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I have recently theorized that several similarities exist between the tumor process and
embryo development. Starting from an initial cancer stem cell (CSC0), similar to an
embryonic stem cell (ESC), after implantation in a niche, primary self-renewing CSCs
(CSC1s) would arise, which then generate secondary proliferating CSCs (CSC2s). From
these epithelial CSCs, tertiary mesenchymal CSCs (CSC3s) would arise, which, under
favorable stereotrophic conditions, by asymmetric proliferation, would generate cancer
progenitor cells (CPCs) and then cancer differentiated cells (CDCs), thus giving a
defined cell heterogeneity and hierarchy. CSC1s–CSC2s–CSC3s–CPCs–CDCs would
constitute a defined “tumor growth module,” able to generate new tumor modules,
forming a spherical avascular mass, similar to a tumor sphere. Further growth in situ
of this initial tumor would require implantation in the host and vascularization through
the overexpression of some aspecific checkpoint molecules, such as CD44, ID, LIF,
HSP70, and HLA-G. To expand and spread in the host tissues, this vascularized
tumor would then carry on a real growth strategy based on other specific checkpoint
factors, such as those contained in the extracellular vesicles (EVs), namely, microRNAs,
messenger RNAs, long non-coding RNAs, and integrins. These EV components would
be crucial in tumor progression because they can mediate intercellular communications
in the surrounding microenvironment and systemically, dictating to recipient cells a
new tumor-enslaved phenotype, thus determining pre-metastatic conditions. Moreover,
by their induction properties, the EV contents could also frustrate in time the effects
of cytolytic tumor therapies, where EVs released by killed CSCs might enter other
cancer and non-cancer cells, thus giving chemoresistance, non-CSC/CSC transition
(recurrence), and metastasis. Thus, antitumor cytotoxic treatments, “shielded” from
the EV-specific checkpoints by suitable adjuvant agents, simultaneously targeting the
aforesaid aspecific checkpoints should be necessary for dismantling the hierarchic
tumor structure, avoiding recurrence and preventing metastasis.
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INTRODUCTION

I have recently theorized that several similarities exist between
the tumor process and embryo development (Manzo, 2019).
Starting from an initial cancer stem cell (i-CSC/CSC0), similar
to an embryonic stem cell (ESC) without genomic homeostasis
(para-ESC), after implantation in a niche, primary self-renewing
cancer stem cells (CSC1s) would arise, corresponding to epiblast
cells. CSC1s would then generate secondary proliferating
CSCs (CSC2s), equivalent to hypoblast cells. From CSC1s and
CSC2s, with an epithelial phenotype, tertiary CSCs (CSC3s)
with a mesenchymal phenotype would arise, corresponding
to the mesodermal precursors at the primitive streak (PS).
Under favorable stereotrophic conditions (normoxia),
CSC3s would undergo asymmetric proliferation and pre-
differentiation into cancer progenitor cells (CPCs) and then
into cancer differentiated cells (CDCs), thus giving a defined
cell heterogeneity and hierarchy (Marjanovic et al., 2013; Singh
et al., 2015; Bradshaw et al., 2016), mimicking an ectopic
rudimentary somito-histo-organogenesis process (Reya et al.,
2001; Gibbs, 2009; Ma et al., 2010). In contrast, under unfavorable
stereotrophic conditions (hypoxia), CSC3s would delaminate and
migrate as quiescent micro-metastases, mimicking embryonic
morphogenetic movements and localizing in metastatic niches
(Cabrera et al., 2015; Singh et al., 2015; Yang et al., 2018). Here,
specific signals, similar to those occurring in the embryonic
inductions, would induce an epithelial–mesenchymal transition
(EMT)/mesenchymal–epithelial transition (MET) switch (Thiery
et al., 2009; Liu et al., 2014), allowing the reversion of quiescent
CSC3s into proliferating CSC1s. These cells would be able to
generate macro-metastases with the same cell hierarchy as
their primary tumors (Marjanovic et al., 2013). Within this
proliferation model, CSC1s–CSC2s–CSC3s–CPCs–CDCs would
constitute a defined “tumor growth module” with a cord-finger
structure (Manzo, 2019, 2020; Figure 1), where it is possible
to find well-defined mathematical relationships between CSCs
(CSC1s, CSC2s, and CSC3s) and non-CSCs (CPCs and CDCs)
at each (n) cell division (Manzo, 2020). A tumor growth
module would generate new modules after about 10 division
cycles, when the cell number would become presumably too
large for survival under unfavorable stereotrophic conditions
(Hamilton and Rath, 2019; Manzo, 2020). Such a modular
growth process seems to occur also when CSCs, cultured
in vitro in the absence of implantation conditions, form solid,
round cellular structures with a diameter of about 50–250 µm,
named tumor spheres, displaying a modular growth behavior
similar to that of avascular tumors in vivo (Johnson et al., 2013;
Vinnitsky, 2014). Such tumor growth, occurring by reiterative
production of defined cell modules, would generate an initial
spherical avascular mass (Figure 2). This might expand until
it reaches a diameter of approximately 400 µm since diffusion
and the supply of nutrients and oxygen at the core cells are
not possible beyond about 200 µm (Hamilton and Rath, 2019).
Beyond this limit, avascular tumor growth could occur only
with a simultaneous death of the core cells (Hamilton and Rath,
2019). Up to this point, the tumor process would be similar and
equivalent to that of a preimplantation blastocyst (Manzo, 2020).

