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Abstract: As is an excellent bio-based polymer material, poly(lactic acid) (PLA)’s brittle nature
greatly restricts its extensive applications. Herein, poly(butylene succinate) (PBS) was introduced
to toughening PLA by melt blending using a self-made triple screw extruder through in situ reactive
with ethylene-methyl acrylate-glycidyl methacrylate (EGMA). The effect of EGMA concentrations on
the mechanical properties, morphology, interfacial compatibility of PLA/PBS blends were studied.
Fourier transform infrared (FT-IR) results demonstrated that the epoxy group of EGMA reacts
with the hydroxyl groups of PLA and PBS, which proved the occurrence of interfacial reactions
among the tri-component. The significantly improved compatibility between PLA and PBS after
EGMA incorporation was made evident by scanning electron microscope (SEM) characterization
results. Meanwhile, the contact angle test predicted that the EGMA was selectively localized
at the interface between PLA and PBS, and the result was verified by morphological analysis of
cryofracture and etched samples. The EGMA improves the compatibility of PLA/PBS blends,
and consequently leads to a significantly increased toughness with the elongation at break occurring
83 times more when 10 wt % EGMA was introduced than neat PLA, while impact strength
also enhanced by twentyfold. Ultimately, the toughening mechanism of PLA based polymers
was established based on the above analysis, exploring a new way for the extensive application for
degradable material.

Keywords: poly(lactic acid); poly(butylene succinate) (PBS); ethylene-methyl acrylate-glycidyl
methacrylate; in situ reactive; compatibility; toughening mechanism

1. Introduction

In recent years, tens of billion tons of plastics are widely used in industrial, agricultural,
national defense, healthcare and other fields [1], where most are extracted from petroleum resources.
With the increased usage of pertrochemical-based plastics, it causes serious environmental pollution
and wastes of oil resources [2,3]. Therefore, the environmentally friendly biobased and biodegradable
plastics as well as less persistent and toxic, low carbon green have attracted wide concerns [4,5].
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In the market, there are many biodegradable plastics such as poly(butylene succinate) (PBS) [6],
poly(butyleneadipate-co-terephthalate)(PBAT) [7], poly(hydroxy alkanoate) (PHA) [8], poly(lactic acid)
(PLA), etc. Among these, PLA is the most promising bio-based plastic, due to its excellent biocompatibility
and biodegradability. In addition, PLA can be obtained from corn, wheat, and cassava resources [9,10],
and degraded by microorganisms to CO2 and H2O. Moreover, owing to the advantages of outstanding
mechanical properties and heat resistance [11,12], PLA is an ideal green polymer material can be used in
packaging, architecture and biomedical fields [13,14]. However, the brittle with low elongation at break
and low notched impact strength restrict its extensive applications. In order to enhance the toughness of
PLA, many scientists have adopted various methods such as chemical copolymerization, melt blending,
and nano-filling [15]. Among them, blending with flexible material is the simplest and most effective
method [3,12,14].

The flexible materials used for toughening, such as non-degradable plastics like acrylonitrile
-butadiene-styrene(ABS) [16], linear low-density polyethylene (LLDPE) [17], ethylene-propylene-piene
monomerb (EPDM) [18], and degradable plastics such as PBAT [7], poly(capro lactone)(PCL) [19],
poly(butylenes-succinate- co-adipate) (PBSA) [20], etc., have been introduced to modify PLA with
a different toughening-level. However, some of these materials do not indicate a significant toughening
effect, due to incompatibility with PLA, which results in phase-separated morphologies between
the bi-phase, and weakens the performance of the blend [14,20,21].

