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Knowledge of the perturbation 
design is essential for accurate 
gene regulatory network inference
Deniz Seçilmiş1, Thomas Hillerton1, Andreas Tjärnberg2, Sven Nelander3, 
Torbjörn E. M. Nordling4,5 & Erik L. L. Sonnhammer1*

The gene regulatory network (GRN) of a cell executes genetic programs in response to environmental 
and internal cues. Two distinct classes of methods are used to infer regulatory interactions from 
gene expression: those that only use observed changes in gene expression, and those that use 
both the observed changes and the perturbation design, i.e. the targets used to cause the changes 
in gene expression. Considering that the GRN by definition converts input cues to changes in gene 
expression, it may be conjectured that the latter methods would yield more accurate inferences but 
this has not previously been investigated. To address this question, we evaluated a number of popular 
GRN inference methods that either use the perturbation design or not. For the evaluation we used 
targeted perturbation knockdown gene expression datasets with varying noise levels generated by 
two different packages, GeneNetWeaver and GeneSpider. The accuracy was evaluated on each dataset 
using a variety of measures. The results show that on all datasets, methods using the perturbation 
design matrix consistently and significantly outperform methods not using it. This was also found to 
be the case on a smaller experimental dataset from E. coli. Targeted gene perturbations combined 
with inference methods that use the perturbation design are indispensable for accurate GRN 
inference.

Accurate identification of gene interactions that regulate biochemical mechanisms in a living organism can help 
identify physiological and pathological mechanisms and enable researchers to e.g. understand the cause of genetic 
diseases. Prediction of these gene regulatory interactions can be performed from gene expression data via gene 
regulatory network inference methods which differ among each other in terms of their mathematical models. 
The accuracy of one inference method may exhibit fluctuations based on the properties of the dataset, e.g. noise 
levels1,2. Several benchmark studies have been published from the Dialogue on Reverse Engineering Assessment 
and Methods (DREAM) network inference challenges3–5, where different sources of networks and data were 
used in each challenge, and performance comparisons were made for different methods. These benchmarks, 
especially the fifth round of DREAM5 provided a broad selection of GRN inference methods, however, they did 
not assess the performances of these methods at different data properties such as noise levels. A benchmark of 
ten GRN inference methods by Bellot et al.6 includes an analysis of the impact of noise, but did not consider link 
direction, and all measured accuracies are very low, which reduces its usefulness. Another benchmark by Pirgazi 
et al.7 provided acceptable accuracy levels but here the noise levels were not varied enough to make noise-related 
conclusions. Other smaller benchmarks are also found in the publications of new methods8–10 but there both 
the selection of benchmarked methods and data properties are very limited. When combined together, all these 
benchmarks include a large amount of inference methods, yet fail to provide the community with clear guid-
ance of the strengths and weaknesses of surveyed methods on data with different properties, which is useful for 
identifying the most suitable method for a particular dataset.

In addition to the mentioned shortcomings of the current benchmarks, one key aspect that has not previously 
been examined is the importance of knowing and using the experimental perturbation design, which only some 
GRN inference methods are capable of. To investigate this, we benchmarked several GRN inference methods 
based on diverse mathematical models, divided into two categories based on whether they use knowledge of the 
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perturbation design (P-based methods, where P refers to the perturbation design matrix) or not (non P-based 
methods). Perturbation in GRN inference, and gene expression studies in general, can take many forms such 
as overexpression using plasmids in yeast11 or knockdown experiments using RNAi12. Regardless of how the 
perturbation is performed, methods that use the knowledge of the perturbation design can use this information 
in different ways, either as part of the system model, as prior information, or to filter data, in order to build a 
GRN. P-based methods, by mapping the perturbations to measured gene expression, can identify the causality 
behind the gene regulation13–16, a crucial aspect in GRN inference when the ultimate goal is to identify genetic 
mechanisms and propose possible therapies. In contrast, most methods that do not utilize the perturbation 
design are limited to finding associations between genes. We applied methods that either do or do not use the 
perturbation design to in silico datasets generated using GeneNetWeaver17 and GeneSPIDER2 with varying 
noise levels. Inferred GRNs were compared to their gold standards, and their accuracy was evaluated in terms 
of several metrics (Fig. 1).

The results show that P-based methods are significantly more accurate than non P-based ones, and that only 
P-based methods were able to reach near perfect inference accuracy.

