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Abstract: The ocean-going environment is complex and changeable with great uncertainty, which
poses a huge challenge to the navigation ability of ships working in the pelagic ocean. In this paper,
in an attempt to deal with the complex uncertain interference that the environment may bring to
the strap-down inertial navigation system/polarization navigation system/geomagnetic navigation
system (SINS/PNS/GMNS) integrated navigation system, the multi-mode switching variational
Bayesian adaptive Kalman filter (MMS-VBAKF) algorithm is proposed. To be more specific, to identify
the degrees of measurement interference more effectively, we design an interference evaluation and
multi-mode switching mechanism using the original polarization information and geomagnetic
information. Through this mechanism, the interference to the SINS/PNS/GMNS navigation system
is divided into three cases. In case of slight interference (case SI), the variational Bayesian method
is adopted directly to solve the problem that the statistical characteristics of measurement noise are
unknown. By the fixed-point iteration mechanism, the statistical properties of the measurement
noise and the system states can be estimated adaptively in real time. In case of interference-tolerance
(case TI), the estimation of the statistical characteristics of measurement noise need to weigh the
measurement information at the moment and a priori value information comprehensively. In case of
excessive interference (case EI), the SINS/PNS/GMNS integrated navigation system will perform
mode switching and filtering system reconstruction in advance. Then, the information fusion and
navigation states estimation can be completed. Consequently, the reliability, robustness, and accuracy
of the SINS/PNS/GMNS integrated navigation system can be guaranteed. Finally, the effectiveness
of the algorithm is illustrated by the simulation experiments.

Keywords: multi-mode switching; variational Bayesian; adaptive filter; autonomous navigation

1. Introduction

With the advancement of activities such as marine energy resource exploration, mar-
itime trade and transportation, and marine biodiversity research, far-sea missions have
become increasingly frequent. Reliable navigation is one of the key technologies to ensure
the smooth completion of the far-sea tasks. In the offshore field, commonly used means
for navigation include inertial navigation [1], acoustic navigation [2], geophysical field
matching navigation [3], satellite navigation [4], and visual navigation [5]. When a ship is
working in an unfamiliar pelagic environment, however, the navigation methods it can rely
on are extremely limited. In fact, it is quite difficult to build accurate geophysical databases
(such as terrain databases and altitude databases) in unfamiliar far-sea areas, and there is
no complete underwater acoustic base station to rely on. Furthermore, the unstructured
property and the uncertain reflection effect of the sea surface will also lead to failure of
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visual navigation. Inertial navigation, despite its capability to provide uninterrupted navi-
gation information all day and in all weather, has an inherent deficiency that the navigation
error will accumulate with time. Large errors will be produced if inertial navigation is
used alone for long-term tasks. Due to its high precision, the satellite navigation can serve
as a suitable option to correct inertial navigation errors. However, the power of satellite
navigation signal is low, which makes it quite sensitive to either intentional or unintentional
interferences [6]. Hence, it is urgent to develop an autonomous navigation method that is
available under the condition that satellite navigation is out of work.

In order to overcome the aforementioned shortcomings of the existing navigation
schemes and achieve reliable navigation in the far-sea environments, a fully autonomous
integrated navigation scheme based on SINS/PNS/GMNS will be developed in this paper.
As an emerging method for autonomous navigation, polarization navigation extracts
navigation information from the polarization pattern of the skylight [7–10]. It has been
found in the existing studies that a variety of animals (such as ants [11], bees [12], monarch
butterflies [13], crickets [14], etc.) can perceive the polarized light distribution pattern in
the sky to distinguish the direction, thereby guiding their foraging, homing, and other
behaviors. As a traditional geophysical navigation method, geomagnetic navigation is not
affected by time or spatial factors and can be used as an effective complement of inertial
navigation when the polarization sensors become unreliable overnight [15].

To make the best performance of the SINS/PNS/GMNS integrated navigation system,
it is necessary to have a comprehensive understanding of system noise. When using geo-
magnetic information for navigation, both hard and soft magnetic interferences caused by
the carrier steel structure and electrical module should be considered [16–19]. On the other
hand, the skylight polarization mode is affected by complex atmospheric conditions [20–24].
Specifically, under cloudy or hazy weather conditions, the degree of polarization (DoP)
drops sharply and the angle of polarization (AoP) would also be distorted. Raymond
et al. [23] collected the polarization data of clear sky and foggy sky in the seaside area,
compared it with the polarization spectrum of aerosol single scattering, and illustrated
the difference of polarization in different weather. Ma et al. [24] conducted a quantitative
analysis of the difference of AoPs under different weather conditions and investigated the
relationship between DoP and AoP distortion. Moreover, due to the polarization sensing
mechanism, the data obtained from the polarization sensors are affected by noises with
complicated characteristics [25–28]. Up to date, many elegant results on noise treatment
have been reported. Chu et al. [29] constructed a compact on-board polarization orientation
system and proposed an adaptive robust algorithm based on information entropy theory.
Zhao et al. [30] proposed a self-learning multi-rate residual calibration algorithm for the
INS/polarization integrated system to deal with the system noise. Shen et al. [31] designed
an INS/GPS/polarization compass system and proposed the MR-STSCKF algorithm to
deal with noisy observation as well as the problem of inconsistent sampling frequency.
To improve the accuracy of the polarization/geomagnetic/GNSS/MIMU integrated navi-
gation system under environmental interferences, Yuan et al. [32] proposed an adaptive
filtering algorithm based on Sage–Husa Kalman filter. It should be noted, however, that
the aforementioned approaches share an implicit assumption that the measurement noises
are Gaussian random variables, which is too restrictive for practical navigation systems
operating under harsh environments.