Now, further tumor growth would require implantation and
vascularization for the oxygen and nutrient supply by the host
microenvironment, like in embryo development. In such a way,
an avascular tumor might become a vascularized tumor, where,
together with nutrients, immune cells also arrive (Figure 3).
Therefore, vascular tumor cells need to defend themselves
from immune cells for survival, like what a post-implantation
semi-allogeneic blastocyst do from maternal immune cells (Yao
et al., 2005; Gregori et al., 2015; Manzo, 2019). On the other end,
a tumor needs to expand in the host tissues. To this end, it would
carry out a real growth strategy based on defined structures, such
as extracellular vesicles (EVs) with their contents (Jurj et al.,
2020), able to impair the host immune system and induce tumor
growth, allowing tumor progression and metastases (Vader et al.,
2014; Lin and Yan, 2015, 2019; Han et al., 2019), mimicking
ectopic rudimentary organ portions. Now, I intend to point out
and analyze crucial factors in the different phases of the cancer
process for detecting potential checkpoints to be targeted in
therapeutic treatments.

THEORETICAL CHECKPOINTS IN THE
DIFFERENT PHASES OF THE CANCER
PROCESS

In the cancer process, three stages could be distinguished:
preimplantation avascular tumor, implantation vascularized
tumor, and progressing metastatic tumor.

Avascular Tumors (Preimplantation
Tumors)
In this first phase, molecular checkpoints playing a major role
could be factors able to confer to cells of an initial tumor
persistent stemness, self-renewal, pluripotency, survival, and
apoptosis inhibition, such as OCT4, NANOG, SOX2, STAT3,
CD44, ID, HLA-G, and HSP70 factors (Figure 1).

OCT4, SOX2, and NANOG
OCT4, SOX2, and NANOG are well known to constitute a sort
of molecular engine in both embryogenesis and cancer genesis,
regulating the so-called pluripotency gene regulatory network
(PGRN), sustaining stemness, pluripotency, self-renewal, and
reprogramming (Festuccia et al., 2013).

CD44
This factor is a cell surface protein constituting a signal platform
that regulates the expressions of genes related to proliferation,
migration, survival, and invasion (Williams et al., 2013; Yan et al.,
2015). The CD44 variant isoforms (CD44v3, CD44v6, CD44v8,
etc.), absent in normal tissues, seem to be restricted to aggressive
tumors and have crucial roles in the regulation of stemness,
self-renewal, tumor initiation, metastasis, and chemoresistance
(Zeilstra et al., 2014; Chanmee et al., 2015). They are expressed
both in epithelial (ALDH1+CD44+Ki67+, hypothetical CSC1s)
and mesenchymal (ALDH1−CD44+Ki67−, hypothetical CSC3s)
CSCs (Liu et al., 2014; Manzo, 2019). CD44v isoforms are critical
during EMT in cancer progression (Xu et al., 2015; Yan et al.,
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FIGURE 1 | In a primary niche, primary self-renewing cancer stem cells (CSC1s) endowed with stemness properties, due to defined preimplantation checkpoint factors (OCT4, SOX2, NANOG, ID, CD44, HSP70,
and HLA-G), would generate progressively secondary proliferating CSCs (CSC2s), tertiary mesenchymal CSCs (CSC3s), cancer progenitor (CPCs), and cancer differentiated (CDCs) cells, globally forming a tumor
module where two zones would lie (quiescent and proliferating). In the proliferating zone, more external with normoxia conditions, CSC3s and CPCs would proliferate, generating cell cord-finger structures on the
invasive front at the tumor /host interface. On the other hand, in the quiescent zone, more internal with hypoxic conditions, quiescent CSC3s would be induced to migrate peripherally, seeding new local niches in
the normal host tissues. All these processes, finally, would result in a tumor module with a defined cell heterogeneity and hierarchy.

