull of the intermalleolar ligament,
and that the lateral fragment is produced by impaction of the
talus into the tibial plafond. They speculated that the pilon-type
fracture is produced by an axially loaded talus rotating in the
4

anklemortise, first impacting the posterolateral corner of the tibia
and then, as it continues to rotate, fracturing the posteromedial
corner.[46] The varying theories regarding the mechanism of
posterior malleolus fracture are probably the result of a lack of
real biomechanical evidence, with most of the theories arising out
of speculation based on postinjury images. It was clear in our
study that posterolateal fracture of the tibial plafond was always
produced by the pull of the posterior tibiofibular ligament, even
in the case of medial extension-type malleolus fracture with 2
fragments.
Pilon fracture has been defined as “a comminuted fracture of

the distal tibia and fibula with severe involvement of the tibial
plafond, usually as a result of a fall from a height, driving the
talus superiorly into the tibia.”[58] In the instances of posterior
malleolar fracture involving the entire posterior plafond, we
found that the lateral part of the fracture was caused by a
rotational force, not by an axial force. Hence, it is questionable
whether pilon fracture is a suitable term for this type of
fracture.
The indications for fixation of posterior malleolar fractures

have been much debated. Treatment of posterior malleolar
fracture[5,17,59] has recently undergone rapid and widespread
change, and there have been many reports of aggressive fixation
of such fractures.[4,6–23] Fixation of the posterior tibial tubercle
fragment even in cases of Weber type B fracture (to avoid the
need for syndesmosis screw fixation) has been recom-
mended.[5,13,14,60] White[61] has strongly warned against the
trend toward aggressive fixation because clinical studies have
failed to show any significant improvement in patient outcomes,
and furthermore have also confirmed an inevitable increased
rate in complications. Our study results may provide insight into
this issue. Because avulsion fracture of the posterolateral corner
of the tibia was produced purely by rotational force, restoration
of the lateral and medial components of the ankle provides
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stability. Whether fixation of the posterior tibial tubercle
fragment is indicated may be determined according to the
criteria used for syndesmosis fixation, such as the height of the
fibular fracture,[62–67] or by intraoperative assessment of
syndesmosis instability.[68] Blom et al,[69] in their study of
194 patients with a surgically treated ankle fracture, showed
clearly that posterior malleolar ankle fractures with medial
extension of the fracture line (i.e., Haraguchi Type II posterior
malleolar fracture[25]) are associated with significantly poorer
functional outcomes, partly due to the lack of direct fixation of
the posteromedial fragment. Because the posteromedial frag-
ment is produced by axial loading, ankle stability can be
obtained only by direct fixation of the fragment.
Our study was limited by lack of muscle-tendon units, and

we recognize that the bone quality of the ankles, which had
been obtained from cadavers of elderly persons, could have
influenced our test results. In addition, the load was applied
more slowly than during an actual traumatic event. If we had
had muscle-tendon units, the ankle joint would have been
more stable, and thus the incidence of posterior malleolar
fracture and the size of the fractures would have differed from
those that we observed. Both bone quality and loading rate
can affect the failure mode. Tensile testing of the femur-
anterior cruciate ligament–tibia complex has shown the major
mode of failure to be ligament disruption in young adults and
avulsion fracture in older adults.[70] Further, the loading rate
has been shown to affect the pattern of bone–ligament–bone
complex failure, with slow loading tending to result in
avulsion fracture and faster loading tending to result in
ligament disruption.[71]

In conclusion, we found fractures at the posterolateral corner
of the distal tibia to be avulsion fractures resulting from avulsion
of the posterior inferior tibiofibular ligament caused by external
rotation of the talus. Furthermore, we successfully produced a
fracture involving the entire posterior tibial margin and
consisting of 2 fragments, with the posterior tubercle fragment
judged to be a consequence of avulsion by the posterior inferior
tibiofibular ligament and the posteromedial marginal fragment of
the tibial plafond a consequence of axial loading from the talus.
Understanding the injury mechanism of posterior malleolar
fracture may provide insight into the indications for fixation and
the optimal stabilization method.
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