Ships may encounter harsh conditions in the unfamiliar pelagic environment, such as
cloudy and rainy weather which is harsh on the polarization sensor. Under such conditions,
the sky atmospheric polarization distribution pattern might be destroyed or completely
depolarized, and the polarization navigation system will fail to work. Moreover, once
the ship enters an iron–nickel mining sea area, the geomagnetic measurement data will
be completely distorted. Therefore, it is essential to set up an interference detection and
evaluation mechanism for the SINS/PNS/GMNS integrated navigation system. Reliable
navigation has become a research hotspot [33–35]. Zhang et al. [33] adopted the method
of manually setting the evaluation value and federated filtering to conduct interference
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processing. To cope with the model errors and uncertain interference, Chen et al. [34]
proposed a method that integrates the advantages of the H-infinity filter and multiple
fading filter and improves the robustness of the navigation system. Even though a certain
degree of success has been achieved with the existing methods, how to cope with the
complex interference in the INS/PNS/GMNS integrated navigation system still remains
an unsolved issue.

In this paper, we propose a multi-mode switching variational Bayesian adaptive
Kalman filtering approach to ensure both accuracy and reliability of the SINS/PNS/GMNS
integrated navigation system. In order for a more accurate noise description, the noises in
the PNS/GMNS measurement model are treated as inverse Wishart distribution statistics
characteristics. On this basis, the variational Bayesian filtering algorithm is adopted for
joint estimation of the measurement noise covariance, the system state, and the state error
covariance. Furthermore, to ensure the stability of real-time filtering under abnormal state,
an interference evaluation and mode switching mechanism will be developed based on the
original polarization and geomagnetic data. With the proposed scheme, a more accurate
state estimate can be obtained when the system operates normally and reliable navigation
can be guaranteed when harsh interference occurs.

In summary, for the autonomous navigation requirements of ships in unfamiliar pelagic
scenarios, the technical advantages of the proposed scheme can be summarized as follows:

• As an autonomous integrated system for ocean-going ships, the SINS/PNS/GMNS
integrated navigation system is subject to complex environmental interference. Hence,
the statistics of the measurement noises should be estimated in real time instead
of being prescribed as constant. In this paper, the variational Bayesian method is
adopted to estimate the noise statistics along with the system state based on real-time
observations from PNS and GMNS.

• The reliability of the SINS/PNS/GMNS integrated navigation system is affected
by the uncertainties in pelagic environment. For example, severe degradation of
the accuracy in the integrated navigation system might be caused when the ship
encounters harsh weather conditions or travels through an iron–nickel mining sea area.
In order to enhance the reliability of the SINS/PNS/GMNS integrated navigation
system, an interference evaluation algorithm and mode switching mechanism are
developed in this paper. With the proposed scheme, the abrupt change resulting from
harsh environmental conditions can be detected timely and the filtering mode can be
switched smoothly, thereby ensuring the reliability of the integrated navigation system.

The paper is organized as follows. In Section 2, the system state model and mea-
surement model of the SINS/PNS/GMNS integrated navigation system are established
at first. Next, to deal with the unknown time-varying noise statistics in the PNS/GMNS
observations, the VBAKF algorithm is introduced. Furthermore, for the sake of the pos-
sible uncertainty in the pelagic sea scenario, the interference evaluation mechanism and
multi-mode switching algorithm are designed to improve system reliability. Lastly, the
MMS-VBAKF algorithm is summarized. In Section 3, the performance of the proposed al-
gorithm is verified by simulation experiments in three scenarios. Finally, a brief conclusion
is given in Section 4.

2. Methods
2.1. SINS/PNS/GMNS Integrated Navigation Model and the Conjugate Prior Distribution of Noise
2.1.1. SINS/PNS/GMNS Integrated Navigation Model

For the integrated navigation system of ocean-going ships, the centralized filtering is
the main form adopted by the current maritime ship system. Therefore, in this paper, we
also adopt centralized filtering to realize SINS/PNS/GMNS integrated navigation, and its
basic framework is shown in Figure 1.
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In this design system, the integrated navigation system state model is

.
x = Φ · x + G · w (1)

where x =
[

φE φN φU εx εy εz ∇x ∇y ∇z
]T represents the system state vari-

ables, in which φE, φN , φU represents attitude angle errors of east, north, and zenith; εx, εy, εz
denotes the gyro drift errors;∇x,∇y,∇z denotes the three-axis accelerometer bias errors; w
denotes the system excitation white noise; Φ denotes the state transition matrix; G denotes
the process noise driving array. Φ and G can be determined by the strap-down inertial
navigation errors equation [36].