Frontiers
in

C
elland

D
evelopm

entalB
iology

|w
w

w
.frontiersin.org

3
July

2021
|Volum

e
9

|A
rticle

665321

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-665321
July

6,2021
Tim

e:15:8
#

4

M
anzo

C
ancer

Therapy:
Targeting

M
olecular

C
heckpoints

A B

FIGURE 2 | (A) A simplified scheme of a single tumor module, obtained from Figure 1 extrapolating only the symbols depicting the different cancer cells shown in the legends of the Figure 1. In an avascular
tumor (B), initial tumor modules (a), located in the central zone, would generate new tumor modules (b,c) in a spherical structure of about 400 microns. Since the nutrient diffusion limits are about 200 µm, further
growth would imply cell death in the central zone, while in the peripheral zone growth could occur through neoangiogenesis and vascularization, which allow tumor implantation in the host tissues, thanks to
defined checkpoint factors (HLA-G, HSP70, IL-6, and gp130–STAT3–ITG).
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FIGURE 3 | Once implanted and vascularized, a tumor could grow rapidly, invading host tissues, spreading in the circulation, and installing in distant pre-metastatic niches, thanks to progression checkpoint factors
(HLA-G, HSP70, miRNAs, mRNAs, lncRNAs, ITGs, and GFs) released in extracellular vesicles (exosomes in particular) by cancer stem cells (CSCs) and cancer progenitor cells (CPCs) and able to impair all immune
cells.
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2015; Chen C. et al., 2018). The CD44/STAT3 complex induces
both epithelial (proliferation) and mesenchymal (migration)
features (Yan et al., 2015), and a transforming growth factor
beta (TGF-β)-induced CD44high/ID1high expression occurs in
glioma-initiating cells (Anido et al., 2010). Moreover, a positive
feedback couples Ras activation and CD44v (Cheng et al., 2006;
Krishnamachary et al., 2012). Thus, CD44v could be a sort of
molecular trigger of a direct reprogramming (Su et al., 2011) in
the EMT/MET switch of quiescent CSC3s to self-renewing CSC1s.

ID1 and ID3
ID1 and ID3 are expressed only in embryonic and cancer
cells, but not in most adult tissues. ID1 proteins have multiple
roles in several processes, such as in the implantation of CSCs
(CSC1s) in primary and metastatic niches, apoptosis inhibition,
survival and growth, angiogenesis, and chemoresistance (Lyden
et al., 1999; Ling et al., 2006; Niola et al., 2012; Nair et al.,
2014). ID1 proteins, in association with ubiquitous E proteins,
prevent CSCs from differentiating (Ling et al., 2006), thus
determining the crucial “blocking event” that would confer to
CSC1s persistent stemness, with self-renewal and pluripotency
capacities, reiteratively feeding the tumor. ID1 and ID3 would be
necessary for TIC (tumor-initiating cell) functions in the genesis
of both primary tumors and metastases, sustaining proliferation
via p21 (Gupta et al., 2007; O’Brien et al., 2012). ID1 and ID3
are required for angiogenesis and the vascularization of tumor
xenografts (Lyden et al., 1999; Teo et al., 2020) necessary for
macro-metastases development.

HSP70s and HLA-Gs
These proteins are precociously expressed in embryogenesis
and cancer genesis, but only transiently during mitosis (70-
kDa heat shock proteins, HSP70s) or in a few defined organs
(human leukocyte antigen G, HLA-Gs) in adults (Stangl et al.,
2011; Tilburgs et al., 2015). In preimplantation embryos and
initial avascular tumors, they would constitute protection
and survival systems, both by preventing apoptosis (HSP70)
(Samali and Cotter, 1996) and defending from adverse host
microenvironments (HSP70 and membrane HLA-G1), or also a
system for invading and colonizing the host tissues (soluble HLA-
G5) (Rouas-Freiss et al., 2007; Sheu and Shih, 2010). HLA-Gs are
expressed in embryonic and tumor mesenchymal cells (CSC3s)
and in progenitor cells (CPCs) (Yen et al., 2009). A small amount
of HSP70s is necessary for preimplantation embryogenesis (Luft
and Dix, 1999). HSP70s can be expressed on the cell surface
or exported in the circulation (Shu and Huang, 2008). Highly
metastatic tumors, but not their primary counterparts, express
membrane HSP70s. HSP70+ tumors actively release exosomes
with an HSP70+ surface (Stangl et al., 2011), which might
act in tumor protection, survival, and spread. During embryo
development, HLA-Gs orchestrate the early interaction of human
trophoblasts with the maternal niche for implantation (Gregori
et al., 2015); after implantation, HLA-Gs are expressed in the
endothelial cells of developing vessels, mesenchymal cells, and
progenitor cells (Hunt et al., 2005; Yao et al., 2005; Verloes
et al., 2011). Tumor and mesenchymal cells secrete HLA-
Gs in EVs (Yen et al., 2009; Burrello et al., 2016; Rebmann

et al., 2016). HLA-G expression has been shown in many
cancer types, both in primary and metastatic tumors, mainly
as soluble HLA-G5, but also associated with EVs (Rebmann
et al., 2003, 2016). HLA-G expression is induced by hypoxia
via HIF-1a (Rebmann et al., 2003) and is upregulated by
interleukin (IL)-10 with an autocatalytic feedback (Urosevic
et al., 2001, 2002). HLA-G induces IL-6 production (Urosevic
et al., 2002) and, thus, the activation of the gp130–JAK–
STAT3 pathway, regulating proliferation, migration, invasion,
and angiogenesis, namely, tumor progression and metastasis
(Kamran et al., 2013). Notably, HLA-G expression is also induced
and upregulated by chemotherapeutic agents (Rouas-Freiss et al.,
2003; Yan et al., 2005).

