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Gout and hyperuricemia are present in 25% and 60% of patients with chronic kidney disease (CKD),

respectively. Despite the common association, the role of uric acid in the progression of kidney disease

and in metabolic complications remains contested. Some authorities argue that the treatment of

asymptomatic hyperuricemia in CKD is not indicated, and some have even suggested hyperuricemia may

be beneficial. Here, we review the various arguments both for and against treatment. The weight of the

evidence suggests asymptomatic hyperuricemia is likely injurious, but it may primarily relate to sub-

groups, those who have systemic crystal deposits, those with frequent urinary crystalluria or kidney

stones, and those with high intracellular uric acid levels. We recommend carefully designed clinical trials

to test if lowering uric acid in hyperuricemic subjects with cardiometabolic complications is protective.

Kidney Int Rep (2023) 8, 229–239; https://doi.org/10.1016/j.ekir.2022.11.016
KEYWORDS: chronic kidney disease; gout; hyperuricemia; metabolic syndrome; systemic inflammation

ª 2022 International Society of Nephrology. Published by Elsevier Inc. This is an open access article under the CC BY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
H
yperuricemia (defined as a serum uric acid level
>7 mg/dl in males and >6 mg/dl in women) is

common in CKD. This is because hyperuricemia is
common in type 2 diabetes and hypertension, which
are conditions that cause CKD, and also because CKD
results in reduced urinary excretion of uric acid. As a
consequence, the prevalence of gout increases from 1%
to 2% of adults with normal kidney function to 32% of
those with stage 4 CKD. Hyperuricemia prevalence also
increases from 11% among those with normal kidney
function to 80% among those with stage 4 CKD.1 The
converse is also true. CKD stage 2 or higher is present
in 70% of subjects with gout and 50% of those with
hyperuricemia.2

It is therefore important to understand if high uric
acid levels modify kidney or metabolic outcomes. This
is especially true because hyperuricemia is an inde-
pendent predictor of CKD and metabolic diseases,3–5

including in subjects who are healthy without any
morbidities.6 There is also a direct relationship of
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serum uric acid level with prevalence of hypertension,
diabetes, and CKD (Figure 1).7,8

Today, there remains controversy over the role of
uric acid in CKD and cardiometabolic outcomes.
Several groups have suggested that asymptomatic
hyperuricemia in CKD is benign and should not be
treated, or may even be beneficial.9–12 Here, we pre-
sent our countering viewpoint with recommendations
for how to move forward. For purposes of the dis-
cussion, our analysis will be separately about those
who have gout and CKD, and those with asymptom-
atic hyperuricemia and CKD.
Gout and CKD

Gout is classically treated with urate-lowering agents to
reduce the risk for recurrent arthritic attacks and joint
damage.13 It has remained controversial whether
lowering serum uric acid in gout has an effect on kidney
disease or cardiovascular events. However, there are at
least 3 arguments that strongly suggest that lowering
uric acid in subjects with gout may be beneficial for CKD
and/or cardiovascular events. All these are based on the
fact that urate crystals are known to be very
proinflammatory, and known to induce local inflamma-
tion that is mediated by activation of inflammasomes and
the release of interleukin-1.14

The first argument is that urate crystals are known
to deposit not only in joints, but also in other tissues,15
229
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Figure 1. Relationship of Serum Uric acid with CKD. (a) A study in which more than 48,000 Japanese that were 20 years or older who were
followed for 7 years. After controlling for baseline serum creatinine and other variables, the presence or absence of baseline hyperuricemia
(defined as >7 mg/dl in men and >6 mg/dl in women) markedly increased the risk for developing end stage kidney disease requiring dialysis. (b)
A figure based on the study of 5707 participants aged 20 years and older from the National Health and Nutrition Examination Survey 2007–2008.
There is an exponential relationship of serum uric acid levels with CKD. (a) Adapted from Iseki et al.7 and (b) Adapted from Zhu et al.8 CKD,
chronic kidney disease; HyperUric, hyperuricemia.
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and one of the favored sites is in the collecting ducts of
the kidney.16 As urine concentrates, it also acidifies,
and this can lead to urate crystallization. Some urate
crystals adhere to the tubular epithelium, where they
can cause local inflammation that leads to rupture of the
tubular wall with the crystals escaping into the inter-
stitium.17 This can be associated with marked local
inflammation with macrophage infiltration.18 Subjects
with gout have reduced fractional excretion of uric
acid. Nevertheless, they excrete large amounts of uric
acid, especially following ingestion of a purine-rich19