Results
We applied five P-based and five non P-based GRN inference methods to 100- and 250-gene synthetic data with 
three levels of Gaussian noise: high, medium, and low (Eq. (1) in “Methods”). The high noise level corresponds 
roughly to the noise level of biological datasets, the medium level can be achieved following a successful pre-
processing approach18, and at the low noise level the minimum signal is equivalent to the noise, meaning that it 
is relatively easy to reconstruct the underlying system. For each noise level, we measured the inference accuracy 
across all error levels as the area under the precision-recall (AUPR) curve. To support the validity of the drawn 
conclusions we also calculated the area under the receiver operating characteristic (AUROC) curve, F1-score, 
and Matthew’s correlation coefficient (MCC) for the 100-gene datasets.

Utilizing the perturbation design leads to more accurate GRN inference.  A general noise-related 
trend was observed in GRN inference accuracy, that AUPR levels increase relative to decreased noise espe-
cially from ‘high’ to ‘medium’ noise levels (Fig. 2; Suppl. Table S2; Suppl. Fig. S12). The increase in AUPR levels 
was larger for the GeneSPIDER datasets than for GeneNetWeaver, and was significant in both cases (p < 0.05). 
The transition from noise level ‘medium’ to ‘low’ was still significant for the P-based methods, but not for the 
non P-based methods (p > 0.05). At all noise levels a significant difference in accuracy is observed between 

Figure 1.   Workflow of the benchmarking pipeline. First, in silico true GRNs and perturbation-based gene 
expression data are generated, followed by addition of low, medium and high levels of Gaussian noise. GRNs 
are then inferred using P-based (that use the perturbation design) and non P-based (that do not use the 
perturbation design) inference methods, and finally the accuracy of each prediction is calculated by several 
measures, including area under precision-recall (AUPR).
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the P-based and non P-based methods, where the former outperformed the latter without exception (Suppl. 
Table S1).

At the high noise level, Z-score19 was the most accurate of all methods, followed by other P-based methods, 
both on data generated by GeneNetWeaver and GeneSPIDER. All non P-based methods performed poorly at 
this noise level, and there was no clear winner among them. The increase in accuracy when going from ‘high’ to 
‘medium’ noise is more noticeable for the GeneSPIDER data than for the GeneNetWeaver data. A smaller increase 
in AUPR levels was observed when the noise level decreased from ‘medium’ to ‘low’, but this is still statistically 
significant for the P-based methods, and resulted in some of the P-based methods achieving the perfect level of 
AUPR on the GeneSPIDER data. For ‘medium’ and ‘low’ noise levels, GENIE38 was the top performer among the 
non P-based methods, closely followed by BC3NET20, yet they were with no exception outperformed by the least 
accurate of the P-based methods. PLSNET10 and CLR21 were the least accurate of all methods across all datasets.

We also calculated the maximum F1-scores (Suppl. Fig. S5) and MCC levels (Suppl. Fig. S6) on these 100-gene 
datasets to support the validity of our hypothesis. The same trend as for AUPR was observed with both these 
alternate measures, with P-based methods always outperforming the non P-based ones.

Correct knowledge of the perturbation design is crucial for accurate GRN inference.  To fur-
ther investigate the effect of the information stored in the design matrix on inference accuracy of the P-based 
methods, we randomly displaced every perturbation in the perturbation design matrix, and applied the P-based 
methods to these 100-gene datasets where the connection between gene expression and its perturbation design 
is broken. The results showed that, regardless of any decrease in noise levels, the performance from the incorrect 

Figure 2.   Accuracy of the GRN inference from the 100-gene synthetic datasets in terms of the area under 
the precision-recall (AUPR) curve. Inference accuracy in terms of AUPR from (a) GeneNetWeaver and (b) 
GeneSPIDER datasets. The x-axis represents different noise levels, corresponding to signal-to-noise ratio 
(SNR) levels 0.01, 0.1, and 1, and the y-axis denotes the AUPR levels calculated over different sparsities. Each 
method has five data points for each noise level for data generated from different true GRNs. The P-based 
and non P-based methods are represented by different markers and colors, and are highlighted together with 
blue and red, respectively. The average AUPR values of the 5 datasets are shown in circular bar plots for the (c) 
GeneNetWeaver and (d) GeneSPIDER datasets.
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perturbation design remained around the random line in terms of AUPR (Fig. 3, Suppl. Table S1). This situa-
tion occurs as the P-based methods are built on the assumption that the input P matrix represents the actual 
perturbations, and they can reach almost perfect accuracy thanks to utilizing the correct perturbation design.