Vascular Tumors (Implanted Tumors)
In this second phase, the major molecular checkpoints might be
factors able to confer to cancer cells implantation properties in
primary local niches and angiogenesis for vascularization, such as
ID1, ID3, leukemia inhibitory factor and its receptor (LIF/LIFr),
IL-6/IL-6r, IL-10, gp130, Janus kinase (JAK), signal transducer
and activator of transcription 3 (STAT3), HSP70, and HLA-G
factors (Figure 2). LIF/LIFr would have an autocrine/paracrine
function in embryo implantation (Cullinam et al., 1996) by
activating and regulating the gp130–JAK–STAT3, AKT, and
ERK1–2 MAPK signal pathways that induce the expression of
integrin a5b1, realizing implantation, endothelial proliferation,
and subsequent angiogenesis–vascularization (Cheng et al., 2001;
Sherwin et al., 2002; Park et al., 2003). LIF–gp130–STAT3
pathway activation is also linked to IL-6 and IL-10, as well as to
HLA-G that interacts with these factors (Urosevic and Dummer,
2003; Yue et al., 2015). In LIF knockout mice and in “in vitro”
fertilized human embryos lacking HLA-G5, implantation does
not occur (Fuzzi et al., 2002). In many cancer types, including
melanomas, skin, kidney, prostate, and pancreatic cancers, a LIF
signal is expressed at high levels, inducing an autocrine/paracrine
cell proliferation, like in embryo implantation (Cullinam et al.,
1996; Kellokumpu-Lehtinen et al., 1996). The LIF amount
secreted by a tumor seems to regulate cancer genesis (Guo
et al., 2015). In solid tumors, LIF expression is induced by
hypoxia via HIF-2a and by TGF-β (Yue et al., 2015). A high
LIFr expression is crucial for tumor implantation: analysis of 90
nevi and 441 melanomas shows that LIFr expression is low for
all nevus stages, starts to increase in dysplastic nevi, becomes
higher in implanted melanomas, and is highest in metastatic
melanomas (Guo et al., 2015). Thus, LIF/LIFr, together with
interacting IL-6/IL-6r, IL-10, and HLA-G, would be crucial for
implantation, autocrine/paracrine growth, the vascularization of
primary tumors via gp130–JAK–STAT3 pathways, as well as for
genesis of mesenchymal metastasizing cells (Yan et al., 2015).

Progressing Tumors (Metastatic Tumors)
In this tumor phase, many different molecular factors and
structures could constitute crucial checkpoints of the cancer
process, which are able to favor local growth and angiogenesis
and confer properties of invasion and migration, protection
and escape from immune surveillance, detection and invasion
of specific pre-metastatic niches, and the capacity of dictating
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tumor conditions in the surrounding microenvironment. Such
factors could include CD44v, ID1, ID3, HSP70, HLA-G, LIF/LIFr,
IL-6, IL-10, and EVs with their contents, such as exosomal
integrins (ITGs), microRNAs (miRNAs), messenger RNAs
(mRNAs), long non-coding RNAs (lncRNAs), and growth factors
(GFs) (Figure 3).

Essentially, three types of EVs are released by tumor cells,
marked on the basis of their size: (a) exosomes, (b) microvesicles,
and (c) apoptotic bodies. Exosomes are released constitutively
and/or upon cell activation and hypoxia induction, have a size
of about 40–150 nm in diameter, and have an endocellular
origin from early endosomes. Exosomes enter the recipient cells
by an inverse mechanism of endocytosis within endosomes,
from which they release their contents in the recipient cell
cytoplasm (Vader et al., 2014). Microvesicles have a size of
about 50–2,000 nm in diameter, have a membrane origin, are
released like the exosomes, and enter the recipient cells by direct
membrane fusion, direct endocytosis, or after interaction of their
ligands with specific cell surface receptors (Vader et al., 2014).
Apoptotic bodies have a size of about 50–50,000 nm, are formed
by random blebbing of the plasma membrane, are released
by apoptotic tumor cells, and may contain nuclear fragments
with DNA and histones, as well as fragments of cytoplasmic
organelles, which they can transfer also to normal cells, leading
to the development of a full tumorigenic potential (Vader et al.,
2014). EVs contain nucleic acids (DNA fragments, oncogenes,
mRNAs, miRNAs, and lncRNAs), lipids, proteins (oncoproteins,
tetraspanins, Rab GTPases, HSPs, HLA-Gs, and lectins), surface
intercellular adhesion molecules (ICAM and integrins A and
B), GFs (TGF-β, TNF-α, FGF2, and VEGF), selectins, cytokines
(IL-6 and IL-8), and metalloproteases (Dilsiz, 2020; Jurj et al.,
2020). The contents of EVs found in body fluids are closely
related to the status of the producing cells, of which they can
be biomarkers (Vader et al., 2014) and be recognized by or
transferred to other cells in a selective manner, thus influencing
the phenotype and functions of the recipient cells. In cancer
patients, the quantity of circulating EVs seems to be higher than
that in healthy subjects and has been found to correlate with
poor prognosis (Kim et al., 2003; Vader et al., 2014). Depending
on the tumor type and location, EVs can be isolated from
plasma, serum, urine, body fluids, and even saliva (Vader et al.,
2014). Tumor cells utilize EVs for dictating a defined tumor
functional phenotype to surrounding cells (Naito et al., 2017;
Jurj et al., 2020). Recent data show that tumor EVs contain
molecules for intercellular communications (da Silva Nardi et al.,
2016; Rebmann et al., 2016) that act on and impair recipient
immune cells, favoring tumor initiation, growth, angiogenesis,
immune surveillance, evasion, EMT, invasion, metastasis, and
chemoresistance (Sheu and Shih, 2010; Kosaka, 2016). EVs
(exosomes in particular) perform distinct roles during each of the
sequential steps in the pre-metastatic niche evolution, namely,
vascular leakiness, stromal cell education at organ-tropic sites,
bone marrow-derived cell education and recruitment (Hoshino
et al., 2015). Exosomes, with their contents, play roles in the
sequential steps of the whole tumor process, from the primary
tumor site modulation (such as the induction of angiogenesis,
EMT, and immune suppression) to organ-specific metastasis

