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Advances in the understanding of the dependence of reaction rates from temperature,

as motivated from progress in experiments and theoretical tools (e. g., molecular

dynamics), are needed for the modeling of extreme environmental conditions (e.g.,

in astrochemistry and in the chemistry of plasmas). While investigating statistical

mechanics perspectives (Aquilanti et al., 2017b, 2018), the concept of transitivity

was introduced as a measure for the propensity for a reaction to occur. The

Transitivity plot is here defined as the reciprocal of the apparent activation energy

vs. reciprocal absolute temperature. Since the transitivity function regulates transit in

physicochemical transformations, not necessarily involving reference to transition-state

hypothesis of Eyring, an extended version is here proposed to cope with general

types of transformations. The transitivity plot permits a representation where deviations

from Arrhenius behavior are given a geometrical meaning and make explicit a positive

or negative linear dependence of transitivity for sub- and super-Arrhenius cases,

respectively. To first-order in reciprocal temperature, the transitivity function models

deviations from linearity in Arrhenius plots as originally proposed by Aquilanti and

Mundim: when deviations are increasingly larger, other phenomenological formulas,

such as Vogel-Fulcher-Tammann, Nakamura-Takayanagi-Sato, and Aquilanti-Sanches-

Coutinho-Carvalho are here rediscussed from the transitivity concept perspective and

with in a general context. Emphasized is the interest of introducing into this context

modifications to a very successful tool of theoretical kinetics, Eyring’s Transition-State

Theory: considering the behavior of the transitivity function at low temperatures, in order

to describe deviation from Arrhenius behavior under the quantum tunneling regime, a “d-

TST” formulation was previously introduced (Carvalho-Silva et al., 2017). In this paper, a

special attention is dedicated to a derivation of the temperature dependence of viscosity,

making explicit reference to feature of the transitivity function, which in this case generally

exhibits a super-Arrhenius behavior. This is of relevance also for advantages of using the

transitivity function for diffusion-controlled phenomena.

Keywords: transitivity plot, Aquilanti-Mundim (AM) formula, Nakamura-Takayanagi-Sato (NTS) formula, Volgel-

Fulcher-Tammann (VFT) formula, viscosity and diffusion
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INTRODUCTION

To understand and control the physical chemistry of materials
in an ample variety of environments that may be encountered in
basic and applied scientific research, information on the kinetics
of the involved elementary processes and their role in global
mechanisms is needed: of particular interest are the rates, and
often in a wide range of conditions—specifically of temperature.
Theoretical and computational studies are of increasing utility,
especially in the cases where experimental results are difficult to
obtain, or the measurements are difficult to interpret. Examples
span all of chemistry: from the long list that is continuously
updated, we refer here to some selected cases from: combustion
chemistry (Atkinson, 1986); condensed-phase (Limbach et al.,
2006), atmospheric and astrochemical reactions (Smith, 2008;
Sims, 2013); processes involved in preservation and aging of
food and drugs (Darrington and Jiao, 2004; Peleg et al., 2012) as
well as in basic geochemical (e.g., Giordano and Russell, 2018)
and biochemical environments (e.g., Klinman and Kohen, 2013;
Warshel and Bora, 2016).

A variety of techniques has been applied with remarkable
success in several scenarios to investigate the mechanisms to
both calculate and interpret the kinetics of reactive processes at
a microscopic level (Sikorski et al., 2004; Pu et al., 2006; Wang
et al., 2012; Hassanali et al., 2014; Coutinho et al., 2015a; Santin
et al., 2016; Roy et al., 2017). From the early Arrhenius (1889) and
Eyring (1935) formulations, demands emerge for interpretative
theoretical tools to study the kinetics of chemical reactions and
to phenomenological account of reaction rate data as generated
from exact quantum benchmarks or from approximate semi-
classical and classical trajectory approaches.

The seminal phenomenological description of the
reaction rate constants, date of birth of theoretical
chemical kinetics as a science, can be traced back to 1889
with the empirical formulation of the Arrhenius formula
(Arrhenius, 1889; Laidler, 1987).

k= Ae
−Ea
RT , (1)

whereR is the gas constant andT is the absolute temperature. The
pre-factor A (often found to be temperature independent) has
sometimes been given the meaning and the name of a “frequency
factor.” The quantity Ea is termed the “energy of activation” of the
reaction; according to the Arrhenius interpretation, it represents
the energy that themolecule in the initial state of the processmust
acquire before it can take part in the reaction, whether it be a
physical or a chemical process. In the Arrhenius plane prompted
by Equation (1) the logarithm of a reaction rate constant, ln k(T)
is plotted against reciprocal temperature, 1

T : for systems that obey
the Arrhenius law, Equation (1), a linear behavior is observed.