Stratification of P‑based and non P‑based methods.  We have shown examples of how P-based 
methods outperform non P-based methods under changing noise levels, and that the correct perturbation 
design is crucial for the P-based methods to be able to perform accurately. To provide an overview of the bench-
mark results, we plotted the AUPR scores versus the AUROC scores for the 100-gene datasets at all noise levels 
(Fig. 4). This highlights the separation between P-based and non P-based methods, and shows that only P-based 
methods, when provided with the correct knowledge of the perturbation design, can achieve near perfect levels 
of GRN inference accuracy in terms of both AUPR and AUROC, whereas the accuracy of non P-based methods 
remains limited to a level in terms of AUPR (< 0.6) even at low noise levels (Fig. 4).

Figure 3.   Accuracy of the P-based GRN inference methods using the correct and incorrect perturbation 
designs with the 100-gene synthetic datasets generated by (a) GeneNetWeaver and (b) GeneSPIDER in terms of 
the area under the precision-recall (AUPR) curve.

Figure 4.   Combined accuracy of all methods on the 100-gene datasets of all noise levels based on their 
perturbation background. The x-axis represents the area under the receiver-operating-characteristic (AUROC) 
curve, and the y-axis represents the area under the precision-recall (AUPR) curve for the (a) GeneNetWeaver 
and (b) GeneSPIDER datasets.



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:16531  | https://doi.org/10.1038/s41598-022-19005-x

www.nature.com/scientificreports/

Similarity between methods.  In order to investigate the similarity between the methods in terms of pre-
dicted interactions, we used the benchmarked results on the 100-gene synthetic data and measured the Jaccard 
index of the predicted edges in the maximum F1-score GRNs for each method pair, averaged for all datasets with 
the same properties (Fig. 5). The results show that the GRNs from P-based and non P-based methods cluster 
within the categories, where the P-based methods have an average Jaccard index at all noise levels of 0.75 for 
GeneNetWeaver data and 0.72 for GeneSPIDER data, while the non P-based methods are less similar at on aver-
age 0.33 for GeneNetWeaver data and 0.30 for GeneSPIDER data. The Jaccard indices between categories were 
statistically significantly different at all noise levels (Suppl. Table S3). The similarity between P-based and non 
P-based methods is very low at high noise (0.09 and 0.02 on average for the GeneNetWeaver and GeneSPIDER 
data, respectively) but increases for the lower noise levels.

We also calculated the fraction of true interactions for each method pair, i.e. the portion of the overlap 
between two methods found in the true GRN (Suppl. Fig. S9). One minus this fraction would accordingly give 
the agreement on false positives. The overall trend followed the trend in method prediction overlap (Fig. 5), 
where the fraction of true edges is higher for the overlap between the P-based methods than between the non 
P-based. The fraction of true edges remained considerably lower for the 100-gene GeneNetWeaver datasets across 
all noise levels than for the 100-gene GeneSPIDER datasets. For the GeneNetWeaver datasets at high noise level, 
the highest true fraction was observed for the overlap between the non P-based methods, but this was not the 
case for the other noise levels. For the GeneSPIDER datasets, the true fraction was always considerably higher 
for the overlap between the P-based methods, and showed an increasing trend with decreasing noise.

Speed benchmark.  Among all benchmarked methods, Z-score and CLR were the fastest in CPU time, 
but Z-score was faster in real time, followed by BC3NET in both CPU and real time. TIGRESS21 was by far the 
slowest, followed by PLSNET and GENIE3, in CPU time. In real time, however, GENIE3 was the slowest because 
TIGRESS and PLSNET use MATLAB’s parallelization (Fig. 6, Suppl. Table S5).

The effect of selfloops on GRN inference accuracy.  A fundamental difference that we observed 
between the benchmarked P-based and non P-based methods is that the former infers selfloops while the latter 
does not. Selfloops represent the rate of gene transcript degradation, which is an important parameter for the 
system’s stability, making them an essential part of the true network. To make a fair assessment of both method 
categories, we included the selfloops in the true networks for the P-based methods, and removed them from 
the true network for the non P-based methods. As GeneNetWeaver networks do not contain all selfloops, the 
missing ones were added for P-based methods. This procedure prevents P-based methods to suffer from false 
positives, and non P-based methods to sacrifice accuracy due to false negatives. Since the main assessment of 

Figure 5.   Average Jaccard index between the interactions predicted by the benchmarked methods across 5 
100-gene datasets for each of the three noise levels, high (left column), medium (middle column), and low (right 
column) noise levels for (a–c) for GeneNetWeaver and (d–f) for GeneSPIDER data.
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GRN inference accuracy is made mainly in terms of AUPR, both errors have an equal effect on the inference 
accuracy. In order to investigate the specific effect of selfloops on GRN accuracy, we removed them both from 
the true network and the inferred GRNs of the 100-gene datasets for all methods, including the P-based ones, 
and observed that even though selfloops are responsible for a large part of the accuracy under high noise levels, 
they don’t have any effect on accuracy for medium and low noise levels (Suppl. Fig. S10). One exception is the 
Z-score method whose accuracy is not strongly affected by the treatment of selfloops at any noise level.