homing, involving integrins, miRNAs, GFs, and growth factor
receptors (GF-Rs) (Li et al., 2019). Exosomes interact with pre-
metastatic niches, inducing angiogenesis, immune modulation,
and reprogramming (Grange et al., 2011). Such an induced
reprogramming activity by EVs could also be responsible
for the conversion of non-CSCs into CSCs upon radio-
chemotherapeutic treatments, which, in destroying CSCs, likely
spread the EVs of these both in the tumor microenvironment and
systemically (Chen et al., 2017; Ozawa et al., 2018; Keklikoglou
et al., 2019; Lu et al., 2020). Moreover, exosomes help metastatic
circulating cells in escaping immune surveillance and surviving
in the blood circulation (Li et al., 2019). EVs from highly
metastatic tumor cells have been shown to carry significantly
different cargoes than do EVs from poorly metastatic cells (Rana
et al., 2013; Vader et al., 2014). Exosomes reflect the status of
donor cells, such as the hypoxic status of glioma cells, where
they mediate the hypoxia-dependent activation of vascular cells
during tumor development (Kucharzewska et al., 2013; Vader
et al., 2014; Han et al., 2019).

EMBRYONIC INDUCTIONS AND TUMOR
INDUCTIONS

Tumor progression necessarily requires the control and the
overexploitation of the host surrounding microenvironment. To
this end, tumor cells can dictate tumor functional phenotypes
to surrounding cells through molecules for intercellular
communications, such as HLA-G and exosomal miRNAs, as
embryonic cells also do (da Silva Nardi et al., 2016; Rebmann
et al., 2016; Dilsiz, 2020; Pillay et al., 2020). These molecules
could induce such phenotypes by activating or silencing defined
genic systems in the recipient cells.

Embryonic Inductions and
Histo-Organogenesis
The above inductive process could occur through EV contents
(Sheu and Shih, 2010; da Silva Nardi et al., 2016; Rebmann
et al., 2016; Naito et al., 2017; Jurj et al., 2020; Pillay et al.,
2020) and be similar to the embryonic inductions occurring
between mesenchymal and epithelial cells from early gastrula to
organogenesis, during which the embryo structures progressively
develop (Balinsky, 1970). It is known that embryonic inductions
require a direct contact between mesenchymal and epithelial
cells (Balinsky, 1970), as described in the SCID mouse model,
between meta-nephric mesenchymal (MM) cells and ureteric
bud (UB) epithelial progenitor cells in a three-dimensional
co-culture, allowing for a direct cell–cell contact (Ratajczak
et al., 2006; Valadi et al., 2007; Velagapudi et al., 2012).
Here, a well-orchestrated series of reciprocal inductive events
leads to the progressive formation of different structures of an
early simple nephrogenesis (Velagapudi et al., 2012). Factors
known to induce MM cells are present in UB cell-conditioned
media and include several GFs, such as epidermal growth
factor (EGF), TGF-α, basic fibroblast growth factor (bFGF),
bone morphogenetic protein 7 (BMP7), hepatocyte growth
factor (HGF), that could be indicated as “epithelial inductors.”
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Whereas, factors able to induce UB cells are present in MM
cell-conditioned media and include the glial cell line-derived
neurotrophic factor (GDNF), HGF, and extracellular matrix
(ECM) proteins (collagen, fibronectin, and laminin), which
could be indicated as “mesenchymal inductors” (Balinsky, 1970;
Ratajczak et al., 2006; Velagapudi et al., 2012), with HGF as
both an epithelial and mesenchymal inductor. These reciprocal
inductions could trigger, in both epithelial and mesenchymal
cells, a progressive consequent activation and/or silencing of
defined genes, thus realizing a specific “inductive gene chain”
(IGC) that finally confers to each cell of the generated progeny
a distinct phenotype, resulting in a defined histological and
physiological cell hierarchy in the histo-organogenesis process.
The terminal IGC of each cell type would then be preserved
by a defined genic homeostasis through genetic, epigenetic, and
microenvironment signals.

