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Abstract 
Healthy adipose tissue contains a wide variety of innate and adaptive immune cells, including macrophages, dendritic cells, mast cells, 
eosinophils, neutrophils, and lymphocytes. Numerous signaling molecules in the adipose microenvironment can positively or negatively 
modulate angiogenic processes, regulate the interaction between the vascular system and adipocytes, and participate in tumor progression. 
Mast cells are involved in the new formation or metabolism of fat, are present in abundant quantities in fatty tissue, among fat cells, and a 
number of mediators released from mast cells play a role in adipogenesis. Moreover, mast cells produce several pro-angiogenic factors 
and are involved in tumor angiogenesis. In this context, the angiogenic effect might be amplified when the adipocytes and mast cells act in 
concert, and treatment of adipose tissue- and mast cell-associated cancers with anti-angiogenic drugs may represent an alternative or 
adjuvant strategy for the treatment of these tumors. 
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 Introduction 
Adipose tissue can be divided into two different types, 

white adipose tissue (WAT) acting as a lipid deposit and 
brown adipose tissue (BAT). WAT is composed of pre-
adipocytes and adipocytes, fibroblasts, and macrophages. 
White adipocytes are large cells containing a unilocular 
lipid droplet that occupies 90% of the total cell area. 
Brown adipocytes are smaller than white adipocytes, 
their lipid droplets are dispersed in the cytoplasm, and 
hold numerous and large mitochondria, responsible for the 
darkened appearance of the tissue. They are also present 
in some deposits of WAT, thus giving them a beige 
color, which justifies the name “beige” adipose tissue. 

Moreover, BAT is more vascularized than WAT [1]. 
Another adipocyte cell type, called “pink adipocyte”, has 
been described, present during lactation and gestation, 
due to a process wherein white adipocytes progressively 
transdifferentiate to acquire secretory, epithelial-like 
features [2]. 

Adipose tissue has been further categorized based on 
physiologic localization and function, as subcutaneous, 
visceral, marrow, breast, and intramuscular fat [3]. In 
humans, subcutaneous adipose tissue comprises ~80% of 
total body fat and is contained primarily in the abdominal, 
gluteal, and femoral depots [4]. The number of adipocytes 
in humans increases during childhood and adolescence 
and remains constant during adulthood, and adipocytes 
in adult humans have an annual renewal rate of about 
10% [5]. 

Healthy adipose tissue contains a wide variety of innate 
and adaptive immune cells, including macrophages, 
dendritic cells, mast cells, eosinophils, neutrophils, and 
lymphocytes, which collectively constitute ~25% to 45% 
of stromal cells in humans [6]. 

 Adipocytes and the vascular system 
Endothelial cells and adipocytes have common 

progenitor cells that differentiate into adipocytes or 
endothelial cells, depending on exposure to different 
environments [7]. Immature adipocytes can be found 
near capillary showing the close association between 
adipose progenitors and vascularization of adipose tissue 
[8]. Numerous signaling molecules in the adipose micro-
environment can positively or negatively modulate 
angiogenic processes and regulate the interaction between 
the vascular system and adipocytes. 

 Adipocytes and angiogenesis 
Angiogenesis is essential for BAT hyperplasia [9], 

and the transition of WAT into BAT is accompanied  
by switching on an angiogenic phenotype [10]. Studies 
conducted in the mouse cornea and the chick embryo 
chorioallantoic membrane (CAM) have demonstrated 
that conditioned media obtained from pre-adipocytes 
and tissue homogenates from omentum or subcutaneous 
fat induces angiogenesis [11–13]. 

Expansion of adipose tissue during progression to 
obesity requires concomitant expansion of the adipose 
vascular bed through angiogenesis. In fact, the adminis-
tration of anti-angiogenic agents in models of both genetic 
and diet-induced obesity either prevented weight gain [14] 
or induced dose-dependent, reversible weight reduction 
and adipose tissue loss [15]. 