Benchmarking on biological data from DREAM5.  The fifth round of DREAM5 includes a GRN infer-
ence challenge based on perturbation-induced expression data for E. coli, and RegulonDB as the gold standard 
GRN. We identified a subset of this dataset (network3)5 with known-target knockout or overexpression pertur-
bations, i.e. with a known P matrix, and performed GRN inference by all methods that were run on the synthetic 
data above. Note that most methods that participated in DREAM5 performed very poorly in this challenge as no 
method scored an AUPR above 0.15. However, on the known-target subset, the P-based methods were able to 
achieve considerably higher AUPR levels, ranging between 0.30 and 0.38 (Suppl. Fig. S11). This was not the case 
for the non P-based methods, which only reached AUPR levels between 0.01 and 0.03, which is even lower than 
in the DREAM5 challenge. For instance, GENIE3 achieved an AUPR of ~ 0.10 on the full challenge dataset5 but 
on the selected subset only 0.03. Taken together, this agrees with the previous results suggesting that knowing 
and using the P matrix can augment GRN inference accuracy considerably.

Discussion
Previous benchmarking of GRN inference methods have provided a broad perspective of the accuracy that is 
achievable with different mathematical approaches on different datasets. However, a very important aspect has so 
far been missed, namely the type of information that the methods utilize. This study for the first time assesses the 
importance of using the perturbation design for accurate GRN inference. All conclusions in this study are based 
on the presented results which were obtained by using data that inherently represent the targeted perturbation 
steady-state condition (knock-down), and inference methods developed for this type of data.

As expected, a lower noise level in the data generally led to higher accuracy. For all noise levels, there was how-
ever a clear separation between P-based and non P-based methods in that the former consistently outperformed 
the latter. Furthermore, P-based methods were able to achieve almost perfect accuracy, whereas the accuracy 
of the non P-based methods remained below an AUPR of 0.6. P-based methods have previously been shown to 
continuously improve with decreasing noise and achieve perfect accuracy under good data conditions1,2, sup-
porting the present results. This suggests that, if the informativeness of real data can be improved by reducing 
the noise level of the system from high to at least medium via for instance preprocessing approaches18,22, close 
to perfect accuracy can be achieved by P-based methods that use the knowledge of the perturbation design. As 
a result, accurate and reliable prediction of gene regulatory interactions could be performed to identify novel 
regulatory mechanisms and treatment targets, which would not be possible with the non P-based methods 
whose accuracy is considerably lower due to not utilizing the essential knowledge of the perturbation design.

We have tested the effect of the correct perturbation information on the performances of the P-based methods 
by misplacing every perturbation in the design matrix and breaking the connection between the gene expression 
and its design, which resulted in the same accuracy as random predictions. This shows that the P-based methods 
are very powerful with the correct and complete design information, but also potentially vulnerable to errors in 

Figure 6.   Speed benchmarking of the GRN inference methods on a 100-gene dataset. The x-axis shows the real 
time and the y-axis the CPU time per GRN inference run in seconds.
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the design matrix, which could have either experimental or data processing causes. The value of using the design 
matrix was previously shown in the DREAM5 network inference challenge5, where inference methods using it 
were better able to predict the targets of transcription factors. Despite utilizing the perturbation design, these 
methods were not able to achieve high accuracy levels on the DREAM5 data because there only transcription 
factors were perturbed, which is a small fraction of all genes. This is different from the data in this benchmark 
where a majority of the genes in the system are perturbed, which makes highly accurate GRN reconstruction 
possible unless the noise level is too high. The effect of an imperfect P matrix has previously been explored22, 
where it was shown that the connection between the intended perturbation design and measured gene expression 
may be broken due to high noise levels or off-target effects of perturbations, leading to an incorrect mapping of 
the P matrix to gene expression and lower accuracy. P-based methods using a P matrix that was inferred from 
the measured gene expression were shown to perform better than when the intended P was used, providing 
additional support for the importance of utilizing the correct P that suits the data.

A drawback of P-based methods is that they are not possible to apply to data without a targeted perturbation 
design matrix, which limits their application. Non P-based methods, on the contrary, are possible to apply to 
both targeted and untargeted perturbation data, which increases their generality but comes with a great sacrifice 
of accuracy. This situation can simply be seen as a tradeoff between generality and higher accuracy, where both 
method categories sacrifice one or another.