Formulations from first principles of theoretical reaction
rates only became realistic after the advent of quantum and
statistical mechanics. The Eyring formulation (∼1935) proposes
a consistent and predictive theory for the kinetic reaction
rate constant: the celebrated Transition-State Theory (TST)
(Eyring, 1935; Glasstone et al., 1941) provided the basis for the
understanding of many phenomena and triggered most of the

subsequent proposals for the understanding of physicochemical
rate processes. However, as traditionally implemented, TST
is unable to cope with systems with strong deviation from
Arrhenius behavior (Masgrau et al., 2003). The chemical
reactions for which quantum tunneling effects play an important
role are those where Arrhenius plots show a concave curvature
(Limbach et al., 2006; Silva et al., 2013; Sanches-Neto et al.,
2017): this is the most important case of sub-Arrhenius kinetics
for elementary reactions, but in complex processes it may show
up, e.g., when concurrent reactions contribute to the mechanism
(Hulett, 1964; Perlmutter-Hayman, 1976; Vyazovkin, 2016).

Eyring himself amplified the scope of his TST beyond
elementary reactions proposing a formulation for including the
description of viscosity and diffusion of fluids in physicochemical
rate processes (Glasstone et al., 1941). However, an ample set
of old and more recent data in wide ranges of temperature has
been showing again and again a strong convex curvature in
Arrhenius plot for both viscosity and diffusion in fluids (Angell,
1995; Coutinho et al., 2015b; Giordano and Russell, 2018). There
are examples of super-Arrhenius kinetics, rare for elementary
processes (Truhlar and Kohen, 2001), but that in complex
processes are common, in particular when consecutive reactions
contribute to the mechanism (Hulett, 1964; Perlmutter-Hayman,
1976; Vyazovkin, 2016): these are characteristic cases of super-
Arrhenius kinetics for which the traditional Eyring’s transition-
state formulation fails. However, the TST connection between
the potential energy surface profile with the phenomenological
apparent activation energy through Tolman Theorem (Tolman,
1920), serves as a guide toward an interpretation of deviation
from Arrhenius behavior.

In previous work (Aquilanti et al., 2017b, 2018) evidence
emerged for introducing the phenomenological Transitivity
function γ (T) which regulates transit in physicochemical
transformations and can be put into a relationship with
traditional and recent reaction rate constant formulas available in
the literature. With respect to other popular phenomenological
approaches, ours arguably offers flexibility for the description
of the experimental data over a wide range of temperature
alternative to other formulas, that were applied to various sets
of problems, ranging from particle diffusion and viscosity in
supercooled liquids and glasses (Angell, 2002; Stillinger and
Debenedetti, 2013) to food and drug preservation and aging
processes (Peleg et al., 2012).

The still popular Kooij formula (Kooij, 1893) involving an
arbitrary Tn parameter multiplying the pre-factor A has no
justification and is often unable to reproduce observations. Kooij
formulation has to be discouraged and is physically unrealistic.
It should be abandoned because: (i) at high temperature, the
Arrhenius Activation energy is not recovered; (ii) at intermediate
temperatures, the non-Arrhenius description is illusory valid
only in extremely narrow ranges and is mathematically arbitrary;
(iii) at low and ultra-low temperatures, there is consensus
that non-Arrhenius behavior is pronounced, and the Kooij
formula tends to Arrhenius law in clear disagreement with
transitivity concept. Also, the Arrhenius-Break Temperature
(ABT) formulation (Kumamoto et al., 1971; Kubo, 1985) is
often one commonly used: it involves two additional parameters
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beyond Arrhenius and may turn out misleading from an
interpretative viewpoint—when possible, it should be avoided in
compacting data for modeling.

The suitability of the transitivity function is being checked
against a variety of phenomenological examples with respect to
its power to account for deviation from Arrhenius behavior.
Here, we will show details on the treatment for amplifying the
insight in various directions (section Transitivity Defined). In the
subsequent section, specifically regarding the super-Arrhenius
case, we establish the connections with the Vogel-Fulcher-
Tammann treatments (VFT) (see Vogel, 1921; Fulcher, 1925;
Tammann and Hesse, 1926) via the transitivity function. We also
generalize the sub-Arrhenius case discussing in a uniformway the
trend toward Wigner’ limit (Wigner, 1948), yielding Nakamura-
Takayanagi-Sato (NTS) formula (Nakamura et al., 1989) and
Aquilanti-Sanches-Coutinho-Carvalho (ASCC) (Coutinho et al.,
2018b) at low temperature. In section Transition-State Theory
Extended to Moderate Tunneling (d-TST), the sub-Arrhenius
case appropriate for extending the Transition-State Theory of
Eyring (the d-TST formalism) is accounted for, as introduced
and applied recently (Claudino et al., 2016; Carvalho-Silva
et al., 2017; Sanches-Neto et al., 2017). A special attention
will be devoted in section Viscosity and Diffusion From
the Transitivity Function to a derivation of the temperature
dependence of viscosity of fluids from the transitivity function
γ according for the super-Arrhenius behavior and establishing
the connection with the diffusion coefficient through the Stokes-
Einstein equation. The final section is devoted to additional and
concluding remarks.