In order to fabricate high toughness composites, poly(butylene succinate) (PBS) is considered for
blending with PLA, which is a highly flexibility biodegradable material with comprehensive properties
are similar to acrylonitrile -butadiene-styrene(ABS) and polypropylene (PP). Previously, Raksit et al. [22]
and Yokohara et al. [23] fabricated the PLA/PBS binary blends with considerable mechanical properties,
but the poor compatibility between PLA and PBS induced phase-separated morphologies. Therefore, it is
necessary take some measures to improve the compatibility of these two polymers. At present, an in
situ reaction compatibilization technique is the most effective method for improving phase-separated
morphologies of incompatible systems, which has been used by scholars. Ojijo et al. [20] used
triphenyl phosphite in the reactive compatibilization of PLA and PBSA, the notched impact strength of
the binary blend obviously improved from 6.76 kJ/m2 to 16.4 kJ/m2 with 2 wt % triphenyl phosphite,
and the morphology of PLA/PBSA blends evolved from “island–sea” structure to a more uniform
type. Liu et al. [24] added a small amount of Poly(D-lactide) (PDLA) into PLLA/TPU blends, and it
can be observed that the in situ reactive among the two components with PDLA was also added.
Meanwhile, the impact strength increased significantly from 9.6kJ/m2 to 63.2 kJ/m2 with 15 wt %
TPU. The effect of Polyolefin elastomer (POE) on the properties of PLA/PA11 blends was researched
by Heshmati et al. [25] and discovered that the PEO can improve the interfacial compatibility remarkably,
the impact strength of PLA/PA11 with 15 wt % PEO demonstrating 17.5 times and three times higher
than neat PLA and PA11, while elongation at break improved from 6% of neat PLA to 275% of
PLA/PA11 blend.

A series of studies have shown that the reactive compatibilization has a significant change
in the phase morphology of the PLA based polymer, which improves the toughness [24–27].
However, so far, there has been little research on the reaction compatibilization of the PLA/PBS
blend. Thus, it is necessary to carry out related research. In this paper, we focused on reactive blending
of PLA/PBS blend with ethylene-methyl acrylate-glycidyl methacrylate (EGMA) by a self-made triple
screw extruder, and highly-toughened PLA based ternary blends were fabricated. Our goal is to study
the effect of EGMA on the morphology and mechanical properties of PLA/PBS blends, and analyze
the relationship between tensile toughness, impact toughness and compatibility, phase morphology,
establishing the toughening mechanism of PLA/PBS/EGMA ternary blends.
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2. Materials and Methods

2.1. Materials

Commercial PLA (4032D) was purchased from NatureWorks LLC (Blair, NE, USA) with a density
of 1.24 g cm−3 and 1.2–1.6 wt % D-isomer lactide. PBS pellets (3001MD) were supplied by Show
a High Polymer Co., Ltd. (Tokyo, Japan) with the density of 1.26 g cm−3. EGMA (LOTADER AX 8900)
was provided from Arkema Investment Co., Ltd. (Shanghai, China) with the density of 0.944 g cm−3

and contained 24 weight fraction (wt) % methyl acrylate and 8 wt % glycidyl methacrylate.

2.2. Fabrication of Samples

The PLA was dried at 80 ◦C in an oven for 10 hours, while PBS and EGMA pellets
were dried at 50 ◦C in oven for 10 h. The PLA/PBS and PLA/PBS/EGMA blends with
different weight fraction were fabricated by melt blending using a self-made triple screw extruder.
The extrusion barrel of the extruder has 8 heating zones from hopper to die, the temperature
profile was 170 ◦C, 180 ◦C, 190 ◦C, 190 ◦C, 190 ◦C, 190 ◦C, 190 ◦C and 180 ◦C, the speed of rotor
was 80 rpm. Subsequently, the kneaded polymers obtained were compression molded into standard
dumbbell-shaped specimens and rectangular specimens for tensile testing and impact testing at 195 ◦C
and 15 MPa.

2.3. Mechanical Testing

The tensile properties of each blend were tested by an Instron Universal Testing Machine
(model 5566, Norwood, MA, USA), with crosshead speed of 20 mm/min according to GB/T1040-2006.
The impact strength was tested by the PIT501B-Z pendulum impact tester (Zwick5117, Zwick GmbH,
Ulmer, Germany) in line with GB/T 1843-2008. The average mechanical property values are obtained
from more than five specimens.

2.4. Scanning Electron Microscopy (SEM)

The morphology of cryo-fractured surfaces, etched surfaces and impact-failure surfaces of
each sample was observed by SEM (S-3700N, Hitachi, Tokyo, Japan). To obtain the morphology
of cryo-fractured surfaces, the rectangular samples were fractured after 60 min soaking in liquid
nitrogen, and then all surfaces were covered with gold, and subjected to SEM imaging at an applied
voltage of 5 kV.

2.5. Fourier Transform Infrared (FT-IR) Spectroscopy

The FT-IR spectroscopy (Nicolet Nexus 670, Dongguan, China) was used to study the molecular
group reactions between PLA and PBS with EGMA. Take a small amount of PLA, PBS, EGMA,
PLA/PBS, PLA/PBS/EGMA samples, and press the samples into films with a hot stamper. Scan each
film of all samples by the FT-IR spectroscopy with 64 scans a range of 400 to 4000 cm−1.

