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Gut mycobiome as a promising preventive and therapeutic target for metabolic disorders  
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The human microbiome includes the sum of each and every gene 
from bacteria, archaea, viruses and eukaryotic microorganisms, such as 
fungi, that reside the human body, particularly the gut. Gut microbiota 
play an important role in metabolic homeostasis of the human host [1]. 
Alterations in the gut microbiota attributed to genetic or environmental 
factors, such as nutritional factors or medications, e.g. antibiotics or 
non-steroid anti-inflammatory drugs, may lead to the modulation of the 
structure or diversity of the gut microbiota, known as dysbiosis [1–6]. 
Gut microbial dysbiosis has been implicated in the pathogenesis of 
metabolic disorders, such as obesity, metabolic syndrome, diabetes 
mellitus type 2, non-alcoholic fatty liver disease, cardio-metabolic dis-
orders and malnutrition [7–12]. 

Fungi are microeukaryotes accounting for a small part of the human 
microbiome in comparison to bacteria, forming the so called “human 
mycobiome”. The human mycobiome represents approximately less 
than 0.1% of the microbial community in the gut [13]. Gut mycobiome 
and bacteriome are interconnected and may influence each other in a 
plethora of ways affecting host metabolism. 

Gut mycobiome is a tiny but vital and functional part of the gut 
ecosystem. Alterations of its composition have been associated with a 
number of diseases such as colorectal cancer, inflammatory bowel dis-
ease and irritable bowel syndrome [13]. However, little is known about 
the composition and long-term stability of the gut mycobiome in middle 
age and later life as well the interplay between gut fungal and bacterial 
communities in metabolic homeostasis. Moreover, the relationship be-
tween the gut mycobiome and metabolic health is less clear. Indeed, gut 
mycobiome has been associated with cardiometabolic disorders in ani-
mal models and in some human studies [14–17]. 

In a multiomics and longitudinal study, Dr. Zheng and colleagues 
investigated how age, diet, and other sociodemographic or clinical 
factors affect the gut mycobiome by mapping the gut mycobiome among 
1244 Chinese middle-aged and elderly adults from the population-based 
Guangzhou Nutrition and Health Study cohort [18]. They found that 

considerable gut fungal composition is temporally stable being mainly 
regulated by age, long-term habitual diet and host physiological state. In 
particular, they showed that nonsignificant changes over time in 11 
genera of the Ascomycota (eg, Pichia, Alternaria and Wickerhamiella) have 
been observed in 184 study subjects. Many fungal taxa displayed 
long-term stability even after 3.2 years, suggestive of a core mycobiome 
which could play a role in the long-term stability of the intestinal 
ecosystem. In comparison to middle-aged subjects, Blastobotrys and 
Agaricomycetes spp were decreased, whilst Malassezia was enriched in 
the elderly group. This study also found that habitual diet may be a 
significant factor of the mycobiome diversity. Specifically, dairy con-
sumption was a major dietary factor contributing to the variety of the 
fungal community in the gut, while fruit and fish consumption was not 
significantly associated with gut mycobiome diversity. This work mir-
rors Dr. Zheng’s previous study on gut microbiome, which has shown 
that long-term habitual dairy consumption is associated with a higher 
bacterial diversity, which is an indicator of a healthy gut [19]. Dairy 
consumption was positively related with Saccharomyces, which presents 
anti-inflammatory properties [20], but inversely linked to Candida [18]. 

Zheng et al. also explored the ecological and functional relationships 
among gut bacteria, fungi and fecal metabolome, examining whether 
the interaction between gut bacteria and fungi could modulate meta-
bolic risk. They found that the gut mycobiome may be closely linked to 
metabolic health through the regulation of gut bacterial functions and 
metabolites. Interestingly, Saccharomycetales spp. interact with intesti-
nal bacterial diversity, being positively related with short-chain fatty 
acids producers, to influence insulin sensitivity. Furthermore, the pres-
ence of Pichia fungi contributed to a decrease in serum LDL-cholesterol 
and total cholesterol levels through the increase of bacterial functional 
levels and fecal histidine. 

These results highlight that the intestinal fungal community is an 
important component of the gut ecosystem playing a pivotal role in the 
long-term stability of the gut ecosystem. This integrative cross-kingdom 
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analysis may broaden our horizon for novel preventive and therapeutic 
targets in metabolic disorders. However, more larger multiomics and 
longer longitudinal studies in other ethnic groups are required to 
examine the contribution of the gut mycobiome and its interaction with 
bacteriome and host to the pathogenesis of metabolic disorders. 
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