The measurement information of the integrated navigation system consists of polariza-
tion measurement and geomagnetic measurement. First of all, for the polarization system,
the measurement model is established based on the formation mechanism of polarization
distribution patterns, that is, the vertical relationship between the sun vector and the
polarization vector.

sn · C̃n
b (1 + ∆ψ)pb = 0 (2)

where sn is the solar vector which can be obtained by querying the astronomical almanac
according to the time and position information of the carrier; C̃n

b is the attitude transforma-
tion matrix from the machine system to the navigation system solved by the navigation
system; ∆ψ is the error angle between the calculated three-dimensional attitude and the
real three-dimensional attitude; pb is the polarization vector measured by the polarization
sensor in real time. Equation (2) can be further arranged into the measurement equation:

zpol = Hpol x + vpol (3)

where zpol is the polarization measurement; Hpol is the polarization measurement matrix,

specifically expressed as Hpol =

[
sn ·

(
C̃n

b pb

)×
, 01×6

]
, (·)× is the antisymmetric operator;

vpol is the polarization measurement noise with unknown and time-varying statistical
information.

Next, in the geomagnetic measurement model, considering the one-to-one correspon-
dence between the geomagnetic vector output by the world magnetic model (WMM) and
that measured by the geomagnetic sensor in the same geographical location and time, the
geomagnetic measurement model is established as follows:

zmag = C̃n
b mb −mn (4)
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where zmag is the geomagnetic measurement; mn is a three-dimensional geomagnetic
measurement given by WMM; and mb is a three-dimensional magnetic vector measured by
the magnetic sensor. Equation (4) can be further sorted out, giving

zmag = Hmagx + vmag (5)

where Hmag is the geomagnetic measurement matrix, specifically expressed as Hmag =[(
Cn

b Mb
)×, 03×6

]
; vmag is geomagnetic measurement noise, and in this paper is unknown

time-varying noise.
In summary, the measurement model of the SINS/PNS/GMNS integrated navigation

system is established as

z =

[
zpol
zmag

]
=

[
Hpol
Hmag

]
· x +

[
vpol
vmag

]
= Hx + v (6)

2.1.2. Conjugate Prior Distribution of Measurement Noise

For the constructed integrated navigation system model, it is assumed that the distri-
bution of one-step state prediction and that of the measurement likelihood both satisfy the
normal distribution, i.e.,{

p
(

xk

∣∣∣z1:k−1, Pk|k−1

)
= N

(
xk; x̂k|k−1, Pk|k−1

)
p(zk|xk, Rk) = N(zk; Hkxk, Rk)

(7)

where N(·) represents a normal distribution; xk, zk, Rk, Hk, respectively represent the state
vector, measurement vector, measurement error covariance matrix, and state transition
matrix at time k; z1:k−1 represents the measurement from time 1 to k− 1; x̂k|k−1 represents
the one-step state estimation vector; Pk|k−1 represents the one-step estimated state error
covariance matrix. The calculation can be obtained according to the following formula:{

x̂k|k−1 = Fk−1 x̂k−1
Pk|k−1 = Fk−1Pk−1FT

k−1 + Qk−1
(8)

where (·)T represents the transpose operator; Fk−1 represents the state transition matrix
at k− 1 after the discretization of the state equation; Qk−1 represents the systematic error
covariance matrix of state prediction error. In the integrated navigation filtering algorithm,
inverse Wishart (IW) distribution is usually selected as the conjugate prior distribution of
the error covariance matrix, and the specific function form is [37]

IW(Λ; λ, Θ) =
|Θ|

λ
2 |Λ|

−(λ+d+1)
2 exp

{
− 1

2 tr
(

ΘΛ−1
)}

2
1
2 dλΓd

(
λ
2

) (9)

where λ is the degree of freedom parameter. d is the dimension of the matrix. Θ is the
inverse scale matrix, which is a d× d—dimensional symmetric positive definite matrix. tr(·)
is the trace operator. Γd(·) is the Gamma distribution of the d variable. In this paper, inverse
Wishart distribution is selected as conjugate prior distribution of state noise covariance
matrix and measurement noise covariance, which can be given as p

(
Pk|k−1

∣∣∣z1:k−1

)
= IW

(
Pk|k−1; ĉk|k−1, Ĉk|k−1

)
p(Rk|z1:k−1) = IW

(
Rk; ûk|k−1, Ûk|k−1

) (10)

where ĉk|k−1 and Ĉk|k−1 are the degree of freedom parameters and inverse scale matrix
of state error covariance matrix, respectively. ûk|k−1 and Ûk|k−1 are the degree of free-
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dom parameters and inverse scale matrix of the measurement error covariance matrix,
respectively.

For the inverse Wishart distribution, when λ > d + 1, the inverse Wishart distribution
satisfies E

[
Λ−1

]
= (λ− d− 1)Θ−1. Thus, the one-step update of each parameter can be

deduced [38]: 
ĉk|k−1 = n + τ + 1
Ĉk|k−1 = τPk|k−1
ûk|k−1 = ρ(ûk−1 −m− 1) + m + 1
Ûk|k−1 = ρÛk−1

(11)

where τ is the non-negative regulating parameter. ρ is the attenuation factor, and it satisfies
0 < ρ ≤ 1.

To sum up, this section completes modeling of the SINS/PNS/GMNS integrated
navigation system and modeling of the noise prior distribution of the measurement system.