Tumor Inductions and Metastasis
Now, I hypothesize that such a type of intercellular induction
could also occur in the cancer progression between mesenchymal
CSCs (CSC3s) and surrounding cells, both tumor cells (CPCs
and CDCs) and normal host cells (fibroblasts, macrophages,
epithelial, and endothelial cells), through the EV contents of
CSCs and CPCs, dictating new tumor-associated phenotypes.
The induced cells would reciprocally supply their epithelial
inductors to mesenchymal CSCs for generating oligopotent
CPCs that, actively proliferating, would generate abundant
different CDCs, thus determining a defined cell hierarchy
and the histopathological features of a tumor. This process
of consequential reciprocal inductions would occur through
defined “on/off” switches, according to the genic program
(IGC) of the origin cancer cell (CSC0). The level of realization
of a defined IGC within the induced cells of a tumor
would be responsible for their differentiation degree and, thus,
for the different malignancy levels. I think that a crucial
mechanism for the inductions in tumor progression is based
on the cargoes of EVs (exosomes in particular) (Sheu and
Shih, 2010; da Silva Nardi et al., 2016; Rebmann et al.,
2016; Naito et al., 2017; Jurj et al., 2020; Pillay et al.,
2020). In the recipient cancer and normal cells, exosomes
deliver their contents modulating cell signaling pathways.
Indeed, their repertoire of different components seems to
constitute just a molecular machinery suitable for realizing
cell induction processes for the growth and development
of metastases, as equivalent to rudiments of organ portions
(Velagapudi et al., 2012; Jurj et al., 2020). Cancer cells can
produce about 10 times more exosomes than do normal
cells. Released in the surrounding tumor microenvironment,
exosomes have important roles in tumor initiation, progression,
immunosuppression, neovascularization, metastasis, and drug
resistance. Tumor cell-released exosomes can be taken up by
the surrounding cells and travel through biological fluids, such
as the blood, urine, and saliva (Dilsiz, 2020). Thus, cancer-
associated EVs might exert systemic effects through the transfer
of their cargoes, resulting in the reprogramming of recipient
cells (stromal cells, immune cells, and bone marrow-derived
cells) in the surrounding tumor microenvironment (Han et al.,

2019). I believe that all this would reflect the induction
phenomena in embryo development from the gastrula to the
organogenesis phase (Balinsky, 1970), where direct cell-to-cell
interactions between mesenchymal and epithelial cells occur and
are indispensable for the pleiotropic development of defined
biological structures.

PROPERTIES AND ROLES OF EV
CONTENTS IN CANCER

Integrins
Adhesion and ECM molecules, such as integrins, tenascin, and
periostin, were shown to promote metastases of spreading cancer
cells (Weaver et al., 1997; Oskarsson et al., 2011; Fukuda et al.,
2015; Hoshino et al., 2015). On tumor-derived exosomes, a
specific repertoire of ITGs has been detected, which dictates
their adhesion to specific cell types and ECM molecules in
particular organs. ITGs expressed on the exosome surface could
be specific for a defined tumor kind: for example, the exosomal
ITGs a6b4 and a6b1 are associated with lung metastases, while
ITG a1b5 is linked to liver metastases (Hoshino et al., 2015; Sung
et al., 2015; Li et al., 2019). ITGs might determine organ-specific
metastatic sites, both controlling directional cell movements
through tissues in association with fibronectin (Sung et al.,
2015) and preparing pre-metastatic niches through the ITG-
mediated fusion of exosomes with organ-specific resident cells,
as well as likely reactivating stemness genes (OCT4, SOX2,
NANOG, and KFL4) via S100 factors (Lu et al., 2020). Thus,
tumor exosome ITGs might determine organotropic metastasis
through sequential mechanisms for the organ-specific homing
process (Valadi et al., 2007; Hoshino et al., 2015). For example,
exosomes expressing ITG avb5 specifically bind Kupffer cells
in the liver, while exosomes expressing ITGs a6b4 and a6b1
bind lung resident fibroblasts and epithelial cells (Hoshino
et al., 2015). This specific organotropism and the related uptake
of defined exosome ITGs promote, in the target cells, the
upregulation of different pro-inflammatory and pro-migratory
S100 genes in lung fibroblasts and Kupffer cells, but not in
lung epithelial cells. Since S100A4 regulates lung metastasis
and is controlled by ITG a6b4 (Hoshino et al., 2015), it has
been suggested that this ITG activates the S100A4–Src axis
in lung fibroblasts during the pre-metastatic niche formation
(Hoshino et al., 2015). Moreover, since S100A10 facilitates
OCT4-mediated breast cancer stemness (Lu et al., 2020), exosome
ITGs could not only promote specific organotropic adhesion
but also trigger the signaling pathways for stemness and
reprogramming, as well as for inflammatory responses in target
organs (Hoshino et al., 2015). Notably, exosomes secreted by
a certain tumor are sufficient to redirect the organotropism
of metastases of a different tumor type, normally unable to
metastasize a particular organ (Hoshino et al., 2015). The
exosomal ITG expression profiles of plasma exosomes isolated
from cancer patients could be used for predicting sites of future
metastasis and for developing diagnostic tests and therapeutic
tools (Hoshino et al., 2015). After the ITG-mediated organotropic
incorporation of tumor exosomes in recipient cells, ITGs have
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been shown to upregulate the expressions of several S100
genes related to cell migration and pro-inflammation (Hoshino
et al., 2015). Now, since many different ITGs and S100 genes
exist, I think that they, together with other factors, such as
exosomal miRNAs, lncRNAs, and mRNAs, could constitute or
be part of a cell-specific inductive machinery finally activating
the IGC of a recipient cell at a defined genic level (Hoshino
et al., 2015; Lu et al., 2020) related to the IGC of the
tumor donor cell, thus determining the differentiation degree of
the recipient cell.

