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Abstract

Profiling the taxonomic composition of microbial communities commonly involves the classification of ribosomal RNA
gene fragments. As a trade-off to maintain high classification accuracy, existing tools are typically limited to the genus
level. Here, we present mTAGs, a taxonomic profiling tool that implements the alignment of metagenomic sequencing
reads to degenerate consensus reference sequences of small subunit ribosomal RNA genes. It uses DNA fragments,
that is, paired-end sequencing reads, as count units and provides relative abundance profiles at multiple taxonomic
ranks, including operational taxonomic units based on a 97% sequence identity cutoff. At the genus rank, mTAGs out-
performed other tools across several metrics, such as the F1 score by >11% across data from different environments,
and achieved competitive (F1 score) or better results (Bray–Curtis dissimilarity) at the sub-genus level.

Availability and implementation: The software tool mTAGs is implemented in Python. The source code and binaries
are freely available (https://github.com/SushiLab/mTAGs). The data underlying this article are available in Zenodo, at
https://doi.org/10.5281/zenodo.4352762.

Contact: ssunagawa@ethz.ch

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The relative abundance of taxa in a microbial community can be
estimated by classifying sequences of phylogenetic marker genes. A
common approach involves the generation of polymerase chain reac-
tion (PCR)-derived amplicon sequences using oligonucleotide pri-
mers to target highly conserved regions of the small subunit
ribosomal RNA (SSU-rRNA) gene. However, this approach has sev-
eral limitations due to the introduction of errors (Acinas et al.,
2005) and taxonomic selection biases (Hong et al., 2009) in the PCR
step, and the inconsistency of results when targeting different vari-
able regions of theSU-rRNA gene (Claesson et al., 2010). As an al-
ternative, the generation of metagenomic data, i.e. by shotgun-
sequencing of microbial community DNA, allows for an unbiased
extraction of SSU-rRNA gene fragments (Logares et al., 2014) and
their subsequent classification to generate taxonomic profiles.
However, current tools performing SSU rRNA gene-based taxonom-
ic profiling of metagenomes (Bengtsson-Palme et al., 2015; Guo
et al., 2016; Shah et al., 2011; Xie et al., 2016) suffer from

shortcomings, such as their inability to use reads originating from
any region of the SSU-rRNA gene (Bengtsson-Palme et al., 2015;
Guo et al., 2016; Xie et al., 2016) or a limitation of the taxonomic
resolution to the genus rank (Bengtsson-Palme et al., 2015; Shah
et al., 2011; Xie et al., 2016).

The classification performance of SSU-rRNA gene fragments of
PCR-targeted or metagenomic origin differs between tools using
reference sequence databases of reduced complexity (e.g. Bolyen
et al., 2019; Matias Rodrigues et al., 2017; Schloss et al., 2009).
The construction of such reference databases may thus be a critical
factor, in particular at high taxonomic resolution, that is, at ranks
below the genus level, such as the operational taxonomic unit
(OTU) defined at a 97% sequence identity cutoff. Here, we tested
if the use of the International Union of Pure and Applied Chemistry
(IUPAC) code for nucleotides to generate a reference database, in
which each OTU is represented by a degenerate consensus sequence
of all respective members, would increase the accuracy of individ-
ual SSU-rRNA sequence classification and community composition
profiling at different taxonomic ranks. We implemented this
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approach in a new taxonomic profiler for metagenomes named
mTAGs. We show an advantage of this method over simply using
the longest sequence as an OTU representative, and that at the
genus level, mTAGs provides higher accuracy compared to other
tools that are commonly used to classify SSU-rRNA gene fragments
(Bolyen et al., 2019; Caporaso et al., 2010; Matias Rodrigues
et al., 2017; Schloss et al., 2009).

2 Tool description

The mTAGs tool uses a reference database, which was built by first
clustering sequences into OTUs within each genus defined in the
full-length SILVA SSU database version 138 (Quast et al., 2013) at
97% identity. Then, for each OTU a degenerate consensus se-
quence was generated using the IUPAC DNA code to represent all
respective member sequences (see Supplementary Information).
The tool is capable of processing single-end and pair-end reads,
takes advantage of the information contained in any region of the
SSU-rRNA gene and provides relative abundance profiles at mul-
tiple taxonomic ranks, including OTUs. mTAGs takes shotgun-
sequenced metagenomic data as an input and uses hidden Markov
models to detect sequence fragments from any position of the SSU
rRNA gene. These fragments are aligned to the reference database
and conservatively classified to a taxonomic rank (according to the
SILVA taxonomy) by determining the last common ancestor of all
target sequences. The runtime of mTAGs increases linearly with

the size of the metagenome (see Supplementary Information) at a
rate of 53 s per million reads processed (wallclock time using eight
CPU threads; 306 s in CPU time) allowing the processing of deeply
sequenced metagenomes in reasonable time (i.e. �100 million
paired-end reads in �1.5 h). Although the primary use of mTAGs is
the taxonomic profiling of metagenomes, it can also be used for
profiling SSU-rRNA amplicon data or for classifying amplicon se-
quence variants produced by other methods (Callahan et al., 2016;
Edgar, 2016).