2.2. Adaptive Posterior Estimation Based on Variational Bayesian Algorithm

When the measurement information of the SINS/PNS/GMNS integrated navigation
system is updated, the probability distribution of filtering estimation parameters can be
estimated posteriorly by using real-time polarization information and geomagnetic infor-
mation, which can improve the real-time calculation accuracy of the integrated navigation
system. For the proposed ship integrated navigation system model, the following formula
can be obtained according to the Bayesian theory:

p
(

xk, Pk|k−1, Rk

∣∣∣z1:k

)
=

p(xk ,Pk|k−1,Rk ,zk)
p(z1:k)

=
p(zk|xk ,Pk|k−1,Rk ,z1:k−1)p(xk ,Pk|k−1,Rk|z1:k−1)

p(zk |z1:k−1)

(12)

The measured value at time k is set to be independent of the measured value at any
previous time, and the above equation can be written as

p
(

xk, Pk|k−1, Rk

∣∣∣z1:k

)
=

p
(

zk

∣∣∣xk, Pk|k−1, Rk

)
p
(

xk, Pk|k−1, Rk

∣∣∣z1:k−1

)
p(zk)

(13)

If the maximum posterior probability distribution functions of parameters
{

xk, Pk|k−1, Rk

}
are estimated directly by Bayesian theory, it is difficult to obtain accurate analytical so-
lutions of

{
xk, Pk|k−1, Rk

}
due to the coupling relationship among parameters. A new

probability distribution function q
(

xk, Pk|k−1, Rk

)
of
{

xk, Pk|k−1, Rk

}
is set to approximate

the real posterior probability distribution function p
(

xk, Pk|k−1, Rk

∣∣∣z1:k

)
by using the varia-

tional method, and the mean-field theory (MFT) is applied to q
(

xk, Pk|k−1, Rk

)
[37–39]; it

can be obtained:
q
(

xk, Pk|k−1, Rk

)
= q(xk) · q

(
Pk|k−1

)
· q(Rk) (14)

To make the probability distribution function q
(

xk, Pk|k−1, Rk

)
sufficiently approxi-

mate the true posterior probability distribution function p
(

xk, Pk|k−1, Rk

∣∣∣z1:k

)
, it can be

obtained by minimizing the Kullback–Leibler divergence (KLD) of the two probability
density functions, i.e.,{

q(xk), q
(

Pk|k−1

)
, q(Rk)

}
= argminDKL

(
q
(

xk, Pk|k−1, Rk

)∣∣∣∣∣∣p(xk, Pk|k−1, Rk

∣∣∣z1:k

))
= argminDKL(q(κ)||p(κ|z1:k ))

(15)
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where the KLD is defined as DKL(q(x)||p(x)) ,
∫

q(x) ln q(x)
p(x)dx, and κ =

{
xk, Pk|k−1, Rk

}
.

Equation (15) can be solved and simplified to obtain

ln p(z1:k) = DKL(q(κ)||p(κ|z1:k )) +
∫

q(κ) ln
p(κ, z1:k)

q(κ)
dκ (16)

In Equation (16), since DKL(·) ≥ 0, L(q(κ)) =
∫

q(κ) ln p(κ,z1:k)
q(κ) dκ can be the lower

bound of ln p(z1:k) and is usually referred to as the evidence lower bound (ELOB) of
ln p(z1:k). Therefore, solving the minimum value of DKL(q(κ)||p(κ|z1:k )) can be equivalent
to finding the maximum ELOB of ln p(z1:k), that is, the problem can be transformed into
finding the maximum value of L(q(κ)):

argmaxL(q(κ))
= argmax

{∫
q(κ) ln p(κ, z1:k)dκ−

∫
q(κ) ln q(κ)dκ

} (17)

Further, it can be obtained that

ln q(τ) = Eκ(−τ){ln p(κ, z1:k)}+ Cτ (18)

whereE{·} represents the expectation operator, τ represents any parameter in
{

xk, Pk|k−1, Rk

}
,

κ(−τ) represents other parameters of
{

xk, Pk|k−1, Rk

}
excluding τ, and Cτ represents con-

stant values related to τ.
According to the probability distribution model of state quantity, measurement quan-

tity, and noise of PINS/PNS/MNS integrated navigation system, the joint probability
density function can be obtained. Further, according to MFT and Equation (14), the fixed-
point iteration method is adopted to update xk, Pk|k−1, Rk respectively. In consequence, the
posterior probability distribution parameter of xk can be updated as x̂i+1

k = x̂k|k−1 + Ki+1
k

(
zk − Hk x̂k|k−1

)
Pi+1

k = Pi+1
k|k−1 − Ki+1

k HkPi+1
k|k−1

(19)

In which, Ki+1
k satisfies Ki+1

k = Pi+1
k|k−1HT

k

(
HkPi+1

k|k−1HT
k + Ri+1

k

)−1
.

In conclusion, the variational Bayesian framework is adopted to derive the posterior
probability density parameter update of

{
xk, Pk|k−1, Rk

}
by fixed-point iteration technology.

When the measurement data arrive, the variational Bayesian filter can estimate the posterior
probability distribution of

{
xk, Pk|k−1, Rk

}
in real time, and obtain more accurate navigation

parameters, which have excellent real-time performance.