miRNAs
MicroRNAs represent the major class of small (20–22 nt), single-
strand, non-coding RNA molecules. They are known to be
fundamental regulators of gene expression in cancer cells, mainly
as negative regulators of mRNA translation by binding to its
complementary sequences (about 6–8 nt) into the 5′ or the 3′
region, thus leading to the degradation of specific target mRNAs
or to the inhibition of their translation at a posttranscriptional
level (Dilsiz, 2020). It is believed that miRNAs control about
60% of all the protein-coding genes in humans through
miRNA–mRNA regulatory relationships, where many different
miRNAs are often required to target a single mRNA molecule
by a mechanism recognizing complementary sequences, with
subsequent mRNA degradation or translation repression (Dilsiz,
2020). miRNAs are transferred to target recipient cells by
exosomes, which protect them from degradation until their entry
into target cells. Since cancer cells produce a high variety of
exo-miRNAS that promote tumor proliferation, angiogenesis,
and migration, these onco-miRNAs may be good biomarkers
for many types of cancer, providing information about the
identity of the type of cells releasing them and about their target
cells (Dilsiz, 2020). Moreover, miRNAs in exosomes derived
from leukemia cells (miRNA17–22 cluster) are involved in
the migration and maturation of endothelial cells for cancer
angiogenesis (Umezu et al., 2013; Jurj et al., 2020). Exo-miRNAs
and other RNAs are also responsible for the activation or
suppression of the innate and adaptive immune systems, such as
miRNAs that act as TRL (Toll-like receptor) ligands in different
types of cancer, stimulating their progression (Fabbri et al.,
2012; Jurj et al., 2020). The exosomes of glioma stem cells with
overexpression of miRNA-21 can be delivered to endothelial
cells, thus stimulating neoangiogenesis, as exosomes from renal
CSCs also do (Grange et al., 2011; Jurj et al., 2020). Exosome-
specific miRNAs transferred from chemoresistant cancer cells
in sensitive recipient cells can confer horizontal resistance
through the modulation of drug-induced apoptosis, signaling
pathways, and gene expression (Chen W. X. et al., 2014; Mao
et al., 2016; Qin et al., 2017; Jurj et al., 2020). In breast
cancer cells, exosomes contain different miRNAs that can modify
the expression profiles of specific target genes, such as p27
by miRNA-24, as well as the chemoresistance by miRNA-
5p (Mao et al., 2016; Jurj et al., 2020). Thus, miRNAs from
tumor EVs might have several roles, such as silencing the
genic program activities of recipient cells by repressing the
translation of their mRNAs (Vader et al., 2014; Dilsiz, 2020)
as well as inducing reprogramming at a genic level related to

that of the donor cell (Kucharzewska et al., 2013), favoring
angiogenesis for tumor progression and transferring horizontal
chemoresistance.

mRNAs
Messenger RNAs from tumor EVs would have the function
of being translated into donor proteins (Ratajczak et al., 2006;
Valadi et al., 2007; Vader et al., 2014) able to reactivate in
recipient cells a genic program for inducing a new phenotype,
with properties related to the status of the donor (Kucharzewska
et al., 2013; Han et al., 2019). In effect, the mRNAs contained in
microvesicles released by activated macrophages reflect specific
phenotypes of the classically activated pro-inflammatory M1
or, alternatively, activated anti-inflammatory M2 macrophages
(Garzetti et al., 2014; Jurj et al., 2020), thus indicating that the
cell phenotype can be dictated by mRNAs transferred in recipient
cells. Microvesicle mRNAs from colorectal cancer cells also
promote the proliferation of endothelial cells (Hong et al., 2009).

LIF, IL-6, and GFs
LIF, IL-6, GFs, and other factors could have the role of stimulating
recipient cell growth and angiogenesis (Hood et al., 2009; Li et al.,
2019), as well as of interacting with specific membrane receptors
on target cells, thus activating defined endocellular pathways,
such as the IL-6–gp130–JAK–STAT3 pathway. CSC-specific
signaling proteins (β-catenin), specific surface receptors (CD133
and CD44), stem cell factors (OCT4), functional enzymes
(ALDH), and transcription factors (TFs), which are activators
of cell pathways all exported in exosomes, can mediate tumor
stroma modulations by cancer cells and vice versa (Pavlides et al.,
2009; Boelens et al., 2014; Richards et al., 2017; Jurj et al., 2020).