or fructose-rich20 meal.
Indeed, in the days before urate-lowering treatment

was available, autopsies of patients with gout showed
an almost universal presence of kidney disease, char-
acterized by arteriolosclerosis, focal segmental glomer-
ulosclerosis, and chronic tubulointerstitial disease,16,21

and as many as 20% or 25% of gouty subjects would
have markedly reduced kidney function.22 Most
strikingly, urate crystals were found in 90% of au-
topsies, always concentrated in the outer medulla.21 In
contrast, kidney biopsies rarely document urate crys-
tals23 because the biopsies are of the cortex where uric
acid crystals are sparse. In addition, urate crystals are
often washed out during the fixation process unless
special techniques, such as using alcohol fixation and
the De Galantha stain, are used.

It is not known how common urate crystals are
present in the kidneys of gout patients today. Newer
techniques such as the dual energy computed tomog-
raphy (DECT) scans have been suggested as a method to
detect their presence.24 However, there are technical
230
issues in performing and analyzing scans, and adjust-
ments need to be performed for each organ evaluated,
and the art of performing DECT scans on kidneys is
still being refined. Nevertheless, another approach that
has been recommended is the use of renal artery ul-
trasound to determine if there is enhanced echogenicity
in the renal medulla associated with crystal deposition.
A hyperechoic medulla by ultrasound is considered
strongly suggestive of urate crystal deposition and has
been reported to be present in one-third of subjects
with gout.25

The second argument to treat gout not just for the
risk of recurrent gout attacks is because there is now
evidence that urate crystals may be directly involved
in the atherosclerotic process. Specifically, DECT scans
adjusted for evaluating blood vessels have had the
surprising discovery that urate crystals are common in
the aorta and coronary arteries of subjects with gout.
Indeed, urate crystals are present in the blood vessels
of 75% to 86% of patients with gout, with nearly 30%
of gout subjects having crystals in their coronary ar-
teries.26,27 The primary sites seem to be in areas of
atherosclerotic plaque, which has been confirmed by
histologic studies.28–30 Urate crystals have also been
colocalized with sites of vascular calcification.26 Urate
crystals are likely to stimulate inflammasomes in the
lesions similar to that of cholesterol crystals, and this is
expected to increase the risk for plaque extension or
rupture.31 These findings could explain why both
hyperuricemia and gout are associated with cardio-
vascular mortality in both epidemiology and Mende-
lian randomization studies.32–34
Kidney International Reports (2023) 8, 229–239
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The third argument relates to the observation that
urate crystal deposits can result in not just local
inflammation but also in systemic inflammation, and
the latter is recognized as a contributing factor for
progressive kidney disease as well as cardiovascular
events.35,36 A striking finding in gout is that resolution
of an acute attack is not associated with resolution of
urate crystals because they will persist until the next
attack (i.e., the “intercritical period”).37 These “silent
crystals” can still be associated with evidence for sys-
temic inflammation that may have an indirect role in
the progression of kidney disease and cardiovascular
events.38 Indeed, both elevated monocyte counts and
high levels of highly sensitive C-reactive protein levels
are found in patients with a history of gout.39,40 Some
studies have found that allopurinol treatment can lower
highly sensitive C-reactive protein levels.41 Further-
more, targeting inflammation by giving antibodies to
interleukin-1 can reduce highly sensitive C-reactive
protein and cardiovascular events in individuals at risk
of cardiovascular disease.42,43

We believe these arguments are strong enough to
recommend urate-lowering in all subjects who suffer
from gout, and treatment could be dietary or involve a
nutraceutical or drug; however, the goal would be to
lower serum uric acid levels to <6 mg/dl.
Hyperuricemia and CKD

Initially there was strong evidence that hyperuricemia
in the absence of gout might be driving CKD. This was
supported both by epidemiologic studies,3,44 experi-
mental studies45,46 and pilot clinical trials.47 However,
2 large clinical trials, known as the prevention of early
renal loss in type 1 Diabetes and CKD-FIX (Controlled
Trial of Slowing of Kidney Disease Progression from the
Inhibition of Xanthine Oxidase), were published in the
same issue of the New England Journal of Medicine and
found no benefit of allopurinol in slowing renal pro-
gression.48,49 This initially led several groups,
including the Caring for Australians and New Zea-
landers with Kidney Impairment Guidelines Committee
to suggest that there is now conclusive evidence not to
treat asymptomatic hyperuricemia in CKD.9,12