2.6. Contact Angle Testing

Contact angle test was conducted to study the compatibility between the tri-component
by a contact angle measurement system (OCA40Micro, Dataphysics, Stuttgart, Germany).
In addition, 5 mL of distilled water (H2O) and diiodomethane (CH2I2) were dropped on the PLA, PBS,
and EGMA samples. The static contact angle data are recorded by a OCA40Micro measurement system,
respectively. The tested data of contact angle is the average of more than five different positions on
each specimen.
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3. Results and Discussion

3.1. The FT-IR Analysis

In this work, a compatibilizer agent EGMA was added to PLA/PBS blends to improve
compatibility of these two phases. During the melt compounding, EGMA contains epoxy groups
that could react with the hydroxyl groups as discussed in the previous literature by Zhang et al. [28]
and Worasak et al. [29]. To demonstrate that the in situ reaction exists in PLA/PBA/EGMA blends,
the FT-IR analysis was employed as shown in Figure 1. Clear absorption peaks of hydroxyl groups of
PLA and PBS at 3504 cm−1 and 3432 cm−1 can be seen in Figure 1a. With incorporation of 30 wt %
PBS to PLA, the absorption peak still appears in a PLA/PBS blend. However, it is worth noting
that the absorption peaks at 3504 cm−1 and 3432 cm−1 gradually decrease with the increase of
EGMA content, which is even almost invisible with 20 wt % EGMA loading. Meanwhile, it can be
observed that the absorption peak of epoxy groups of EGMA at 910 cm−1 was presented in Figure 1b,
while the absorption peak disappeared in the PLA/PBS/EGMA blends, which proves that the epoxy
group of EGMA reacts with the hydroxyl groups of PLA and PBS.

The schematic diagram of possible reaction routes of PLA/PBS blends with the inclusion of
EGMA is illustrated in Figure 2. As discussed above, melt compounding promoted reactions of EGMA
with PLA and PBS. As a result, PLA/PBS-g-EGMA co-polymers could be formed at the PLA-PBS
interface and served as bridges connecting these phases. Thus, the poor interfacial adhesion
between immiscible PLA and PBS phases may be significantly improved by the inclusion of EGMA.
Moreover, the number of bridges increased with EGMA loading and thus led to an improved
compatibility, which allowed forces acting during the impact to be transferred from the brittle
PLA matrix to the ductile PBS phase. The above transfer led to an elongational deformation in
the PBS phase and, consequently, to fracture energy dissipation. Whether this assumption is correct
will be verified in the following discussion.

Figure 1. FT-IR spectra of specimens: (a) 3650–3350 cm−1; (b) 1400–700 cm−1.
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Figure 2. Schematic diagram of possible reaction routes in PLA/PBS blend with the inclusion of EGMA.

3.2. Mechanical Properties Analysis

The tensile properties of neat PLA, PLA/PBS and PLA/PBS/EGMA blends are shown in
Figure 3. It can be seen that strain–stress curves (Figure 3a) and tensile strength and elongation
at break (Figure 3b) indicate that the neat PLA is a brittle material, without obvious yield behavior
and showing poor elongation at break (ε = 6.64%) with a high tensile strength (σ = 56.6 MPa).
When incorporating 30 wt % PBS into PLA, the blend shows significant yielding with a brittle
to ductile transition exhibiting increased elongation at break (ε = 335.8%) but decreased tensile
strength (σ = 40.4 MPa), which indicates that the soft PBS added to PLA caused increased ductility
but a decrease of stiffness. When the EGMA was added to a PLA/PBS blend, the tensile strengths
are 37.1 MPa, 32.5 MPa, 28.0 MPa, and 24.4 MPa for samples with 5 wt %, 10 wt %, 15 wt % and 20 wt %
EGMA, respectively. On the contrary, the elongation at break of blends has a remarkable increase
from 478.4% for 5 wt % EGMA to a maximal value of 549.4% for 10 wt % EGMA and exhibits superior
stretchability of 83 times higher than neat PLA, which represents enhanced ductility. With further
increase of EGMA contents to 15 wt % and 20 wt %, the elongations at break slightly drop to 417.9%
and 324.1%, respectively.