TRANSITIVITY DEFINED

The Transitivity Plot
In this section, we will show how the properly defined
“Transitivity” function γ (T) regulates the transit in
physicochemical transformations: in other words, it controls the
rate of passage with no bias from the transition-state hypothesis.
In the 1976 article of Berta Perlmutter-Hayman (Perlmutter-
Hayman, 1976) the concept of apparent activation energy Ea has
been considered in a very deep detail: in her spirit 20 years later,
the International Union of Pure and Applied Chemistry (Laidler,
1996) recommended the now accepted definition:

Ea (T) = RT2 d ln k(T)

d T
= −R

d ln k (T)

d
(

1
T

) (2)

To be consistent with Equation (1), the assumption of constancy
for Ea can be taken as valid for physicochemical processes, at
least for the temperature range of interest but deviation occur.
According to our classification of d-Arrhenius cases (Silva et al.,
2013; Aquilanti et al., 2017a), the deviations are considered as
exhibiting sub-, super-, or anti-types of behavior.

An initial step in order to find out how to account in a simple
form for these deviations, we search for a functional dependence
of Ea according to a large variety of cases accumulated from
experiments and simulations. In her thorough study, a few

decades-old, Perlmutter-Hayman (Perlmutter-Hayman, 1976)
considered a large body of documentation where the dependence
were regarded either as

Eavs.T or Ea vs. 1/T, (3)

the latter form clearly inspired by the Arrhenius plot. We
have been showing ample phenomenological evidence and deep
theoretical motivation (Aquilanti et al., 2017b) of the insight to
be gained by studying

1

Ea
vs

1

T
, (4)

i.e., to study the behavior of the reciprocal the activation energy
studied against reciprocal of absolute temperature. Therefore,
from now on, we find convenient to adopt the usual definition in
statistical mechanics, of the parameter β =

1
RT sometime referred

to as “the coldness” (e.g., Müller, 1971) and often referred as
to the Lagrange parameter, because of its ubiquitous role in
statistical mechanics where it occurs in optimization procedures
involving the Lagrange multipliers.

From a decade-old work (Aquilanti et al., 2010), the
observation arose that the reciprocal of Ea vs. the reciprocal of
absolute temperature yielded an approximate linearization by
the d parameter (italic symbol for the linearization parameter
should not be confused with the roman d denoting differentials).
Writing as customary the Arrhenius-Eyring energy barrier, ε‡, as
essentially an energetic obstacle toward reaction, we have

1

Ea
=

1

ε‡
−

d

RT
. (5)

Introducing the “transitivity” function through
the identifications

γ (T) ≡
1

Ea (T)
, (6)

and also putting

α = 1/ε‡, (7)

Equation (5) takes the simple form

γ (β) = α − dβ . (8)

In general, as discussed in preceding work (Aquilanti et al.,
2017b), a linear γ dependence from β may be only valid in a
specific range around a value β0; on a wider range, we can always
assume that the function is well-behaved, namely that it has a
Laurent power expansion,

γ (β) =

∞
∑

n=−∞

cn (β − β0)
n . (9)

where the cn coefficients are related to n-order derivatives of γ (β)
with respect to β , taken at β0.
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The task of a theory of the kinetics of chemical reactions is
therefore focused at that of providing a set of such coefficients
to connect to experimental or computationally generated k (T)

via Equations (2 and 6). Advantages now are shown for the
introduction of the “Transitivity Plot,” defining as the plane γ vs.
β , which gives insight into the idea of the “canonical” dependence
of the γ function in regulating transitions in physicochemical
processes (see Figure 1).

Consistently with the established nomenclature, one gets
a positive linear dependence of γ (β) for sub-Arrhenius
(and negative for super-Arrhenius, d > 0): this according
to experimental and theoretical evidence from many sources
(Aquilanti et al., 2010; Silva et al., 2013). Defining in the
transitivity plot α =

1
ε‡ , Equation (7), as a horizontal line (the

Arrhenius line), the line of deviations from Arrhenius around
β0 forms δ angle which can show sub- or super-Arrhenius-
type of behavior, corresponding to anticlock—and clockwise
direction from the β axis, respectively, yielding an expression
corresponding to Equation (8),

γ = α + β tan δ; -tan δ = d, (10)