Given the low GRN accuracies of inference methods for data from both GeneNetWeaver and GeneSPIDER, 
especially at high noise levels, it is clear that only a portion of the true regulatory interactions was captured by 
each method. The Jaccard index of the overlap between the interactions inferred by method pairs shows that the 
agreement between the non P-based methods is considerably lower compared to the P-based methods. Combin-
ing these two results, one possible reason for such discrepancy could be that the differences in the mathematical 
backgrounds of the non P-based methods may capture different patterns in the data, resulting in low overlap in 
the top inferred interactions. In contrast, P-based methods not only share a larger overlap but also the fraction 
of true interactions is higher compared to the non P-based methods, at least for GeneSPIDER data. This is most 
likely due to the fact that the penalized regression methods such as LASSO, ElasticNet and Ridge regression are 
all related to least squares and therefore are more likely to capture the same patterns in the data. It is noteworthy 
that the predictions of P-based methods can be combined due to the large fraction of true interactions in their 
overlaps, and in the absence of a true GRN, the intersection of these methods is likely to provide the best GRN 
that can be obtained.

Autoregulation is of crucial importance for a system’s stability. Therefore, all synthetic true networks we 
generated contain selfloops to effectuate autoregulation, and the data generated from these networks are partly 
based on selfloops. The two categories of inference methods however follow different approaches regarding the 
selfloops as the P-based methods tend to always infer these, while the non P-based methods do not. Not including 
the selfloops in the true GRN would result in false positives for the P-based methods, and including them would 
result in false negatives for the non P-based methods. Our solution to this situation is to treat both categories in 
a fair way by keeping all selfloops in the true GRN for the P-based methods, and removing them from the true 
GRN when comparing to the inferred GRNs of the non P-based methods. Since the accuracy assessment was 
mainly done by AUPR, this selfloop treatment has the same effect on both situations as false positives and false 
negatives have equal roles in AUPR. We also explored an alternative approach to remove the selfloops from both 
the true GRN and the inferred GRNs of the P-based methods. This had little effect at the low and medium noise 
levels, but at high noise most of the accuracy was lost compared to the standard benchmarking method, for all 
methods except Z-score that only lost about half the AUPR.

Without considering selfloops, Z-score stands out as much more accurate than all other methods at high 
noise levels. Also when considering selfloops, the most reliable method for high noise was Z-score. Previous 
studies have shown similar results where the Z-score approach is among the top performing methods despite 
its simplicity17,19,23,24. Although it is the winner at the most difficult noise level, Z-score is outperformed by the 
other P-based methods at medium and low noise on the GeneSPIDER data. It can thus be either the best or the 
worst of the P-based methods depending on the conditions.

We observed a strange situation with the direction of interactions inferred by Genie3 in the benchmark, where 
the reverse edge direction was much more accurate than the original direction (Suppl. Note 1). This was however 
not the case for the results from the DREAM4 in silico multifactorial network inference challenge. Our analysis 
suggests that the reverse direction generally gets the highest weight between regulators, which results in a much 
higher accuracy when the true GRN has a large fraction of regulators, as in this benchmark (Suppl. Fig. S14). 
According to the Genie3 authors, it yields the wrong link direction when applied to single gene knockdown data, 
which is used here (P. Geurts, personal communication). Note that even when reversing the direction of the 
Genie3 GRNs to optimize its performance, it could not compete with the worst performing P-based method in 
any dataset generated for this benchmark. As the effect of the link direction depends on the data, we encourage 
other researchers to investigate if they can verify our findings with their own data.

A large portion of GRN inference methods infer directed interactions where an edge is drawn from a regula-
tor gene to its target(s). Some of these methods also assign a sign to these interactions to indicate activation or 
inhibition. Some methods, however, only infer undirected interactions, where the source and the target genes are 
unknown, and the networks are symmetric. The accuracy calculation in this study was performed by consider-
ing the direction of the interactions but not their sign. The direction of an interaction is of crucial importance 
in a GRN, but two of the benchmarked methods in this study, CLR and BC3NET, infer the interactions without 
direction, i.e. all inferred links are in both directions. While this will degrade the performance of undirected 
methods in a directed benchmark, it is not obvious how to avoid it. In a real situation one might derive a direc-
tion from regulators to targets, but providing this extra information in a benchmark would give these methods 
an unfair advantage. Another aspect of the present benchmarking method is that, ignoring the sign of the 
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interactions could potentially result in a GRN to be rated perfectly accurate although all the links have the wrong 
sign. However, given that the sign of the interaction is not inferred by any of the non P-based methods, we did 
not include the sign of the predicted links in the benchmark, even though this gives such methods an advantage.