2.3. Interference Evaluation Algorithm and Mode Switching Mechanism of the SINS/PNS/GMNS
Integrated System

In order to improve the operating reliability of the SINS/PNS/GMNS integrated navi-
gation system, the interference evaluation algorithm and multi-mode switching mechanism
are designed. For instance, rainy or cloudy weather can cause serious interference to polar-
ization data, and submarine magnetic minerals can cause local magnetic field distortion. On
these occasions, the measurement interference should be detected and evaluated quickly,
parts of the system will be isolated, and the filter model will be restructured to guarantee the
reliability of the ship’s integrated navigation system. In this section, only the interference
on polarization navigation system or geomagnetic navigation system is considered.
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2.3.1. Interference Evaluation Algorithm and Multi-Mode Switching Mechanism of the
Polarization System

The navigation accuracy calculated based on the polarization data depends on whether
the atmosphere has an obvious scattering distribution to the sunlight. When the weather
is clear, the atmospheric composition is relatively pure, the polarization mode formed
by scattering is less affected by large particle suspensions and aerosols, and the obtained
polarization data have a high signal-to-noise ratio. On the contrary, the signal-to-noise ratio
of the polarization data measured in cloudy or rainy weather is extremely low. The DoP
value is the physical quantity that characterizes the proportion of polarized light in the
total skylight intensity, which can effectively measure the credibility of polarization data:

DoP =
Iin − Iin · cos2 α

Iin + Iin · cos2 α
=

1− cos2 α

1 + cos2 α
(20)

where Iin indicates the intensity of incident light, and α indicates the polarization angle
measured by the polarization sensor.

There are water molecules, aerosols, and other components in the atmosphere near
the sea surface, which will bring uncertain interference to polarization data. In addition,
changing weather conditions at sea, such as sudden rain, can even cause polarization
sensors to fail. In order to deal with the interference of the polarization system more
effectively, the interference evaluation mechanism of the polarization system is designed.
With the interference evaluation parameter ςpol , it is divided into three cases:

ς
pol
i =


1,

DoPi
1−DoPi

,
0,

Thu
pol < DoPi ≤ 1

Thd
pol < DoPi < Thu

pol
DoPi ≤ Thd

pol

(21)

In Equation (21), ς
pol
i indicates the interference evaluation parameter. Thu

pol indicates
the upper bound threshold; when the DoP > Thu

pol , it means that the interference is
slight and can be handled smoothly by the system filter. The parameter Thu

pol should be

determined by the actual accuracy requirements for the navigation task. Thd
pol indicates

the lower bound threshold; when the DoP ≤ Thd
pol , it means that the polarization pattern

is badly disrupted. The parameter Thd
pol should be determined by the performance of

the polarization sensor. According to the degree of interference in polarization data, it is
discussed as the following three cases:

• Case I: When DoP > Thu
pol , the interference evaluation parameter ς

pol
i satisfies ς

pol
i = 1.

The physical meaning is that when the polarization sensor works under the condition
that DoP value is above the upper bound threshold Thu

pol , there are slight interference
noises in the acquired measurement data. The weight of polarization navigation
is equal to 1. The states of the navigation system can be estimated by the VBAKF
algorithm smoothly in time. Accordingly, this case is defined as the case of slight
interference, i.e., Case SI.

• Case II: When Thd
pol < DoPi < Thu

pol , the interference evaluation parameter ς
pol
i

satisfies 0 < ς
pol
i < 1. It is indicated that the polarization sensor is working with a

certain extent interference. In this case, the estimation of noise statistical properties
needs to weigh the measurement information and the prior noise information at the
same time, and then estimate the measurement noise comprehensively. Accordingly,
this case is defined as the case of interference-tolerance, i.e., Case TI. The measurement
noise covariance can be estimated as:

R̂pol
k =

(
1− ς

pol
i

)
Rpol

k−1 + ς
pol
i R̃pol

k (22)
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In Equation (22), Rpol
k−1 indicates the prior measurement error covariance; R̃pol

k in-
dicates the measurement error covariance calculated by the VBAKF algorithm with the
measurement data in real-time.

• Case III: When DoP ≤ Thd
pol , the interference evaluation parameter ς

pol
i turns out to be

ς
pol
i = 0. In this case, it indicates that the degree of interference exceeds the handling

ability of the polarization system, and the polarization system is judged to be invalid.
Accordingly, this case is defined as the case of excessive interference, i.e., Case EI.
Further, with ς

pol
i = 0, the polarization system will be isolated and the filter should be

reconstructed. The system measurement model will switch to be:

z = zmag
i = Hmag

i xi + vmag
i (23)

2.3.2. Interference Evaluation Algorithm and Mode Switching Mechanism of the
Geomagnetic System

When the shipborne magnetic sensor measures geomagnetic data, in one aspect,
the navigation accuracy is affected by the hard magnetic interference and soft magnetic
interference. For the other, if the ship encounters a submarine magnetic mining area, the
abnormal magnetic field can directly lead the measured data to be distorted completely.
Therefore, to ensure the credibility of GMNS, the following magnetic interference detection
and evaluation mechanism are designed:

γ =
2 · abs

(√
sm2

x +
sm2

y +
sm2

z − |n MF|
)

|n MF|
(24)

where smx, smy, smz, respectively, represent the components of the geomagnetic vector on
the x, y, and z axes in the sensor coordinate system. n MF indicates the total intensity of
the geomagnetic vector in the navigation coordinate system. γ represents the interference
indication parameter of geomagnetic data.