FIGURE 1 | The transitivity plane, γ =
1
Ea

vs. β =
1
RT

serves to give a

geometrical meaning to the phenomenological parameters occurring in the

study of non-linear Arrhenius plots. The Arrhenius behavior is given as

corresponding to a line parallel to the β axis starting at α =
1
ε‡

and

corresponds to a constant apparent activation energy Ea. The well-known

double dagger notation was introduced by Eyring (Eyring, 1935; Glasstone

et al., 1941). Deviations from Arrhenius behavior gives to the γ function

straight line dependence at small β a direction forming the δ angle, which it is

connected to the d parameter of the Aquilanti-Mundim (AM) law. At low

temperatures as the “coldness” variable β increases, the transitivity function

tends to characteristic ultra-cold limiting values: (i) for d < 0 (sub-Arrhenius) it

tends to the Wigner limit and (ii) for d > 0 (super-Arrhenius), γ , namely the

propensity for reaction to occur, vanishes in β†, γ

(

β†
)

= 0 : the

corresponding energy and temperature parameters are denoted by a single

dagger, ε†and T†, respectively, as detailed below.

where d < 0 (δ > 0) corresponds to the sub- case while d > 0 (δ <

0) corresponds to the super-Arrhenius case. Rarer cases are found
for which d > 0 and α < 0, and are referred as corresponding to
anti-Arrhenius behavior (e.g., Coutinho et al., 2015a).

The expression for the rate constant can be retrieved,
integrating (10) from Equation (2). Introducing an integrating
factor,A that accounts for a value for γ at the reference value, e.g.,
β = 0: we obtain the Aquilanti-Mundim (AM) or d-Arrhenius
formula in the form:

k (β) = A

(

1+ tan δ
β

α

)− cot δ

, (11)

Through Equations (7, 10) and introducing the Lagrange
parameter, we finally obtain the AM formula

k (T) = A

(

1− d
ε‡

RT

)

1
d

, (12)

in the usual notation (Aquilanti et al., 2010). The Arrhenius

law k (T) = A exp
(

−Ea
RT

)

is obtained in two well-defined

cases at β → 0 (high temperature limit) and at d → 0 (the
“thermodynamic” limit) (Aquilanti et al., 2018).

Limiting Behaviors for the Transitivity
Function at Low and High Temperature
In the AM formulation for k, Equation (12), when d or tan δ tends
to zero, one gets the exponential Arrhenius behavior through
the Euler limit as detailed in Aquilanti et al. (2018). In this
limit, to first order, the transitivity function deviate linearly from
constancy (the Arrhenius behavior) as described by the AM
formula. When β increases (low temperature):

i) in the super-Arrhenius cases, continuing the straight-line
behavior one encounters the β axis and gets for γ a zero
value for a maximum attainable value of β , denoted β†.
Here, one consequently gets a minimum value for the
allowed temperature to be denoted T†. However, in generic
super-Arrhenius behavior, sometimes high-order terms in
the transitivity function are to be introduced to describe a
sequence of processes, yielding concavities in the transitivity
plot and moving the minimum temperature T† at lower
values (Figure 2);

ii) in sub-Arrhenius cases, the linear growth of γ as β increases
may be accelerated at low temperatures: actual experimental
information (Limbach et al., 2006; Tizniti et al., 2014; Meng
et al., 2015) is confirmed by computations (Aquilanti et al.,
2005; De Fazio et al., 2006; Cavalli et al., 2014; De Fazio, 2014;
Coutinho et al., 2018b) and is eventually governed byWigner’s
limit (Wigner, 1948): before the latter limit is accessed
interference effects may superimpose to quantum tunneling
effects, which can be studied through microcanonical exact
computations (Aquilanti et al., 2005; De Fazio et al., 2006;
Coutinho et al., 2018b).

We are now in the position to look at the d-parameter
from alternative perspectives. For super-Arrhenius cases, the β
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FIGURE 2 | The transitivity plot is presented for venerable and recent phenomenological reaction rate constant model to account for super-Arrhenius behavior

(Arrhenius, AM, and VFT) and sub-Arrhenius behavior (Arrhenius, AM, ASCC, and NTS). The comparison of the behavior of the transitivity between AM and VFT is

exhibited assuming ε
‡
1 = ε

‡
2 in Equation (26).

endpoint, β†, marks the final low-temperature range for the
system to be “active”: energetically, the introduction of the
corresponding energy ε† = RT†, permits the identification

d =
ε†

ε‡
. (13)

For sub-Arrhenius, the connection of d with features of the
potential energy barrier permits to describe quantum tunneling
in elementary chemical reactions (see e.g., Silva et al., 2013 and
next section).

Additional insight to the AM formula in Equation (5) for
d < 0 is obtained when β tends to infinity yielding,

lim
β→∞

γ (β)= −d β. (14)

Going back to the rate constant, integrating (14) from Equation
(2), we obtain

lim
β→∞

k (β) = A β
1
d , (15)

formally appearing as the venerable Esson-Harcourt formula
(Laidler, 1984), and in consonance with the Wigner limit
restricted to the case of thermoneutral reactions at ultra-
low temperature (Takayanagi, 2004). Nevertheless, for d > 0 a
minimum and constant reactivity is obtained for β†,

k (β) = A
(

β†
)

ε‡

ε†
. (16)

In Equation (16), when ε† tends to infinity, k (β) = A respecting
the Arrhenius limit (most other formulations do not).