In this study we performed a broad benchmark with a novel idea of comparing the mathematical model 
category of the GRN inference methods, and showed that the knowledge of the perturbation design is essential 
for accurate GRN inference, and that the methods utilizing this information are significantly more accurate and 
reliable than the ones not utilizing it. Given that one of the biggest aims of GRN inference is to reveal unknown 
mechanisms that may become helpful in better understanding and treating genetic diseases, this study which 
demonstrates the positive effect of using the perturbation design on GRN accuracy may lead to a significant 
change in the field both in terms of biological data generated and methods developed. Therefore, based on our 
presented results, we strongly recommend experimentalists to perform targeted perturbation experiments, and 
computational systems biologists to use and develop perturbation-based methods for more accurate and reliable 
GRN inference, especially when the ultimate goal is to infer novel regulatory interactions as treatment targets 
where false predictions would lead to wasted efforts.

Materials and methods
Networks and datasets.  We have generated synthetic networks and datasets via GeneNetWeaver and 
GeneSPIDER for benchmarking the gene regulatory network inference methods. We also extracted a known-
target perturbation subset from the Escherichia coli dataset (network 3) of the DREAM55 network inference 
challenge.

In silico true network generation via GeneNetWeaver.  Five subnetworks of 100-genes were extracted from the 
complete E. coli network. All genes were requested to be regulators but GeneNetWeaver does not assign the 
exact requested number, resulting in a varying number of regulators per subnetwork. The vertices were drawn 
randomly with the “greedy” edge selection. The true sparsity of the 5 GRNs, without selfloops, ranges between 
1.48 and 1.95 links per gene.

In silico true network generation via GeneSPIDER.  Five synthetic networks were generated in scale-free topol-
ogy with directed and signed edges. Each gene is allowed to be a regulator, and on average three links per node 
were assigned. The true sparsity of the 5 GRNs, without selfloops, ranges between 2.22 and 2.38 links per gene.

In silico perturbation design.  To be able to observe the regulatory effect of a gene on one or more others, it 
is important to introduce alterations to the system. These alterations are called “perturbations”, which can be 
applied to all genes in the system or target specific genes, one at a time. Some GRN inference methods can 
infer GRNs from measurements of both types of perturbations (called non P-based in this study), while some 
methods require known targeted perturbations (P-based). To investigate the importance of the knowledge of 
targeted perturbations in GRN inference, we generated single target-perturbation matrices with three replicates 
per perturbation experiment, to be later used as the input cue to the true regulatory system when generating 
perturbation-based data from it. The perturbation information is stored in a binary N-by-M matrix, where N 
refers to genes and M experiments, assigning − 1 (for knockdown) to all perturbations and 0 to all other cells. 
This matrix is throughout the paper referred to as the P matrix.

In silico noise‑free data generation via GeneNetWeaver.  For each of the five subnetworks, a noise-free gene 
expression dataset of steady-state knockdown perturbations was generated from ordinary differential equations. 
No normalization was performed, and noise-free fold changes were calculated by the log2 ratio between the gene 
expression and its wild type value. The fold change matrix was transposed and replicated three times, to simulate 
a perturbation experiment with three replicates. The resulting noise-free fold change gene expression matrix is 
therefore in size 100 × 300 (genes × experiments).

In silico noise‑free data generation via GeneSPIDER.  For each of the five synthetic networks a noise-free fold 
change gene expression dataset with three replicates was generated. Unlike GeneNetWeaver, GeneSPIDER 
directly generates fold changes instead of generating gene expression and wild type separately. GeneSPIDER 
also inherently allows for replicates, therefore no manual replication was necessary. The resulting noise-free fold 
change gene expression matrix is in size 100 × 300 (genes × experiments).

Noise generation.  Noise was generated in the same way for the data from both generation tools to allow 
for a fair comparison based on the signal-to-noise ratio (SNR). Given a target SNR, we used Eq. (1) to calculate 
the required variance (λ). Then we generated a random noise matrix of the same data size with the desired SNR 
using the derived variance.

In Eq. (1), svd(X) is a set of values from the singular value decomposition of the noise-free fold change gene 
expression matrix X, 1 − α is the confidence level, 0.99, N is the number of genes, and M is the number of experi-
ments. λ refers to the variance. Following this approach, we generated three different noise matrices of ‘high’, 

(1)SNR =
min(svd(X))

√

χ−2(1− α,NM)�



9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:16531  | https://doi.org/10.1038/s41598-022-19005-x

www.nature.com/scientificreports/

‘medium’, and ‘low’ noise levels from SNR levels of 0.01, 0.1, and 1, respectively. The generated noise matrices were 
added to their corresponding noise-free gene expression matrix to have the noisy data to perform GRN inference.