Differentiation from pre-adipocytes to mature adipo-
cytes is linked to high expression levels of angiogenic 
factors [11]. Adipose tissue produces a plethora of cytokines 
and growth factors involved in angiogenesis, including 
leptin, adiponectin, vascular endothelial growth factor 
(VEGF), hepatocyte growth factor (HGF), insulin-like 
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growth factor 1 (IGF-1), placental growth factor (PlGF), 
interleukin-6 (IL-6), angiogenin, tumor necrosis factor-
alpha (TNF-α), and angiopoietins (Angs) [16]. Leptin 
induces angiogenesis, vascular fenestration, and vascular 
remodeling [17, 18]. Adiponectin negatively affects angio-
genesis [19]. VEGF-A overexpression in adipocytes hinders 
the expansion of adipose tissue [20], increases the number 
of beige adipocytes, and induces neovascularization of 
subcutaneous fat [21]. The blockade of the vascular 
endothelial growth factor receptor-2 (VEGFR-2) signaling 
pathway by a neutralizing antibody inhibits both angio-
genesis and pre-adipocytes differentiation [22]. Adipose 
tissue produces matrix metalloproteinase-2 (MMP-2) and 
MMP-9, both involved in the regulation of angiogenesis 
[23]. Recruitment of inflammatory cells also significantly 
contributes to adipose neovascularization. 

Several of the pro-angiogenic factors listed above, 
including multiple VEGF isoforms, leptin, HGF, and Ang-2, 
are also elevated in the serum of obese subjects and are 
implicated in the systemic effects of obesity on cancer 
progression [24–26]. Both WAT and BAT contain dense 
microvascular networks, but microvascular density is 
higher in BAT as compared to WAT [27]. Obesity impairs 
the vasodilator response of the muscle microvasculature 
to insulin VEGF and reduces microvascular density [28]. 

Angiogenesis inhibitors reduce fat mass expansion in 
mice [15, 29, 30]. Angiogenesis inhibitor TNP-470 prevents 
diet-induced obesity in mice, decreases appetite, fat mass, 
and expansion of adipose tissue by inhibiting amino-
peptidase-2 [29]. Angiostatin and endostatin reduce fat 
mass [31]. A significant higher vessel density is present 
in the adipose tissue of tissue inhibitor of metallo-
proteinase-1 (TIMP-1) knockout mice compared with 
control mice [32, 33]. 

 Mast cells and adipocytes 
The first reports on the measurement of mast cell 

numbers in different body sites date to 1950 [34]. Skin 
biopsy specimens of normal subjects contained 38.4±4 
mast cells per square millimeter, while in the adipose tissue 
their number is 10.4±2 per square millimeter. 

Studies on the effect of the thyrotrophic hormone on 
connective tissue showed that at the same time, as fat is 
mobilized from the normal depots, there is an accumulation 
of mast cells [35]. 

Mast cells are involved in the new formation or 
metabolism of fat. They are present in abundant quantities 
in fatty tissue, among fat cells (Figure 1). Visceral WAT 
of obese mice shows a higher number of mast cells 
compared with those of lean mice, while there is no 
significant difference in their number in subcutaneous 
WAT between obese and lean mice [36]. 

Mast cells release several mediators, such as cytokines, 
chemokines, proteases, and prostaglandins, that play a 
role in adipogenesis [36]. As concerns the different role 
of tryptase and chymase stored in mast cell secretory 
granules, mast cells stimulate angiogenesis in adipose 
tissue by releasing chymase and inducing preadipocyte 
differentiation and also the proliferation of adipocytes 
[37]. Increased number of mast cells stained with tryptase 
has been reported in WAT of obese patients [38]. 

 
Figure 1 – Close spatial relationship between tryptase-
positive mast cells (in red) and adipocytes in a human 
bone marrow sample. A murine monoclonal antibody 
against tryptase (mAb AA1, Dako) was used. The 
immunodetection was performed with alkaline 
phosphatase anti-alkaline phosphatase (APAAP, Dako) 
and Fast Red as chromogen. Original magnification, 
×200. 