After the description of the sub- and super-Arrhenius cases in
the limit d →0 at large β , we turn now to consider the limiting
behavior as β → 0, namely at high temperature. In most cases,

the generic behavior is considered to be the tendency to the
Arrhenius as a limit: situations may occur where this assumption
has been relaxed [important examples are protein folding (Chan
and Dill, 1998; Wallace et al., 2002) and reactions in sub- or
super-critical solvent (Christensen and Sehested, 1983; Lukac,
1989; Marin et al., 2003)]. We can take advantage of the following
useful expansion (Abe and Okamoto, 2008; Tsallis, 2009):

k (β) = A
(

1− dε‡β

)
1
d
= Ae−ε‡β

[

1−
1

2
dε‡2β2

−
1

3
d2ε‡3β3

−
1

8

(

2d − 1
)

d
2
ε‡4β4

+O
(

β6)
]

, (17)

Therefore, Arrhenius behavior is recovered both as β and d tend
to zero independently:

lim
d→0
const β

k
(

d,β
)

= lim
β→0
const d

k
(

d,β
)

= A e−ε‡β . (18)

PHENOMENOLOGICAL MODELS OF
TEMPERATURE DEPENDENCE OF
REACTION RATE CONSTANTS THROUGH
THE TRANSITIVITY FUNCTION

The previous development opens the way to the next step of our
study, the examination and classification through the transitivity
concept of previous phenomenological proposals, assessing
relationships between them and also attempting at giving a
physicochemical meaning to their empirical parameters. As a
bonus, more physically motivated formulas can be generated.

From Equations (2, 6), it is possible to build up the theoretical
apparatus to connect experimental or computationally generated
reaction rate constants to the transitivity function and vice-versa.
Below traditional and recent phenomenological reaction rate
constant formulas and transitivity function are presented to deal
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with sub- and super-Arrhenius behavior with larger deviations
than those not accounted for the AM d-Arrhenius formula (see
Figure 2): VFT, ASCC, and NTS. The basic expression

k (β) = exp

(

−

∫ β

β0

dβ

γ

)

. (19)

Can be employed, where clearly, A = k (β0) represents the
initial condition (again, the differential under the integral sign is
denoted by the roman letter d to avoid confusion with d in italic
for the deviation parameters).

Vogel–Fulcher–Tammann (VFT) Formula
It is insightful to obtain the expression for the transitivity
function for perhaps the most popular equation for modeling
super-Arrhenius behavior, the Vogel–Fulcher–Tammann (VFT)
formula (Vogel, 1921; Fulcher, 1925; Tammann andHesse, 1926),
here written as a rate constant in an Arrhenius-like fashion, but
involving one additional parameter:

k (T) = A exp

(

B

T − T0

)

(20)

where A, B, and T0 are the fitting parameters: they are often
designated, respectively being often denoted as the pre-factor,
pseudo-activation energy and VFT-temperature, respectively. It
is noteworthy, that in the polymer and food science community
(Angell, 1997; Peleg et al., 2002; Coutinho et al., 2015b)
Equation (20) is also known as the Williams-Landel-Ferry
(WLF) equation: see (Williams et al., 1955; Dudowicz et al.,
2015) where the equivalence among the respective parameters is
demonstrated explicitly.

The VFT transitivity function is obtained directly from the
definition through the analytical logarithmic differentiation of
Equation (20) with respect to β : The result is

γ (β) =
1

RB
−

2T0

B
β +

RT2
0

B
β2, (21)

That can be worked out in a more compact representation,

γ (β) =
1

RB
(1− RT0β)2 . (22)

Here, formula (22) adds insight on the VFT parametrization for
γ by a summarizing comparison with the Arrhenius and with
the AM formulations for the transitivity function: the following
general expression,

γn (β) =
1

ε
‡
n

(

1− dnε
‡
nβ

)n
(23)

covers three cases for different values of n: (i) for n = 0 one
recovers Arrhenius formula, (ii) for n = 1 the AM formula
is obtained, and (iii) for n = 2 one gets the VFT (and WLF)
formula. From Figure 1, in the transitivity plane, a geometrical
interpretation can be given and leads to

tan δ =
dγn (β)

d β
(24)

in limiting case of β tending to zero,

lim
β→0

dγn (β)

d β
= lim

β→0
−

ndn

(

1− dnε
‡
nβ

)n

1− dnε
‡
nβ

= −ndn (25)

and the comparison between n =1 (AM) and n = 2 (VFT)
parametrizations is shown to be

d1 = 2d2 or
ε

†
1

ε
‡

1

= 2
ε

†
2

ε
‡

2

. (26)

See details in Figure 2, where the ASCC and NTS formulas, to be
discussed next, are also considered.