It is well known that the impact property is an important evaluating indicator of a material’s
toughness. The notched impact properties of neat PLA, PLA/PBS and PLA/PBS/EGMA blends are
shown in Figure 4. The neat PLA exhibited a low impact strength of 2.4 kJ/m2 due to the brittle
nature. With incorporation of 30 wt % PBS to a PLA matrix, the impact strength increased by
three times with a value of 7.3 kJ/m2, owing to the fact that the elastic PBS can absorb more
impact energies. However, this binary blend exhibited typical brittle behavior and featured few
plastic deformations prior to failure, presenting SEM images of PLA/PBS impact fracture surface
(Figure 5b), and leading to the insignificant increase since PLA and PBS phases were not very
compatible. On the contrary, the impact strength obviously increases with incorporation of 5 wt %
EGMA to 19.4 kJ/m2. The impact strength remarkably improved in particular, reaching 46.5 kJ/m2
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with incorporation of 20 wt % EGMA approximately 20 times more than neat PLA, which presented
the occurrence of a brittle-to-ductile transition.

Figure 3. The tensile properties of neat PLA, PLA/PBS and PLA/PBS/EGMA blends: (a) strain–stress
curves; (b) tensile strength and elongation at break.

Figure 4. The impact properties of neat PLA, PLA/PBS and PLA/PBS/EGMA blends: (A)
impact strength; (B–C) deformed impact samples: (a) neat PLA; (b) PLA/PBS 70/30; (c–f)
PLA/PBS/EGMA (70/30/x): (c) 5 wt %; (d) 10 wt %; (e) 15 wt %; (f) 20 wt %.

3.3. Morphological Analysis

It is known that the morphology, including particle size and distribution of the dispersed
phase in the matrix, play an important role in the mechanical properties of polymers. In order
to more deeply investigate the relationship between toughness mechanism and microstructure
evolution of PLA/PBS/EGMA ternary blends, the cryo-fractured surfaces were etched by a sodium
hydroxide–methanol−water solution in order to eliminate the PLA amorphous in the blends
from being implemented [30]. The SEM images of cryofracture surfaces and PLA amorphous etched
cryofracture surfaces of the PLA/PBS blend and the PLA/PBS/EGMA blends with different weight
fraction EGMA are shown in Figure 5.
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Figure 5. SEM images of cryofracture and PLA amorphous were etched cryofracture samples:
(a–e) cryofracture surfaces; (a’–e’,a”–e”) etcyed cryofracture surfaces: (a–a”) PLA/PBS 70/30; (b–b”)
PLA/PBS/EGMA 70/30/5; (c–c”) PLA/PBS/EGMA 70/30/10; (d–d”) PLA/PBS/EGMA 70/30/15;
(b–b”) PLA/PBS/EGMA 70/30/20.

It can be observed from Figure 5a that the 70/30 sample shows a typical “sea–island” structure,
where the PBS sphere particles were unevenly dispersed in the continuous PLA phase. In the etched
cryo-fracture surfaces shown in Figure 5a’,a”, it is clear that large voids surrounding spherical
PBS nodules with spherical PBS phases are surrounded by PLA crystals with no interconnection
between PLA and PBS phases. Investigating the morphology further, it can be found that even more
PBS particles detached from the PLA matrix, which proved that the two phases were immiscible,
which can consequently result in low mechanical properties of the binary blend. With the incorporation
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of 5 wt % EGMA, the morphology shown in Figure 5b of the ternary blend has changed somewhat with
interfaces becoming obscured between PLA and PBS phases. Although some of the PBS particles are
still being pulled out, there are numerous interconnections between the PLA crystal and the PBS phase
obtained that are presented in Figure 5b’,b”, which indicated that the EGMA improves the compatibility
of the two phases. With the further addition of EGMA from 10 wt % to 20 wt % into the PLA/PBS
blend, the two-phase interface has gradually disappeared, as shown in Figure 5c–e, and there are
many white substances around the PBS particles, indicating that the EGMA takes part in the reactions
with PLA and PBS, and serving as a bridge to connect the two, which improves the phases interfacial
adhesion. Meanwhile, it is clearly observed that the dispersed PBS phase transforms from the spherical
shape to a shish-like shape with higher EGMA added to the matrix shows PLA amorphous etched
cryofracture surfaces (Figure 5c”–e”). The spherical PBS and PLA crystals are connected by EGMA,
which strongly proves that polymer compatibility is improved.