ξ
mag
i =


1,
α · γi,
0,

0 ≤ γi ≤ Thd
mag

Thd
mag < γi ≤ Thu

mag
γi > Thu

mag

(25)

In the above formula, ξ
mag
i indicates the interference evaluation parameter of the

geomagnetic system; α indicates the normalization factor. Thu
mag indicates the upper bound

threshold; when the γi > Thu
mag, it means that the interference is too much and geo-

magnetic data are distorted severely. The parameter Thu
mag should be determined by the

performance of the geomagnetic sensor. Thd
mag indicates the lower bound threshold; when

the γi ≤ Thd
mag, it means that the interference is slight and can be handled smoothly by the

system filter. The parameter Thd
mag should be determined by the actual accuracy require-

ments for the navigation task. According to the degree of interference in geomagnetic data,
it is discussed as the following three cases:

• Case I: When 0 ≤ γi ≤ Thd
mag, the interference evaluation parameter ξ

mag
i = 1. In this

case, the interferences in GMNS data are slight and can be effectively estimated and
compensated by the VBAKF algorithm. Accordingly, this case is defined as the case of
slight interference, i.e., Case SI.

• Case II: When Thd
mag < γi ≤ Thu

mag, the interference evaluation parameter ξ
mag
i is

calculated to be a normalized weight coefficient. In this case, the GMNS should work
with a certain extent interference. Thus, the estimation of noise statistics needs to
weigh the measurement information and the prior noise information at the same time.
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Accordingly, this case is defined as the case of interference-tolerance, i.e., Case TI. The
measurement noise covariance can be estimated comprehensively as:

R̂mag
k =

(
1− ξ

mag
i

)
Rmag

k−1 + ξ
mag
i R̃mag

k (26)

In Equation (26), Rmag
k−1 indicates the prior measurement error covariance; R̃mag

k indi-
cates the measurement error covariance calculated by the VBAKF algorithm.

• Case III: When γi > Thu
mag, the interference evaluation parameter ξ

mag
i = 0. In this

case, it indicates that the Earth’s magnetic field is disturbed severely by abnormal
magnetic fields, and the GMNS system cannot work effectively. Accordingly, this case
is defined as the case of excessive interference, i.e., Case EI. Further, with ξ

mag
i = 0, the

geomagnetic system will be isolated and the filter will be reconstructed. The system
measurement model will switch to be:

z = zpol
i = Hpol

i xi + vpol
i (27)

2.4. Multi-Mode Switching VBAKF Algorithm Summary

To sum up, in the complex unfamiliar environment of pelagic seas, to achieve reliable
navigation of ships, environmental uncertainty and multi-source interference need to
be considered. Combining the variational Bayesian algorithm in Section 2.2 and the
interference evaluation and multi-mode switching mechanism in Section 2.3, the flowchart
of MMS-VBAKF method can be summarized in Figure 2.
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When the measurement data are updated, the interference evaluation factors of the po-
larization system and the geomagnetic system are calculated separately. In the filter process,
isolation processing is performed for the part of the system in this situation. For the situa-
tion where the measurement data contain non-negligible interference, the prior information
and the measurement information are weighed. For the normal operating parts of the
system, the variational Bayesian filter is used for adaptatively estimating the measurement
statistics. In this way, by designing an interference evaluation algorithm and multi-mode
switching mechanism, the environmental adaptability of the SINS/PNS/GMNS system
in the uncertain practical application environment would be improved. In consequence,
the MMS-VBAKF algorithm (Algorithm 1) proposed in this paper can be summarized
as follows:
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Algorithm 1: The MMS-VBAKF Algorithm

Input:
When t = 0, initialize:
û0, Û0, R0, ĉ0, Ĉ0, P0, Q0, x̂0, τ, m, ρ, dP, dR, Thu

pol , Thd
pol , Thu

mag, Thd
mag

Navigation parameter estimation:
For τ = 1 : L, do
(1) Obtain the polarization measurement values DoP and AoP, calculate

the polarization mode factor ς
pol
i , and select the mode;

(2) Case SI: ς
pol
i = 1:

for i = 0 : N, do
The fixed-point iteration mechanism and the VBAKF algorithm are used to
update ûi+1

k , Ûi+1
k , Ri+1

k , ĉi+1
k , Ĉi+1

k , Pi+1
k|k−1, x̂i+1

k , Pi+1
k , Ki+1

k in real-time;
End for;

(3) Case TI: Thpol
1−Thpol

< ς
pol
i < 1:

Update of the covariance matrix of polarization measurement noise:

R̂pol
k =

(
1− ς

pol
i

)
Rpol

k−1 + ς
pol
i R̃pol

k ;

Further update ĉk, Ĉk, Pk|k−1, x̂k, Pk, Kk;

(4) Case EI: ς
pol
i = 0:

The polarization system was evaluated to be failed. Isolate the polarization system,
and switch the system measurement model to:

z = zmag
i = Hmag

i xi + vmag
i ;

Restructure the integrated navigation system, and use fixed-point iteration mechanism
and VBAKF algorithm to update ûi+1

k , Ûi+1
k , Ri+1

k , ĉi+1
k , Ĉi+1

k , Pi+1
k|k−1, x̂i+1

k , Pi+1
k , Ki+1

k
in real-time;

(5) Obtain the geomagnetic measurement value, calculate the geomagnetic mode switching
factor, and select the mode;