Deep Tunneling and the ASCC Formula
As reported in the earlier literature (Bell, 1980; Christov, 1997),
the degree of concavity in the Arrhenius plot can be correlated
with the assessment of the role of tunneling in chemical reactions:
the definition of a “crossover temperature,”

Tc =
ℏν‡

R
, (27)

permits to conventionally establish (within some arbitrariness)
the ranges of tunneling regimes for a specific imaginary
frequency at the top of the barrier point, consistently denoted
by a double dagger, ν‡: classical (T > 4Tc), negligible(4Tc >

T > 2Tc) , moderate (2Tc > T > Tc) and deep (Tc >

T) regimes. The ranges of tunneling regimes are indicative of
the importance of quantum tunneling to affect rate constants
in particular cases. From a mathematical viewpoint, the AM
formulation has clear limitations in the description of the deep
tunneling regime toward the Wigner limit (Wigner, 1948)

lim
T→0

k(T) ∝ T0 (28)

Details pertinent to the present discussion can be found in a very
useful reference (Takayanagi et al., 1987).

As a counterpart for sub-Arrhenius behavior of the super-
Arrhenius VFT formula, it is argued that cases of deep tunneling
can be dealt by introducing a modified form of the AM formula
(Coutinho et al., 2018b), defined as Aquilanti-Sanches-Coutinho-
Carvalho (ASCC) expression:

k (T) = A

(

1−
dε‡

kBT + hν‡

)

1
d

, (29)

where d = −
1
3

(

hν‡

2ε‡

)2
as reported in Silva et al. (2013) and

references therein. Here, the formulation introduces the three
A, ε‡ and ν‡ parameters and reproduces the Wigner limit at
low temperature, β → ∞. The ASCC transitivity function
can be worked out considering the logarithmic differentiation of
Equation (29) with respect to β and the result is

γ (β) =
1

ε‡
−

dε‡ − 2hν‡

ε‡
β +

hν‡
(

dε‡ − hν‡
)

ε‡
β2, (30)
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or in a more compact representation,

γ (β) =
1

ε‡

[

1+ hν‡β

] [

1−
(

dε‡
− hν‡

)

β

]

(31)

For small values of dε‡, an analogous to VFT formula is
recovered, see Equation (22). The ASCC formula was initially
applied in Coutinho et al. (2018b) for astrochemical reactions
in extremely cold environments generated by “exact” benchmark
quantum dynamics. More results of applications will be given
elsewhere for a variety of processes that involve deep tunneling.

Nakamura-Takayanagi-Sato (NTS) Formula
A flexible approach to describe the deep tunneling
phenomenology was proposed 30 years ago by Nakamura
et al. (1989) and Sato (2005): their formula evolves smoothly
behavior down to low temperature and with respect to the
tendency toward the Wigner limit (Wigner, 1948):

k (T) = A exp



−
ε‡

R
(

T2 + T2
0

)
1
2



 , (32)

where A, ε‡ and T0 are the parameters. Again, ε‡ is essentially
the fitting parameter bearing connection with the barrier height
along the minimum energy pathway to reaction.

Also, in this case, we can work out the Nakamura-Takayanagi-
Sato transitivity function

γ (β) =
1

ε‡

[

1+ (RT0)
2 β2]

3
2 (33)

BEYOND EYRING

Transition-State Theory Extended to
Moderate Tunneling (d-TST)
Eyring’s Transition-State Theory (TST) and its variants are
frequently used to compute rates of chemical reactions typically
assuming a well-defined activated complex. The theory has
been the object of a number of studies yielding a variety of
formulations based on the concept of an equilibrium between
the reactants and the activated complex, all assumed with
Boltzmann distributions of the internal degrees of freedom. The
rate of transformation is, then, obtained by a combining of
thermodynamics, kinetics, quantum chemistry, and statistical
mechanics arguments. The authoritative textbook is (Glasstone
et al., 1941). For a general bimolecular reaction, such as R1 +

R2 −→ TS‡ −→ Products, it is necessary to compute the
Q1, Q2 , and Q‡ partition functions of R1, R2 and of the
transition state, respectively. However, the conventional TST
is not able to account for low temperature curvatures in the
Arrhenius plot, particularly when due to quantum tunneling
through the reaction barriers (for the viscosity of fluids see next
section). To account for the quantum tunneling in chemical
reactions, the transitivity function is modeled in analogy with

the AM formula, yielding the deformed-Transition-State Theory
(d-TST) (Carvalho-Silva et al., 2017):

k(T) =
RT

h

Q‡

Q1Q2

(

1− d
ε‡

RT

)

1
d

, d = −
1

3

(

hν‡

2ε‡

)2

, (34)

where h is the Planck’s constant and ε‡ is the effective height
of the energy barrier, given by the sum of the harmonic
zero-point energy correction and the height of the potential
energy barrier. This formulation uniformly covers the range
from classical to moderate tunneling regimes but is inadequate
for deep tunneling. The proposed variant of transition-state
theory permits comparison with experiments and tests against
alternative formulations (see e.g., Claudino et al., 2016; Santin
et al., 2016; Sanches-Neto et al., 2017).