The impact toughness of PLA increased significantly with the addition of PBS
and EGMA as discussed above, and the microimages of impact failure surface are indicated
in Figure 6. In Figure 6a, the neat PLA exhibited smooth surfaces similar to the cryofracture surface,
indicating typical brittle behavior. With the addition of PBS, the impact surface showed little plastic
deformation presented in Figure 6b, as evidence of an insignificant toughening effect caused by
the poor interfacial adhesion between PLA and PBS. When 5 wt % EGMA was added into a PLA/PBS
blend, several plastic deformation areas were observed in Figure 6c, indicating an improved toughness
of the blend. When more than 10 wt % EGMA was added to a PLA/PBS blend, the morphology of
the impact surfaces changed significantly, shown in Figure 6d–f with numerous cavitation and clear
plastic. In particular, it can be seen that the large number of fibers are stretched, indicating plastic
deformation of 70/30/20 samples, which are able to absorb a large amount of impact energies and lead
to increased toughness.

Figure 6. SEM micrographs of impact fracture surfaces: (a) neat PLA; (b) 70/30; (c) 70/30/5;
(d) 70/30/10; (e) 70/30/15; (f) 70/30/20.

3.4. Compatibilizer EGMA Localization in the PLA/PBS Blend Analysis

For a multi-phase blend system, the selective localization of each phase has a great influence on
the morphology, and consequently affects the mechanical properties of the blend [31]. Many researchers
have conducted theoretical research on phase localization predictions. Among them, the simplest
and most widely applied method is the spreading coefficient model proposed by Harkins [32].
He established a spreading coefficient mathematical equation to predict phase selective localization for
ternary blend:

λABC = γAC − γAB − γBC (1)
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Figure 7. Possible morphologies predicted by spreading coefficients.

where λABC is the spreading coefficient, A, B, and C represent EGMA, PLA, and PBS
phases, respectively. γPLA/PBS, γEGMA/PLA and γEGMA/PBS are the interfacial tensions between
the two different phases, respectively, which can be calculated by the following Equations (2)–(6)
found by Wu [33]:
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γ = γd + γp (5)

γH2O = γd
H2O

+ γp
H2O

, γCH2 I2 = γd
CH2 I2

+ γp
CH2 I2

(6)

in which γ is the surface energy, γd and γp are the surface energy of dispersion and polar

component, and θH2O and θCI2I2 are the contact angles with water and diiodomethane, respectively,

PLA (θH2O = 66.4◦, θCI2I2 = 42.9◦), PBS (θH2O = 63.9◦, θCI2I2 = 36.2◦), and EGMA (θH2O = 109.2◦,

θCI2I2 = 61.1◦). The surface energy of water and diiodomethane are γd
H2O = 22.1 mN/m,

γp
H2O = 50.7 mN/m, γd

CI2I2 = 44.1 mN/m and γp
CI2I2 = 6.7 mN/m used for reference [34].

Table 1. The prediction parameters of phase selective localization of PLA, PBS and EGMA.

Sample

Surface Tension (mN/m)
Interfacial

Tension
(mN/m)

Spreading
Coefficient

(mN/m)
Total
(λ)

Dispersion
(λd)
(cd)

Polar
(λp)

PLA 42.29 33.27 9.02 γPLA/PBS = 0.9 λPLA/EGMA/PBS = −9.36
PBS 45.46 36.44 9.01 γPBS/EGMA = 5.24 λEGMA/PLA/PBS = −1.12

EGMA 30.72 30.11 0.61 γPLA/EGMA = 5.02 λEGMA/PBS/PLA = −0.68
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According to the above theoretical analysis, the interfacial tensions and spreading coefficients
between components can be calculated and are listed in Table 1. The γPLA/PBS is higher than γPBS/EGMA

and γPLA/EGMA, showing the poor compatibility between PLA and PBS, attributed to the higher

the interfacial tension value and the weaker interaction between the components [31].
Furthermore, γPLA/EGMA is lower than γPBS/EGMA, indicating that the compatibility between

PLA and EGMA is better than PBS and EGMA. In the meantime, the spreading coefficient values
of λPLA/EGMA/PBS, λEGMA/PLA/PBS and λEGMA/PBS/PLA are all negative. According to the possible

morphologies predicted by spreading coefficients [32] shown in Figure 7, the EGMA phase locates
at the phase interface between PLA and PBS in spherical form, while some spherical particles exist
in the PLA phase as presented in Figure 7d. In summary, the schematic illustration of possible
morphologies predicted by the PLA/PBS blend with the inclusion of EGMA is shown in Figure 8.