(6) Case SI: ξ
mag
i = 1:

for i = 0 : N, do
The fixed-point iteration mechanism and the VBAKF algorithm are used to
update ûi+1

k , Ûi+1
k , Ri+1

k , ĉi+1
k , Ĉi+1

k , Pi+1
k|k−1, x̂i+1

k , Pi+1
k , Ki+1

k in real-time;
End for;

(7) Case TI: αThd
mag < γi ≤ αThu

mag:
The geomagnetic noise covariance matrix is updated to:

R̂mag
k =

(
1− ξ

mag
i

)
Rmag

k−1 + ξ
mag
i R̃mag

k ;

Further update ĉk, Ĉk, Pk|k−1, x̂k, Pk, Kk;
(8) Case EI: ξ

mag
i = 0:

It was evaluated that the geomagnetic system was out of work. Isolate the geomagnetic
system, and switch the system measurement model to:

z = zpol
i = Hpol

i xi + vpol
i ;

Restructure the integrated navigation system, and use fixed-point iteration mechanism
and VBAKF algorithm to update ûi+1

k , Ûi+1
k , Ri+1

k , ĉi+1
k , Ĉi+1

k , Pi+1
k|k−1, x̂i+1

k , Pi+1
k , Ki+1

k ;
End for

Output: x̂k, Pk, Rk, ûk, Ûk, ĉk, Ĉk

3. Results Analysis and Discussion

In order to verify the performance of the MMS-VBAKF algorithm, simulation exper-
iments are carried out in this section. Considering that the interference of polarization
measurement and geomagnetic measurement are multi-source, they have great uncertainty.
In this part, the simulations are divided into three parts: random unknown noise, periodic
sinusoidal noise, and part of the SINS/PNS/GMNS system fail.
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3.1. Random Unknown Noise Situation

In this case, the integrated navigation system is working stably and the environmental
conditions are well. Due to the uncertainty of the sensor’s perception from the external
environment, the measurement noise is set as random and unknown. In the simulation, the
initial time is set to 9:00 a.m. on 15 May 2021, the longitude is set to 120◦ E, the latitude is
39◦ N, and the altitude is 0 m. The date and position will be used for the calculation of the
astronomical calendar and the world geomagnetic model.

The gyro drift bias of the inertial navigation system is 2.0 ◦/h and the random drift is
0.5 ◦/h. The accelerometer has a constant bias of 500 µg and a random bias of 50 µg. Both
the data measurement frequency of the gyroscope and accelerometer is 10 Hz. Both the
data measurement frequency of the polarization sensor and the geomagnetic sensor is 1 Hz.
The filtering period of the integrated navigation is 1 s.

The noise settings for polarization measurement and geomagnetic measurement are
as follows:

vpol ∼ N
(

0, ρpol · Σpol
n

)
(28)

vmag ∼ N
(

0, ρmag · Σmag
n

)
(29)

where 0 ≤ ρpol ≤ 1 is the coefficient related to the accuracy of the polarization sensor.
0 ≤ ρmag ≤ 1 is the coefficient related to the accuracy of the magnetic sensor. Both the
polarization measurement noise covariance Σpol

n and the geomagnetism measurement noise
covariance Σmag

n are time-varying values. The performance parameters of sensors in the
simulation are summarized in Table 1.

Table 1. The performance parameters of sensors in the simulation.

Sensors Performance Parameters Frequency

Gyro constant drift: 2.0 ◦/h
random drift: 0.5 ◦/h 10 Hz

Accelerometer constant bias: 500 µg
random bias: 50 µg 10 Hz

Polarization sensor N
(

0, ρpol · Σpol
n

)
1 Hz

Geomagnetic sensor N
(

0, ρmag · Σmag
n

)
1 Hz

The simulation results are shown in Figures 3 and 4.
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It can be seen from Figures 3 and 4 that with the random interference in the environ-
ment, the measurement noise covariance is no longer a constant value. For the measurement
noises whose statistical characteristics change in real time, the Kalman filter results show
greater fluctuation. By contrast, the VBAKF can estimate the noise covariance matrix
in real time, and the filtering result is more stable. As can be seen in Table 2, the pitch
angle estimation error RMSE calculated by the VBAKF algorithm is 0.038◦, the roll angle
estimation error RMSE is 0.017◦, and the heading angle estimation error RMSE is 0.66◦.
Compared with KF, the accuracy is improved by 26.9%, 77.0%, and 78.2%, respectively.

Table 2. The RMSE result of the three-dimensional attitude estimation errors when the measured
noise covariance is an unknown time-varying random quantity.

Method
RMSE (/◦)

Pitch Roll Heading

KF 0.052 0.074 0.303
VBAKF 0.038 0.017 0.066

3.2. Periodic Sinusoidal Characteristic Noise Situation

When the ship is sailing at sea, due to the influence of wind and waves, the hull
will sway with the sea surface. It may cause periodic noises in the measured data of the
integrated navigation system. Based on the previous section, in this case, we consider
introducing noise of periodic sinusoidal characteristics besides random noise into the
integrated navigation system.