Viscosity and Diffusion From the
Transitivity Function
Eyring’s proposal of a kinetic rate theory was also amplified
toward the description of viscosity and diffusion of fluids
in physicochemical processes (Eyring, 1936; Glasstone et al.,
1941). Eventually, it turned out that the theory was unable to
describe processes in a wide temperature range, in particular
when presenting a convex curvature in the Arrhenius plot. In
the present context, this is a manifestation of super-Arrhenius
kinetics (Truhlar and Kohen, 2001; Coutinho et al., 2015b;
Giordano and Russell, 2018). To describe deviations from
Arrhenius of the rates of reaction in fluids, we take into account
later developments by Kramers (1940) and Collins and Kimball
(1949), involving viscosity and diffusion.

To account for the temperature dependence of viscosity
in cases clearly exhibiting super-Arrhenius behavior, we
introduce a treatment using the transitivity function concept.
From the defining, Equations (2) and (6) we obtain the
differential equation,

d

d β
k ( β) −

1

γ ( β)
k ( β) = 0. (35)

For β0 = 0 as the lower limit of integration range and the
restriction to only two terms of the Taylor–McLaurin series of
Equation (9), we obtain the AM transitivity function, where
α < 0 represents an energetic propensity toward to evolution
of the fluid. The d is again the deformation parameter, playing an
analogous role to that amply discussed previously: the result is an
AM-like formula for viscosity (Aquilanti et al., 2017b),

η ( β) = ηo

(

1+ dε‡β

)
1
d
, (36)

here ηo is introduced as a counterpart of Arrhenius pre-
factor A and is the viscosity when the temperature tends to
infinity (β → 0). At low temperature, in viscous processes the
apparent activation energy turns out to increase indefinitely and
consequently the propensity to proceed to a kinetic transition
approaches zero, γ → 0: so we establish a direct relationship
for the d parameter (analogous to the cases dealt in section
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Limiting Behaviors for the Transitivity Function at Low and
High Temperature):

d =
RT†

ε‡
, (37)

and T† is identified as a phenomenological “freezing”
temperature of the process, namely the critical temperature
(to be connected with that of glass transition, see Aquilanti et al.,
2017b), where the kinetic energy of the fluid particles is too low
for the process to be turned on. In the early approach by Eyring
(1936) and Glasstone et al. (1941), it was argued that the ε‡

parameter be empirically put into relationship with the energy of
vaporization of the fluid, 1Hvap, and intuitively connected with
the work required to make a hole of molecular size.

Using the Kauzmann-Eyring pre-factor η0 =
Nah

V̄
(Kauzmann

and Eyring, 1940; Glasstone et al., 1941), where Na is the
Avogadro number and V is the molar volume, and Equation (37)
for d, we finally obtain,

η (T) =
Nah

V

(

1+
T†

T

)

ε‡

RT†

. (38)

when T† tends to zero, the Arrhenius-Eyring exponential

formula for viscosity is recovered, η (T) =
Nah

V
exp

(

ε‡

RT†

)

through the Euler limit.
The deviation from Arrhenius behavior in the temperature

dependence of diffusion can now be evaluated from Equation
(39) through the Stokes-Einstein equation(Einstein, 1905).

D(T) =
kBT

6πr

1

η (T)
(39)

where r is the hydrodynamic radius (Henriksen and Hansen,
2008). This treatment of course does not provide further insight
into these amply investigated issues, but points at a simple and
perhaps useful physical interpretation of a long-standing as well
recent intriguing rate phenomena. From a general perspective,
the theory encourages considering wide ranges of available data
on geochemistry (Giordano and Russell, 2018), supercooled
liquids science (Angell, 1995) and biochemistry (Kohen et al.,
1999) and digging for hidden insights. Preliminary searches, to
be published, turned on successful.