DREAM5 E. coli subset.  A known-target perturbation subset was extracted from the DREAM5 E. coli 
(network3) challenge dataset5 using the mapping file called “chip features” where the “DeletedGenes” and “Over-
expressedGenes” columns refer to knockout and overexpression experiments, respectively. The entries with the 
same experiment number without any perturbation information were considered the control experiments, and 
their average was used to calculate the fold change gene expression. Knockdown experiments were discarded 
since their targets were not specified. This subset is in size 41 × 193 (genes × experiments) while the full dataset 
is 4297 × 805.

Benchmarked GRN inference methods.  We investigated several methods from different mathematical 
backgrounds, i.e., regression, mutual information, random forests and Bayesian, and gathered the state of the art 
methods from each mathematical background. The mutual information based methods CLR and BC3NET were 
selected because they performed well in the DREAM network inference challenges. Note that in the DREAM 
competition, the P-based methods used here were not used with a P matrix as input. P-based methods such as 
LASSO and related regression-based methods were chosen because they are well known and commonly used 
in the field. To complement these we chose the Z-score approach for P-based observed effect GRN inference.

Least squares.  The least square regression provides the optimal fit between the dependent variable and the 
independent variables by minimizing the sum of squared residuals. Assuming at steady state YA + P = 0 1, the 
GRN A is estimated as − P × Y†, where Y is the observed expression matrix, P the perturbation design matrix, 
and † denotes the Moore–Penrose inverse. P contains a − 1 in the experiment/gene cell if it is a knock-down 
perturbation, and + 1 for overexpression (not used here). Noise terms are modeled implicitly here.

ElasticNet25–27.  ElasticNet is a regression model that combines LASSO’s L1 regularization parameter with the 
L2 penalty from the Ridge regression to overcome LASSO’s limitations especially when the data is ill-condi-
tioned. We used Matlab’s Glmnet implementation with α = 0.7, which corresponds to ElasticNet (0 < α < 1).

LASSO26,27.  Least absolute shrinkage and selection operator (LASSO) is a regression-based variable selection 
and regularization method, which utilizes the perturbation design and is used here for accurate prediction of 
gene regulatory interactions. LASSO uses the L1 regularization parameter. We used Matlab’s Glmnet implemen-
tation with α = 1, which corresponds to LASSO.

Ridge regression25–27.  Ridge regression is a regression method that uses the L2 penalty to estimate the regres-
sion coefficients of highly correlated explanatory variables. We used Matlab’s Glmnet implementation with α = 0.

Z‑score19.  Z-score corresponds to the distance between an observed gene expression and the mean of the gene 
sample that it is compared to, divided by the standard deviation of the same sample. In this study, we imple-
mented a Z-score-based approach that utilizes the perturbation design matrix. Each Z-score value is considered 
as a weight between the gene and the intended target of the perturbation.

GENIE38.  GENIE3 uses random forests-like tree ensemble methods to build weighted and directed unsigned 
interactions of a gene against the others. It uses gene expression profiles without requiring knowledge of the 
perturbation design. The weights in the output GRN correspond to the strength of the regulation from the 
regulator gene to its target. GENIE3 outperformed its competitors in DREAM4 in silico network inference chal-
lenge, however it is computationally expensive due to its tree-based algorithm. We used GENIE3 in Matlab with 
its default parameters, which are random forests with 1000 trees at each step. We tested using the output in two 
ways for the default parameters when all genes are assumed as transcriptional regulators: either assuming that 
regulators are in rows or in columns. As the latter gave much higher accuracy, this is how we used the output 
(Suppl. Fig. S14).

PLSNET10.  PLSNET uses the partial least squares approach to construct weighted, directed but unsigned gene 
regulatory networks. It does not utilize the perturbation design. We used PLSNET in Matlab with its default 
parameters, which are ‘nfac’ = 5, ‘K’ = 20, ‘T’ = 1000.

CLR21.  Context likelihood of relatedness (CLR) uses mutual information in its background, and outputs 
weighted but undirected and unsigned gene regulatory networks. We used the settings ‘method’ = ‘rayleigh’, 
‘n’ = 10, ‘k’ = 3.

TIGRESS9.  TIGRESS is a regression-based gene regulatory network inference method that outputs directed 
but unsigned networks where the weights correspond to the strength of the regulation. We used default settings 
except ’R’ = 1000 as the default of 10,000 was too slow.