We believe this conclusion is premature. The pre-
vention of early renal loss and CKD-FIX studies tested
whether lowering uric acid was beneficial but not
whether treating hyperuricemia is beneficial, because
both studies included large numbers of patients with
normal serum uric acid levels. Normal uric acid levels
are not expected to significantly increase the risk for
CKD (see Figure 1).
Kidney International Reports (2023) 8, 229–239
Both studies were also intention-to-treat analyses.
These analyses count all treated subjects even if
they discontinued treatment because of problems
with compliance or side effects. In this case,
approximately 17.5% to 30% of subjects dropped
out before completion of the trial. The fact that this
happened in both treatment and placebo groups
suggest it was largely not because of the drug but
rather because of general characteristics of the
population being studied, or perhaps because of
general concerns or preset opinions that allopurinol
might be associated with high side effects. There-
fore, the trial was not actually testing the hypoth-
esis that asymptomatic hyperuricemia might be
driving CKD, but rather tested whether allopurinol
treatment reduced progression of kidney disease
when including issues such as compliance, side ef-
fects, and other factors.

The CARI guidelines have some additional problems.
For example, the criteria they used in their studies did
not require the presence of hyperuricemia (allowing
any serum uric acid level), nor did it require the
presence of CKD,9 yet the question being addressed
was whether treating asymptomatic hyperuricemia in
CKD was beneficial. Their conclusion that treatment
was not beneficial was also at odds with the meta-
analysis they used for their study. The latter had
concluded that lowering serum uric acid was beneficial
in reducing the decline in estimated glomerular filtra-
tion rate and blood pressure.50

More recently, the ALLHEART study was published
in which older patients (age >60 years) with a history
of ischemic heart disease and no gout were randomized
to allopurinol or placebo and followed for almost 5
years without any discernible benefit on subsequent
cardiovascular events.51 However, similar to the other
trials, patients with normal uric acid levels were
included (the mean serum uric acid was 5.6 mg/dl) and
gout was excluded. Likewise, there was a large (57%)
dropout which were included in the analysis because it
was an intention-to-treat study, such that it was not
truly testing whether the treatment of hyperuricemia is
beneficial on cardiac endpoints.

One might hope that meta-analyses might help
resolve the issues, but even here there remains confu-
sion, because some recent studies suggest that treat-
ment of asymptomatic hyperuricemia in CKD does slow
progression,52,53 whereas others are mixed or indeter-
minant,50,54,55 and some are negative.56 Some meta-
analyses show benefit with only specific urate-
lowering drugs, such as febuxostat.57,58 One possible
explanation for the mixed data is that there may be
231



Figure 2. Uric acid may be more Important in the Initiation of Metabolic Diseases Rather than the Maintenance. AMPK, adenosine
monophosphatase-activated protein kinas; ATP, adenosine trisphosphate; CKD, chronic kidney disease; NO, nitric oxide; RAS, renin angiotensin
system.
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subgroups that particularly benefit from treatment. In
the next section, we propose specific groups that we
believe might be most likely to respond to urate-
lowering therapy.
Subgroups in Which Asymptomatic

Hyperuricemia may be Most Likely to Drive CKD

and Cardiac Disease

The first group to consider would be patients with
asymptomatic hyperuricemia who may harbor “silent”
crystals in their joints, blood vessels, or kidneys
(similar to the argument provided in the gout section).
Approximately 15% of hyperuricemic subjects who do
not have gout still have urate deposits in their blood
vessels when evaluated by DECT scan.26 Some patients
may also harbor crystals silently in their joints or
kidneys. Studies that include DECT scanning or renal
ultrasound may help identify this subgroup.

A second group would be subjects with recurrent
urate crystalluria or kidney stones. Crystalluria can
stimulate inflammasomes in renal tubular cells leading to
local inflammation and injury that can accelerate
CKD.11,59–61 One mechanism for the crystalluria would be
the presence of a low urinary pH, such as may occur with
dehydration, because uric acid is very insoluble in acidic
urine. A low urinary pH predicts the development of
CKD.62 This may also explain the benefit of bicarbonate
therapy to slow CKD, and we reported that bicarbonate
therapy can solubilize urate crystals and reduce bio-
markers of renal tubular injury in diabetic subjects.63