ADDITIONAL AND FINAL REMARKS

This paper applies thoroughly the transitivity concept to a set
of topics, completing the presentation of the theory outlined
in Aquilanti et al. (2017b). A separated paper (Machado et al.,
submitted) presents the code developed for the implementation
to a set of cases of interest in physicochemical kinetics where
the need for deviation from Arrhenius behavior is demanded:
applications of our formulation can be accessed in the homepage
of our computational code—Transitivity (www.vhcsgroup.com/
transitivity), where manual, installation video, and specific
examples are provided. Further remarks follow:

Ab initio “Exact” Quantum Dynamics
In principle, this is the most valuable source of kinetics data but
still limited to simple benchmark cases. For full formulations
of the reaction kinetics, following the microcanonical path
along a quantum chemically or empirically generated potential
energy surface, high-level computational effort is demanded. It
typically proceeds according to these steps: a) calculation of
the intermolecular interactions involved in a reactive process
with a high-level of accuracy, b) dynamical evolution in phase-
space configurations from the solution of quantum equations of
motion, c) identification of reactive trajectories, with consequent
calculation of the quantum scattering matrix, cumulative
reaction probability and cross sections. Finally, the Boltzmann
weight averaging over a large span of kinetics energies yields
the canonical expressions of kinetic variables as a function
of temperature. These severe prescriptions have been able to
provide the exact calculation over a given potential energy surface
for reaction rate constants of only a limited number of reactive
systems: in fact, the complexity of the programming and the
computationally demanding requirements and computational
demand strongly limit the study of reactive processes involving
only a few atoms. Additional reactions involving isotopic
exchange among three hydrogen atoms, exemplary benchmarks
to be cited are the three-body reactions: F + H2 (Aquilanti et al.,
2005), F + HD (De Fazio et al., 2006; Cavalli et al., 2014), H +

HeH+ (De Fazio, 2014) see also and references therein.

First-Principles Molecular Dynamics
Another viable path is becoming possible thanks to
improvements in computational facilities, in order to access
at kinetic information through first-principles molecular
dynamics simulations. However, computationally severe storing
and time constraints permitting to obtain myriads of “on-
the-fly trajectories” require a great effort toward the aim of
generating realistic reactive kinetic data: this in spite of the
fact that a wide research activity has been pursued, aiming
at developing techniques capable of accurately predicting
kinetic reaction rate constants from molecular dynamics
simulations. Among examples that have been tackled in recent
years, we cite (Pomerantz et al., 2005; Coutinho et al., 2015a;
Döntgen et al., 2015; Fleming et al., 2016; Wu et al., 2019)
and references therein. However, calculation of reaction rate
constants has been limited by the arduous procedures both to
accurately characterize reactive activated complexes of many
body systems and to overcome the inherent difficulties of
producing a number of trajectories with statistical consistency
and reasonable completeness in the filling of the dynamically
relevant parts of the phase-space. Recently, several works have
been yielding values with reliable accuracy: overestimates due
to limited sampling of phase-space, when experimental values
are available for comparison, may exploit empirical calibration
(Coutinho et al., 2016, 2017, 2018a).

Phenomenological Considerations and the
Role of the Transitivity Concept
Experimentally and computationally generated kinetic data for
polyatomic molecules provide reaction rate constants with the
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implicit fingerprint of the microscopical variables at work
in the reactive process (Angell, 1995; Kohen et al., 1999;
Limbach et al., 2006; Giordano and Russell, 2018; Capitelli
and Pietanza, 2019, and references therein). Application of
the techniques discussed in previous remarks is tremendously
laborious for many-body systems: when the Arrhenius law
is not obeyed at low temperature transitivity function guides
us to an as a fruitful and consistent approach. As discussed
in this article the approach turns out to be a powerful
tool, capable of establishing a connection between canonical
data and microcanonical information, permitting comparisons
among apparently uncorrelated formulations: it also allows
interpretation of empirical parameters, for example for the
AM, ASCC, VFT and NTS formulas considered in this
paper. Previous (Tsallis and Bukman, 1996; Lenzi et al., 2001;
JiangLin et al., 2006; Zhou and Du, 2013) and concomitant
(Zhou and Du, 2014; Guo and Du, 2015; Rosa et al.,
2016; Junior et al., 2019) efforts have been dedicated to
provide also a connection of anomalous kinetic diffusion
effects while surmounting a potential barrier via variants of
Fokker-Planck equation, tackling a class of phenomenologically
physicochemical diffusion process.

Conclusion and Perspectives
In order to extend the validity of the Arrhenius rate law,
the introduction of the deformation parameter d not only

phenomenologically mimics the low temperature dependence of
rate constants, but its relevance in producing physical insight is
now amply demonstrated. The statistical mechanics aspects are

now firmly established (Aquilanti et al., 2017b, 2018) capitalizing
on various investigations inspired openly or implicitly on a
Maxwellian approach: several examples in the literature have
been inspiring the transfer from thermodynamics to the field
of kinetics assuming procedures for taking the “thermodynamic
limit.” Venerable papers are (Jeans, 1913; Condon, 1938;
Kennard, 1938; Landau and Lifshitz, 1958), and recent ones
(Tsallis, 1999; Biró et al., 2014; Aquilanti et al., 2017b).
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