The simulation conditions are set as the same in Section 3.2. The noise settings of the
polarization measurement and geomagnetic measurement are as follows:

v ∼ ρpol · N
(

0, Σpol
n

)
+ 0.8σ · sin(

π · i
27

), i = 1, 2, 3 . . . (30)

v ∼ ρmag · N
(

0, Σmag
n

)
+ 0.8σ · cos(

π · i
21

), i = 1, 2, 3 . . . (31)

where σ represents the degree of wind and waves on the sea surface and i is the sensor
measurement update sequence.

We perform the simulation under the above conditions, and the results are shown in
Figures 5 and 6.
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It can be seen from Figures 5 and 6 that when the sea surface waves cause noise with
periodic sinusoidal characteristics in the sensor measurement data, the filtering results
also show certain fluctuation. Compared with the KF algorithm, the proposed VBAKF
algorithm manifests better anti-sway characteristics. It is especially obvious in the time
period of 400 s to 500 s. According to the analysis of the noise statistical characteristics in
Figure 6 and Table 3, the estimated error RMSE of the pitch angle, roll angle, and heading
angle of the VBAKF algorithm are 0.029◦, 0.015◦, and 0.046◦, respectively. Compared with
the KF algorithm, the results are improved by 29.2%, 78.8%, and 64.1%, respectively.

Table 3. The RMSE result of the three-dimensional attitude estimation errors when the measured
noise covariance is a random quantity with periodic sinusoidal characteristics.

Method
RMSE (/◦)

Pitch Roll Heading

KF 0.041 0.071 0.128
VBAKF 0.029 0.015 0.046

3.3. Situation Where Part of the Integrated Navigation System Become Invalid

In this section, extreme environments of the pelagic sea are considered. For the ship
performing missions, the harsh environmental conditions may cause serious interference in
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the integrated navigation system. In this situation, to verify the validity of the interference
detection and evaluation algorithm and the corresponding mode switching algorithm, a
set of simulations are carried out. To be specific, in the process of generating polarization
data and geomagnetic data, we set the case of polarization sensor shielding interval and
magnetic interference interval as shown in Table 4.

Table 4. The simulation settings of interference cases in the navigation process.

Time Interval Whether to Interfere Cause of Interference

Case 1 (0 s, 140 s] no /
Case 2 (140 s, 160 s] Polarization interference Sensor occlusion, etc.
Case 3 (160 s, 600 s] no /
Case 4 (600 s, 630 s] Magnetic interference Submarine iron–nickel ore, etc.
Case 5 (630 s, 1000 s] no /

Without coping with the interference evaluation and isolation, the filtering results are
shown in Figure 7.
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It can be seen from Figure 7 that in the time interval (0 s, 140 s), the integrated
navigation system can provide the ship with an accurate pitch angle, roll angle, and
heading angle reference. In the time interval (140 s, 160 s), due to the shelter in polarization
sensor, the polarization measurement data contain a large error, and the estimation result of
the three-dimensional attitudes showed errors greater than 10◦. In the time interval (160 s,
600 s), even if no polarization or magnetic interference is applied, the accuracy estimated
of three-dimensional attitudes became very poor. When magnetic interference occurs in
600 s, the heading estimation result even showed an error of more than 20◦. Therefore,
from the above results, interference evaluation and isolation must be considered. Adopting
the interference evaluation and the mode switching mechanism proposed in the paper, the
results are shown in Figures 8 and 9.

It can be seen from Figure 8 that the proposed interference evaluation and multi-mode
switching mechanism took effect. In the time interval (140 s, 160 s) when the polarization
system failed and the time interval (600 s, 630 s) when the geomagnetic system failed, the
integrated navigation system did not experience degradation of accuracy, and the mode
switching was effectively completed. In addition, from Figure 9 and Table 5, the filter
estimation error RMSEs of the pitch angle, roll angle, and heading angle of the multi-mode
switching KF algorithm are 0.066◦, 0.093◦, and 0.293◦, respectively. The error RMSEs
of the multi-mode VBAKF algorithm are 0.067◦, 0.035◦, and 0.147◦, respectively. The
accuracy of roll angle and heading angle has been significantly improved by 40.8% and
49.8%, respectively.
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Table 5. The RMSE result of the three-dimensional attitude estimation errors of the interference
evaluation and multi-mode switching algorithm.

Method
RMSE (/◦)

Pitch Roll Heading

KF 0.066 0.093 0.293
VBAKF 0.067 0.035 0.147

4. Conclusions

The SINS/PNS/GMNS integrated navigation system can play a role in meeting the
ship’s requirements of reliable autonomous navigation in the unfamiliar pelagic sea. How-
ever, the precision of obtained data of PNS and GMNS relies on the external environment,
in which there exist many uncertain and unknown interferences. To solve this problem, the
interference evaluation strategy is designed and the MMS-VBAKF algorithm is proposed.
By the strategy and algorithm, the interference that the SINS/PNS/GMNS integrated navi-
gation system suffers is divided into three cases to be dealt with. For case SI, the unknown
statistical properties of the measurement noise and the system states can be estimated
adaptively by the VBAKF. For case TI, the evaluation factors are used to weigh the mea-
surement information at the moment and in the previous time. In this way, the stability and
robustness of the SINS/PNS/GMNS integrated navigation are improved. For case EI, as
the system suffers serious interference, the multi-mode switching mechanism is performed
at first, then the navigation states can be estimated reposefully. The method proposed
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in this paper has a certain reference significance for the exploration of ship autonomous
navigation technology in the unfamiliar pelagic sea.
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