3 Results

We benchmarked the effect of differences in the generation of the
reference database by classifying reads of known identity (Fig. 1A;
Supplementary Fig. S1; Supplementary Information). The definition
of the representative sequence for each OTU as a degenerate consen-
sus sequence of all its respective members, rather than the longest se-
quence, resulted in a �14% increase in classification performance at
the OTU level when profiling paired-end reads of 250 bp (14.0%,
14.1% and 14.0% for precision, recall and F1 score, respectively). A
25.4% increase in taxonomic profiling performance was observed as
measured by an increase in the median Bray–Curtis similarity to the
true profiles from 0.355 to 0.265 (Supplementary Fig. S1). This ef-
fect was still observed for reads of 150 bp, while no effect was found
for reads of 100 bp and/or higher taxonomic ranks (Supplementary
Fig. S1).
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Fig. 1. Benchmarking results on taxonomic profiling of microbial communities. (A) Internal benchmarking: benchmarking of the mTAGs reference database construction for

read length of 150 bp. Values correspond to the performance in classification (F1 score) and profiling (Bray–Curtis similarity to the expected composition) at seven taxonomic

ranks for the definition of the OTU representative sequence as (i) the degenerate consensus sequence of all respective members (blue) or (ii) the longest member sequence

(green).The values of 10 independent evaluations are plotted. See the Supplementary Figure S1 for precision and recall values and results based on alternative read lengths.

(B) External benchmarking: benchmarking of mTAGs against QIIME 1, QIIME 2, mothur and MAPseq using simulated datasets comprising the most abundant genera found

in the human gut, ocean and soil environments (Almeida et al., 2018). Bray–Curtis similarity to the expected composition and F1 score values correspond to classifications at

the genus-level (the lowest taxonomic rank common to all tools). To ensure comparability between the tools, the results are based on the SILVA SSU database version 128. See

the Supplementary Information for more details and Supplementary Figure S2 for precision and recall values and results based on alternative reference databases.

(C) Metagenomes-based benchmarking: benchmarking of mTAGs and MAPseq using metagenomic data from the second CAMI challenge (Meyer et al., 2021). Values corres-

pond to the performance in classification (F1 score) and profiling (Bray–Curtis dissimilarity to the expected composition) at seven taxonomic ranks
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For an independent evaluation and comparison of classifica-

tion and profiling performance, we used simulated data from pre-

vious work (Almeida et al., 2018) using SSU-rRNA datasets

comprising the most abundant genera found in the human gut,
ocean and soil environments (Fig. 1B; Supplementary Fig. S2) to

benchmark a number of taxonomic profiling tools. In this com-

parison (Fig. 1B), mTAGs achieved a median F1 score of 0.88 and
a median Bray–Curtis similarity to the expected abundance profile

of 0.89 outperforming other tools classifying SSU-rRNA gene

fragments down to the genus-level, the lowest taxonomic rank

common to all tools (QIIME 1, QIIME 2, mothur and MAPseq
achieved median F1 scores of 0.72, 0.80, 0.53 and 0.60 and Bray–

Curtis similarities of 0.75, 0.77, 0.51 and 0.60, respectively).

mTAGs had a high median precision of 0.98, comparable to the

precision of MAPseq, and a median recall of 0.80, which was the
highest value among the tested tools (Fig. 1B). This high classifi-

cation performance was consistent for data from different envi-

ronments (human gut, ocean and soil) and also when tested
separately for different hyper-variable regions within the full-

length SSU-rRNA gene (see Supplementary Information and

Supplementary Fig. S2).
To assess the performance of mTAGs for shotgun metagenomics

data and at the sub-genus level, a third evaluation was performed
with human and mouse-associated metagenomes (Meyer et al.,
2021). This benchmark was performed in comparison with

MAPseq, which was the only tool that provided outputs at the sub-

genus taxonomic level (Fig. 1C; Supplementary Fig. S3). At this level
(OTU level and NCBI species level for mTAGs and MAPseq, re-

spectively) mTAGs achieved higher median Bray–Curtis similarity to

the expected abundance profile, while the median F1 score was com-
parable between the tools (Fig. 1C). A breakdown of the F1 score

showed a lower precision, but higher recall of mTAGs compared to

MAPseq (Supplementary Fig. S3).

4 Conclusions

With mTAGs, we introduce a freely available tool for SSU-rRNA

gene-based microbial community profiling that defines degenerate

consensus sequences and uses them as a reference database to enable
OTU-level relative abundance estimation.
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