Mast cells from the rat peritoneal cavity express the 
receptors for both leptin and adiponectin, whose activation 
induces cytokines and reactive oxygen species production. 
Both adipokines induce migration of mast cells, leptin 
induces histamine and cysteinyl leukotriene secretion, 
and expression of C–C motif chemokine ligand 3 (CCL3) 
[39, 40], while adiponectin induces the production of 
anti-inflammatory IL-10 [41]. 

Altintas et al. [42] found significantly more mast cells 
in visceral fat of obese mice compared with lean ones and 
found that subcutaneous fat behaved very differently as 
in the latter, obesity is accompanied only by a modest 
increase in mast cells density. Moreover, they found that 
a significant number of mast cells in the epididymal fat 
of obese mice were in the process of degranulation and 
secreted TNF-α, which contributes to local and systemic 
insulin resistance. 

Ishijima et al. [43] demonstrated a key role for mast 
cells in the preadipocyte to adipocyte transition under both 
obese and non-obese conditions. By the mean of reverse 
transcription polymerase chain reaction (RT-PCR) and 
in vitro studies, they have shown that in the epididymal 
WAT and stromal vascular fraction (SVF) of mast cell-
deficient (KitW-sh/W-sh) mice, the messenger ribonucleic 
acid (mRNA) amount of preadipocyte markers, such as 
preadipocyte factor-1 (Pref-1), adipocyte enhancer-binding 
protein 1 (AEBP1), and GATA binding protein 2 (GATA2), 
but not mature adipocyte ones, such as adipocyte protein 2 
(aP2), peroxisome proliferator-activated receptor gamma 
(PPARγ), acyl‑coenzyme A synthetase 1 (Acsl1), and 
adipsin, increase compared to wild-type mice under both 
physiological and pathological conditions. Mast cells 
accumulate in the adipose tissue of obese individuals 
[44, 45]. 

Mast cell-deficient mice present improved glucose 
tolerance and insulin sensitivity compared with wild-type 
mice [38]. Obesity and type 2 diabetes are inflammatory 
diseases, characterized by an excess of adipose tissue 
and chronic insulin exposition induces the formation of 
lipid bodies in mast cells [46]. Moreover, several animal 
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models have demonstrated a pathogenetic role of mast 
cells also in human type 1 diabetes mellitus [36]. Intra-
peritoneal injection of Disodium Cromoglycate, an inhibitor 
of mast cell activation and degranulation, reduces diet-
induced obesity and diabetes in mice [38]. 

 Mast cells and angiogenesis 
Mast cells produce several pro-angiogenic factors, 

including fibroblast growth factor-2 (FGF-2), VEGF, IL-8, 
TNF-α, transforming growth factor-beta (TGF-β), and 
nerve growth factor (NGF) [47-56]. As shown by in vivo 
and in vitro experiments, mast cells migrate in response 
to VEGF and PlGF-1 [57–59]. Granulated murine mast 
cells and their granules are able to stimulate an intense 
angiogenic reaction in the CAM assay, inhibited by anti-
FGF-2 and -VEGF antibodies [60]. Intraperitoneal injection 
of the degranulating compound 48/80 stimulates angio-
genesis in the rat and mouse mesentery window angio-
genic assay [61, 62]. Histamine and heparin induce the 
proliferation of endothelial cells in vitro and in vivo [63, 
64]. Tryptase, stored in mast cell secretory granules [65], 
stimulates the proliferation of endothelial cells, promotes 
vascular tube formation in vitro, degrades connective tissue 
matrix, and activates MMPs and plasminogen activator 
(PA), which in turn degrade the extracellular matrix with 
consequent release of VEGF or FGF-2 [66]. Mast cell-
deficient W/Wv mice exhibit a decreased rate of tumor 
angiogenesis [67]. In human papillomavirus 16 (HPV16)-
infected transgenic mouse model of epithelial carcino-
genesis, mast cells infiltrated hyperplasia, dysplasias, 
and the invasive front of carcinomas, but not the core of 
tumors. Accumulation occurred proximal to developing 
capillaries and the stroma surrounding the advancing tumor 
mass [68]. Mast cells infiltrate and MMP-9 activation 
coincided with the angiogenic switch in premalignant 
lesions, and premalignant angiogenesis was abrogated in 
a mast cell-deficient HPV16 transgenic mouse [68, 69]. 
In prostate tumors derived from both transgenic adeno-
carcinoma of the mouse prostate (TRAMP) mice and 
human patients, mast cells promote well-differentiated 
adenocarcinoma growth [70]. Mast cell infiltration around 
gastric cancer cells correlated with tumor angiogenesis 
and metastasis [71]. 