Heat stress-associated urate crystalluria is also common
in subjects with Mesoamerican nephropathy where it
might be driving kidney damage,64,65 and uricosuria ac-
companies rhabdomyolysis where it has been suggested
to play an ancillary role.66 Indeed, both allopurinol and
232
bicarbonate therapy are protective in experimental
rhabdomyolysis-associated kidney injury.67,68

Although urate crystalluria is largely driven by low
urinary pH, some individuals will show “over-
production” uricosuria. Recently, this was shown to be
mediated by reduced intestinal uric acid excretion,
especially by inhibition of the adenosine triphosphate-
binding cassette subfamily G member 2 urate trans-
porter.69,70 The adenosine triphosphate-binding
cassette subfamily G member 2 transporter is
expressed in both the kidney and intestine, but poly-
morphisms that are associated with reduced function
(such as the Q126X variant [that has near absent
function] and the Q141K [which has half-function])
result in reduced intestinal elimination with increased
renal excretion.70 New studies suggest that individuals
carrying these variants are at higher risk for progres-
sion of CKD.69,71 Dietary mechanisms may also be
operative. Fructose, for example, also blocks adenosine
triphosphate-binding cassette subfamily G member 2 in
the intestine, reducing intestinal uric acid excretion,72

while increasing urinary excretion,73 reducing urinary
pH,74 and reducing urine volume.75 Dietary intake of
high purine foods can also cause transient uricosuria19

that might be important in mediating kidney injury.
Asymptomatic hyperuricemic patients with kidney

stones may also be candidates for having recurrent
uricosuria. Kidney stones are common in subjects with
gout, being present in one-third of subjects when
evaluated by helical computerized tomography,
although two-thirds of these patients were not aware
they had stones. Of interest, the subjects with kidney
stones had worse kidney function and lower urine pH
than those who did not have stones.76 Therefore, one
might consider evaluating subjects with hyperuricemia
to determine if they have stones, because this may
Kidney International Reports (2023) 8, 229–239



Figure 3. Examples of potential clinical trials to investigate the role of uric acid in cardio-renal diseases. BP, blood pressure; CRP, C-reactive
protein; CV, cardiovascular; DECT, dual energy computed tomography; XO, xanthine oxidase.
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represent a group with an increased risk for CKD
progression.

The importance of urate crystalluria in causing
kidney injury was recently elucidated in patients with
uricosuria and hypouricemia because of the loss of
urate transporters in their kidneys.77,78 In both
experimental models and humans, the use of allopu-
rinol to reduce uricosuria is associated with protection
from kidney injury.77,79

A third group of subjects might be those who have
increased intracellular levels of uric acid occurring in
their livers or kidneys. In the liver, intracellular uric
acid is thought to mediate oxidative stress to the
mitochondria that drives metabolic effects like insulin
resistance, hepatic fat accumulation, and elevation in
blood pressure.80 Interestingly, this is associated with
dietary measures such as intake of fructose or purine-
rich foods; howver, it can also occur with block in
intestinal uric acid excretion.71 Another condition
might by polycystic kidney disease, in which the
enlarging cysts are likely stimulating local uric acid
generation. In autosomal polycystic kidney disease,
serum uric acid levels are high and correlate with
progression, whereas pilot studies suggest that
lowering serum uric acid may be protective.81,82

A major mechanism by which hyperuricemia in-
duces its effects on the kidney is likely via its vascular
effects. Uric acid has been shown experimentally to
mediate endothelial dysfunction by both reducing
biologically available nitric oxide and inducing
Kidney International Reports (2023) 8, 229–239
oxidative stress.83–85 Although not all studies are pos-
itive, most clinical studies suggest that xanthine oxi-
dase inhibitors can improve endothelial dysfunction.86

Uric acid can also enter into vascular smooth muscle
cells via specific transporters,87,88 where it drives
proliferation and proinflammatory pathways.87,89,90

Hyperuricemia is especially correlated with disease of
the afferent arteriole in both experimental animals45

and in humans.91 Experimentally, this is associated
with renal vasoconstriction, altered renal autor-
egulation, and increased glomerular hydrostatic pres-
sure.92 Serum uric acid also correlates with high renal
afferent arteriolar resistance in humans.93

Measuring intracellular uric acid levels is difficult.
However, determining plasma xanthine oxidase activ-
ity might be an alternative way to identify these pa-
tients. Elevated plasma xanthine oxidase activity has
been reported to identify subjects with CKD who are at
risk for cardiovascular events94 and may be superior to
serum uric acid in predicting metabolic disorders.95,96