Figure 8. Schematic illustration of the morphology evolution PLA/PBS blend with the inclusion
of EGMA.

Based on the above theoretical analysis, the EGMA as spherical particles is distributed
at the PLA-PBS interfaces. In order to verify the correctness of theoretical analysis, studying the phase
morphology of polymers is an essential proof. Due to the different mass fractions of each component
in PLA/PBS/EGMA blends, it is difficult to determine the location of the EGMA as shown in Figure 5.
To visually determine the location of the EGMA, 50/50 PLA/PBS and 50/50/10 PLA/PBS/EGMA blends
were prepared, and the SEM images of cryofracture surfaces and PLA amorphous etchings can be
found in Figure 9. In Figure 9a, the interface clearly exists on boundaries of PLA and PBS phases.
Meanwhile, there are many large voids and no interconnection between PLA and PBS phases are shown
in Figure 9a’–a”, since the incompatibility of PLA and PBS has been proven above. With the incorporation
of 10 wt % EGMA shown in Figure 9b, the cryofracture surface exhibited a very smooth surface with
the disappearance of phase interfaces. In particular, when the PLA amorphous was etched, it is clearly
observed from Figure 9b’–b” that a large number of EGMA particles are distributed at the interface
between PLA and PBS, connecting with both PBS and PLA crystals, thus proving that the previous
theoretical analysis is correct.
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Figure 9. SEM images of cryofracture surfaces and PLA amorphous were etched cryofracture
surfaces:(a–a”) PLA/PBS 50/50; (b–b”) PLA/PBS/EGMA 50/50/10.

3.5. Toughening Mechanism

It is known to all that the efficiency of the flexible material in toughening the PLA significantly
relies on the interfacial compatibility between dispersed phase and PLA matrix. Poor compatibility leads
to low interfacial adhesion between the two phases; when subjected to tensile or impact, phase separation
easily occurs, and the toughening effect is not achieved. Nevertheless, compatibility that is too high
is also not good for toughness because it does not permit stress to be alleviated with high interfacial
adhesion. Therefore, in this part, the toughening mechanism of the PLA is established by investigating
the morphology and interfacial compatibility of the PLA/PBS blend with the inclusion of EGMA.

The elongation at break is an important indicator for evaluating toughness. According to
mechanical tests shown in Figure 3, it can be observed that the elongation at break of PLA significantly
increased with the inclusion of PBS, which is due to the PBS is the soft material that can lead
to a toughening effect. When EGMA is added to PLA/PBS blend, the elongation at break continues
to increase significantly. In particular, with 10 wt % EGMA, the sample exhibits an elongation at break
that reaches 549.4%. Such improvement is attributed to the occurrence of in situ reaction between
PLA and PBS phases with the inclusion of EGMA, which can improve the compatibility between
PLA and PBS. However, with further increase of EGMA loading, the elongation at break of PLA/PBS
blend containing 20 wt % is only 324.1%, showing a sharp downward trend that could be ascribed
to the changes in the size of dispersed phase domains. Owing to the dispersed PBS particles acting
as stress concentrators in PLA/PBS and PLA/PBS/EGMA blends [35], the size and distribution of
the dispersed phase particles are other important factors affecting the elongation at break besides
interfacial adhesion [36].

The evolution of PBS particle shape in phase morphology with the inclusion of EGMA is shown
in Figure 10. It can be seen that the large PBS spherical particles are distributed in the PLA matrix.
For samples with EGMA less than 10 wt %, the PBS particles distributed uniformly were accompanied
by decreased particle size presented in Figure 10b; the dispersed PBS particles that act as stress
concentrators reduced the number of stress concentrations, and led to improved elongation at break [37].
With further increase of EGMA content, the morphology changed significantly where the PBS
particles increased in particle size and gradually evolved from spherical to ellipsoidal as shown in
Figure 10c, and the ellipsoidal particles were unevenly distributed in the matrix act as some flaws
in PLA/PBS/EGMA ternary blends caused stress concentration, which could be have an effect on
the reduction in elongation at break. For the sake of investigating the relationship between the change of
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phase morphology and the elongation at break, the stress analysis model elliptical shape was presented
in Figure 10c”; Han et al. [38] established the stress equation at the edge of the hole as follows:

σθ =
1 − p2 − 2p + 2 cos 2θ

1 + p2 − 2p cos 2θ
σ0 (7)

in which, p = (a − b)/(a + b), a and b are the length of the major and minor axis of the ellipsoidal hole,
σ0 is the average stress, and θ is the angle of the dot on the edge of the ellipsoidal hole to the x-axis.
The maximum normal stress can be obtained as follows:

σmax = σθ=±π/2 =
3 − p
1 + p

σ0 = (1 +
2a
b
)σ0 (8)

Figure 10. Evolution of PBS particle shape in phase morphology with the inclusion of EGMA:(a,a’)
PLA/PBS 70/30; (b,b’) PLA/PBS/EGMA 70/30/10; (c,c’) PLA/PBS/EGMA 70/30/10; (a–c) schematic
diagram; (a’–c’) SEM images of cryofracture surfaces; (c”) analysis model.

It can be seen that the maximum stress of the circular hole (a = b) is three times more
than the average stress, and the larger the value of a/b, the larger σ is. Therefore, the maximum stress
of the elliptical hole is larger than that of the circular hole, which shows that the stress concentration of
the elliptical hole is more serious, resulting in a sharp decrease in elongation at break.

The impact strength is another important indicator for evaluating toughness.
As can be seen in Figure 4—that the impact strength of PLA increased with the value
of 7.3 kJ/m2—while the improvement is not obvious, this is due to the poor compatibility of
the PBS particles in the PLA matrix as shown in the SEM image of cryofracture surface in Figure 5a.
Meanwhile, it can be clearly observed that the large voids surrounding spherical PBS are surrounded
by PLA crystals, with no interconnection between two phases. Furthermore, many PBS particles
detached from the PLA matrix and PLA amorphous was etched in cryofracture surfaces in Figure 5a”,
which indicated that the two phases were immiscible. When the sample is subjected to the impact
process, the poor interfacial adhesion leads to interface detachment, limiting the increase of
toughness. However, the impact strength has been significantly improved when EGMA was added
to a PLA/PBS blend. In particular, the impact strength has increased nearly 20 times compared
to neat PLA with incorporation of 20% EGMA, which was due to EGMA improving the interfacial
compatibility between PLA and PBS phases. The FT-IR spectra indicated that the epoxy group of
EGMA reacts with the hydroxyl groups of PLA and PBS, and the EGMA distributed at the interface
between PLA and PBS phase acted as a bridge to connect two phases presented in Figures 5 and 9.
At the same time, the specimens of each blend undergo the impact test as shown in Figure 4B–C.
The neat PLA and PLA/PBS impact specimens are completely broken, while PLA/PBS blends with
the added EGMA are not completely separated. In particular, the stress-whitened areas appeared
around impact-fractured surfaces, and this area gradually became larger as the EGMA content
increased. In addition, the impact interface also became rough gradually as presented in Figure 4Bc–f,
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which indicated the improvement of the two-phase compatibility, and the results are consistent with
those of impact strength.

4. Conclusions

In the work, high toughness biodegradable PLA/PBS blends with compatibilizer EGMA were
successfully fabricated by melt blending using a self-made triple screw extruder. The mechanical
properties, morphology, and interfacial compatibility of the blends with various EGMA content
were investigated. The FT-IR spectra results indicated that the epoxy group of EGMA reacts with
the hydroxyl groups of PLA and PBS, which proved the occurrence of interfacial reactions
among the tri-components. The morphology of PLA/PBS blend revealed that the two phases are
immiscible. With EGMA added to the PLA/PBS blends, obvious morphology changes were observed,
indicating a significantly improved compatibility and interfacial adhesion. Meanwhile, the selective
prediction of spreading coefficient was obtained through a contact angle test, which indicated
that the EGMA was selectively localized at the phase interface between PLA and PBS phase in
the form of spherical particles, which was verified by morphology of cryofracture and PLA amorphous
being etched into cryofracture of surfaces PLA/PBS (sample 50/50) and PLA/PBS/EGMA blend
(sample 50/50/10). Finally, the excellent compatibility leads to a significant increase in the toughness
of PLA ternary polymer. Based on the mechanical properties’ test results, the elongation at break
and impact strength of PLA/PBS blends reached the maximal value of 549.4% and 46.5 kJ/m2

when 10 wt % and 20 wt % EGMA were added, exhibiting superior stretchability of 83 times
and 20 times higher than neat PLA, respectively. Ultimately, the toughening mechanism of PLA based
polymers was established based on the above analysis, exploring a new way for the extensive
applications for degradable material.
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