A high number of mast cells have been demonstrated 
in tumor angiogenesis, like hemangioma and hemangio-
blastoma [72], as well as several hematological and 
solid tumors, including lymphomas [73, 74], multiple 
myeloma [75], myelodysplastic syndrome [76], B-cell 
chronic lymphocytic leukemia [77, 78], breast cancer [79, 
80], squamous cell carcinoma of the esophagus [81], 
colon-rectal cancer [82], uterine cervix cancer [83–85], 
melanoma [86, 87], pulmonary adenocarcinoma [88–91]. 

 Cross-talk between adipocytes and mast 
cells in angiogenesis 

Both adipocytes and mast cells are closely related  
to capillaries and secrete cytokines and growth factors 
involved in angiogenesis. Among them, VEGF and 
TNF-α are expressed by both cells, while other ones are 
expressed or by adipocytes or by mast cells. In this 
context, the angiogenic effect might be amplified when 
the adipocytes and mast cells act in concert. In fact, a 

close relationship exists between adipocytes and mast 
cells. Different mediators released from mast cells, such 
as cytokines, chemokines, proteases, and prostaglandins, 
are involved in adipogenesis [36]. Mast cells express the 
receptors for both leptin and adiponectin, both released 
by adipocytes and acting on angiogenesis. Leptin induces 
angiogenesis, vascular fenestration, and vascular remodeling 
[17, 18], while adiponectin negatively affects angiogenesis 
[19]. 

The microenvironment during the accumulation of 
adipose tissue resembles the tumor microenvironment 
during tumor vascularization. Human cancers, including 
breast cancer, prostate cancer, colorectal cancer, and 
pancreatic cancer are all originating from the adipose 
environment, and adipose vasculature predetermines the 
tumor microenvironment that supports tumor growth. 
Implantation of tumor cells in highly vascularized WAT 
and BAT tissues accelerates tumor growth, as it has been 
demonstrated in breast cancer, melanoma, and fibro-
sarcoma. Inoculation of tumor cells in the subcutaneous 
tissue, WAT and BAT resulted in markedly differential 
tumor growth rates and angiogenesis, which correlated with 
the degree of pre-existing vascularization in these tissues 
[92]. Metastatic cancers grow in a highly vascularized 
mesentery environment where the adipose tissue is a major 
component at an accelerated rate [93]. Peritoneal adipose 
tissue is a metastatic site for ovarian cancer [94, 95]. 

In this context, the treatment of adipose tissue- and 
mast cell-associated cancers with anti-angiogenic drugs 
may represent an alternative or adjuvant strategy for the 
treatment of these tumors. Finally, mast cells thus appear 
to be new cellular actors of adipose tissue, inflammation, 
contributing to the complex paracrine interplay between the 
various immune cells that accumulate in adipose tissue 
in different pathological conditions, deserving further 
mechanistic evaluation to determine the potential causal 
role of mast cells in the physiopathology of these diseases. 
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