BC3NET20.  BC3NET is a Bayesian bootstrapped mutual information-based gene regulatory network infer-
ence method that outputs unsigned and undirected but weighted networks, where the edge weights denote the 
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ensemble consensus rate in terms of the corresponding mutual information. We used its R implementation and 
default parameters (100 bootstraps).

Accuracy calculation and metrics.  Accuracy of GRN inference is evaluated mainly in terms of the area 
under the precision-recall (AUPR) curve, but also area under the receiver-operating-characteristic (AUROC) 
curve, Matthew’s correlation coefficient (MCC), and the F1-score. Even though the true GRNs are signed, and 
some of the benchmarked methods also infer signed interactions, the sign of the interaction was not used in the 
accuracy calculation, but the direction was.

In Eqs. (2)–(5), TP, FP, TN, and FN refer to the total number of true positives, false positives, true negatives, 
and false negatives, respectively. In Eq. (2), TPR denotes the true positive rate, or recall. In Eq. (3), FPR denotes 
the false positive rate. In Eq. (5), MCC refers to Matthew’s correlation coefficient.

Area under the precision‑recall (AUPR) curve.  On a coordinate plane, the true positive rates (recall) (Eq. 2) are 
placed on the horizontal axis (x-axis) and the precision values (Eq. 4) are placed on the vertical axis (y-axis) for 
different sparsity levels that form a curve from the top of the y-axis where the precision equals to 1 and recall to 
0 to the right of the x-axis where the recall equals to 1 and precision to 0. The area trapped under this curve is 
called the AUPR, and its value is between 0 and 1 where the former refers to a random performance whereas the 
latter denotes perfection.

Area under the receiver‑operating characteristic (AUROC) curve.  On a coordinate plane, the false positive rates 
(Eq. 3) are placed on the horizontal axis (x-axis) and the true positive rates (Eq. 2) are placed on the vertical axis 
(y-axis) for different sparsity levels that form a curve from the top right corner of the system where both FPR 
and TPR equal to 1, to the bottom left corner of the system where both values equal 0. The area trapped under 
this curve is called the AUROC, and its value is between 0 and 1 where the former refers to a fully misclassified 
system whereas the latter denotes perfection. A random performance is at AUROC 0.5.

Matthew’s correlation coefficient (MCC).  MCC (Eq. 5) is an accuracy measurement that takes all predictions 
(true positives, false positives, true negatives, and false negatives) into account to calculate correlation coeffi-
cients between the true and predicted values. MCC is commonly used in the field, and a trusted quantity known 
to not be affected by class imbalance. It ranges between − 1 and 1, where the former refers to a complete misclas-
sification and the latter denotes a perfect classification. A random prediction has an MCC of 0.

F1‑score.  The F1-score (Eq. 6) is an accuracy measure based on precision and recall. It is preferred over MCC 
in some situations where there is an uncertainty regarding the true negatives, i.e. whether they are actual nega-
tives or yet unknown. It ranges between 0 and 1, where the former occurs when either the precision or recall is 
0, and the latter implies perfect prediction.

Sparsity selection approach.  We applied two different approaches, one for the penalty-based methods (LASSO, 
ElasticNet, and Ridge regression), and one for all the others. The penalty-based methods infer an independent 
GRN for each value in the input penalty vector, meaning each inferred GRN should be treated as its own. For 
these methods, we inferred 30 GRNs whose sparsity ranges from full to empty using logspace(− 6, 0, 30). The 
accuracy in terms of AUPR is calculated across these 30 GRN accuracy points. For the other methods, since they 
either output a fully connected GRN of weighted interactions, or they produce a single network with an opti-
mized sparsity, i.e. BC3NET, we used every unique value in the GRN as a cutoff and reduced the GRN for each of 
these unique values. For 100 gene networks, this means 100 K data points were considered in the GRN accuracy 
calculation (for the ones which output a fully connected GRN). Each GRN of a different sparsity is contained in 
the initial output of the method unlike the penalty-based methods.

Speed benchmark.  The benchmarked methods were run on a computer with 16 Intel Xeon E5620 2.40 GHz 
CPUs and 70 GB of RAM.

(2)TPR =
TP

TP + FN

(3)FPR =
FP

FP + TN

(4)Precision =
TP

TP + FP

(5)MCC =
TP ∗ TN − FP ∗ FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(6)F1− score = 2 ∗
precision ∗ recall
precision+ recall
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Data availability
The datasets supporting the conclusions of this article, and the code used to generate the results presented in 
this article are available in https://​bitbu​cket.​org/​sonnh​ammer​grni/​bench​mark/.
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