Other Arguments

Some have argued that uric acid may be beneficial
because it can function as an antioxidant.97 However,
uric acid is pro-oxidative inside cells because it acti-
vates nicotinamide adenine dinucleatide phosphate
oxidase and also because it can generate radicals such
as hydroperoxide, peroxynitrite-radicals, and
myeloperoxidase-based radicals.98,99 When uric acid
quells the production of hypochlorous acid by
233
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neutrophils, the overall oxidative stress remains the
same because of increased production of superoxide.100

Indeed, the overall effects of soluble uric acid are
proinflammatory.98,100–102

Some groups have reported that hyperuricemia
induced by inosine may protect against kidney dis-
ease.11,103,104 However, inosine has been shown to be
anti-inflammatory because it activates adenosine re-
ceptors105–107 and generates hypoxanthine, the latter
that can be recycled to IMP and eventually adenosine
triphosphate.108 Importantly, in the studies evaluating
if uric acid is beneficial in kidney disease, the in-
vestigators did not determine if allopurinol treatment
would reverse this protection. Other groups have
shown that the anti-inflammatory effects of inosine are
enhanced by administering allopurinol.109,110

Another issue has been the concern that febuxostat
might increase the risk for cardiovascular mortality
because it was associated with more cardiovascular
events in the CARES trial.111 Other studies could not
affirm this association.112 Moreover, there was no pla-
cebo group in the CARES study, and studies of allo-
purinol suggest it may reduce mortality risk in the
general population,113 with a trend toward protection
in subjects with CKD.114

An additional argument is that most Mendelian
randomization studies have not been able to show that
genetic polymorphisms that increase serum uric acid
translate into increased risk for CKD,115–118 despite this
being shown in other Mendelian randomization studies
for hypertension,119 coronary artery disease,34 or car-
diovascular events.33 However, serum uric acid is not
the critical factor, given that the factors driving kidney
disease may relate more to urine uric acid, urine pH,
presence or absence of urate crystals in the kidney, and
intracellular serum uric acid levels, especially in the
liver and kidney. Although intracellular uric acid and
serum uric acid levels are often correlated, they can
also be dissociated.120 In addition, some urate trans-
porters, such as SLC2A9, may have divergent effects on
serum uric acid depending on which target organ is
evaluated,121,122 suggesting that genetic poly-
morphisms altering SLC2A9 function could have
opposing biologic effects depending on the target or-
gan that could confound Mendelian randomization
studies.

Finally, an important consideration is that what
initiates disease might be different from what drives it
(Figure 2). For example, experimental studies suggest
that experimental hyperuricemia causes a rise in blood
pressure because of effects of uric acid; however, over
time there is the induction of an autoimmune inflam-
matory response in the kidney that maintains the
234
hypertension.123 Likewise, experimental hyperurice-
mia is associated with glomerular hypertension and
renal vasoconstriction that is dependent on uric acid
levels, but as CKD develops, glomerular hypertension is
driven by a reduction in nephron number.124 Similarly,
there is evidence that fructose-induced hyperuricemia
initially causes a reversible insulin resistance; however,
overtime there is progressive injury to the islets
resulting in islet dysfunction and a loss in insulin
secretory ability.125 There is also evidence that long-
standing mitochondrial oxidative stress may lead to a
loss of mitochondria that may have persistent ef-
fects.126 Thus, the timing for when uric acid is lowered
may be important. Similarly, to see a benefit in estab-
lished disease, one might have to treat for a long time,
and there is some evidence that the benefit of lowering
uric acid is greatest if treatment is prolonged for 2 years
or more.127
Summary

Asymptomatic hyperuricemia is common in subjects
with CKD. Although the CKD-FIX and prevention of
early renal loss studies did not report benefit of allo-
purinol in slowing the progression of kidney disease,
they did not specifically address the role of hyperuri-
cemia. We suggest that there may be some specific
subgroups of subjects with asymptomatic hyperurice-
mia that would benefit, including those with docu-
mented crystal deposition in joints, blood vessels, and
the kidneys; those with documented recurrent urate
crystalluria or with kidney stones; and those who have
evidence for elevated liver or kidney uric acid levels
(possibly noted by high plasma xanthine oxidase ac-
tivity). Examples of some proposed trials are shown in
Figure 3. The addition of these carefully designed
studies are needed to determine the role of uric acid in
the progression of CKD.
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