HSP70s and HLA-Gs
HSP70s and membrane HLA-G1–4 on tumor cell would have a
role of defense in the direct contact with immune [T lymphocytes
(TLs) and natural killer (NK)] cells, neutralizing their cytotoxic
activities or even inducing their apoptosis (Rouas-Freiss et al.,
2003; Chalmin et al., 2010). HSP70s and soluble HLA-G5–7
released with tumor cell exosomes could favor and consent the
invasion and colonization of host tissues in a systemic way,
blocking all the components of the host immune system and
enslaving other host cells for their ends (Rouas-Freiss et al., 2003;
Sheu and Shih, 2010). The above series of events associated with
EV contents clearly indicates that, in tumor progression, a real
strategy exists for realizing an expansion–invasion–colonization
process through cell inductions, which recalls those during
embryo development. In this process, EVs and their contents
could really be the crucial checkpoints in tumor progression
since they can mediate and dictate the communications within
the microenvironment both at the interface tumor/host tissues
(Milane et al., 2015) and at a systemic level. In this strategy, each
EV factor could carry on defined roles: defense from immune
cells (HLA-Gs and HSP70s), detection of and adhesion to organ-
specific pre-metastatic niches (ITGs), expression of oncoproteins
in recipient cells (mRNAs), silencing and or activation of
recipient cell genes (miRNAs and lncRNAs), and angiogenesis
and growth (HLA-Gs, IL-6, LIF, and GFs).
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CURRENT AND PROSPECTIVE
ANTICANCER STRATEGIES

During cancer development, different checkpoints could
constitute potential therapeutic targets in the various
phases of the process.

Aspecific Targets
The following targets would be checkpoints theoretically
associated with the development of different tumor types.

ID1, ID3, and CD44v
Inhibition of ID1 expression suppresses invasion and metastases
in aggressive salivary and breast cancer (Fong et al., 2003; Murase
et al., 2016). ID protein inhibition by a peptide aptamer induces
cell cycle arrest and apoptosis in ovarian cancer cells (Mern et al.,
2010a), and the inactivation of ID1 genes induces sensitivity of
prostate cancer cells to chemotherapeutic drugs (Wong et al.,
2008). Co-suppression of ID1 and ID3 significantly reduces
proliferation, invasiveness, anchorage-independent growth, and
angiogenesis and increases apoptosis in small-cell lung cancer
(Chen D. et al., 2014); moreover, targeting ID1 and ID3 reduces
the formation of peritoneal metastases by gastric cancer cells
(Tsuchiya et al., 2005). Targeting ID1 and ID3 by a specific peptide
aptamer induces E-box promoter activity, cell cycle arrest, and
apoptosis in breast cancer cells (Mern et al., 2010b). Thus,
targeting ID1 and ID3 could prevent growth, angiogenesis, and
progression in primary avascular tumors and initial metastatic
lesions. Knockdown of CD44 induces the differentiation of breast
CSCs (Pham et al., 2011). CD44v isoforms are promising targets
for the elimination of CSCs (Jin et al., 2006; Orian-Rousseau and
Ponta, 2015; Yan et al., 2015). The inhibition of CD44v3 and
CD44v6 by the A5G27 peptide copolymer blocks tumor invasion
and metastatic colonization (Zaiden et al., 2017). Thus, targeting
CD44v could exert synergic effects with ID1/ID3 targeting to
block the stemness and migration of CSCs.

LIF/LIFr, IL-6, HLA-Gs, and HSP70s
LIFr knockdown inhibits the migration of melanoma cells in
wound-healing tests (Guo et al., 2015). Neutralizing antibodies
(Abs) knock down the activity or expression of LIF and reduce
in vitro the stem cell-like properties of murine slow-growing
CSCs (American association for cancer research, 2012). The
conformational anti-HLA-G monoclonal antibody (mAbs) 87G,
as well as IL-2, IL-12, and IL-15, restores the NK activity
drastically inhibited by HLA-Gs (Tilburgs et al., 2015). HSP70s
could be an immune therapeutic target in a wide spectrum
of tumor types, and cmHsp70.1 mAbs can significantly reduce
the bulk of mHSP70 + CT26 mouse colon tumors (Stangl
et al., 2011). Thus, targeting the above factors could prevent the
implantation of initial avascular tumors, their vascularization,
and subsequent progression.

Specific Targets
These targets would be checkpoints theoretically associated with
a defined tumor type or even to a single tumor.

EVs
Extracellular vesicles are recently becoming an emerging target
in cancer therapy, and currently, several clinical trials using
exosome-based cancer therapy are ongoing (Vader et al., 2014;
Abak et al., 2018; Chulpanova et al., 2018). The origin and
concentration of circulating microparticles differ according to
the type and evolution of cancers (Kucharzewska et al., 2013;
Mege et al., 2016; Jurj et al., 2020). As natural carriers for
diverse bioactive cargoes, EVs are potential vehicles for the
delivery of many forms of therapeutic substances, including
mRNAs, miRNAs, lncRNAs, proteins, and drugs (doxorubicin,
paclitaxel, curcumin, and acridine orange) (Pascucci et al.,
2014; Srivastava et al., 2016; Wang J. et al., 2016; Bunggulawa
et al., 2018; Han et al., 2019). Exosomes can be isolated from
a patient’s fluids and, after suitable modification, transferred
to the same patient for a targeted cancer therapy. Studies
have reported a significant higher efficacy of drugs loaded
into exosomes when compared with free drugs and can
cross biological barriers, even the blood–brain barrier (Yang
et al., 2015; Dilsiz, 2020). One exosome-based therapeutic
strategy is the inhibition of onco-miRNAs by the delivery of
antagonist tumor-suppressive complementary miRNAs, injected
either systemically or locally into the tumor (Dilsiz, 2020).
Systemically injected exosomes targeted to the EGF receptor
(EGFR) deliver antitumor miRNAs to breast cancer cells (Ohno
et al., 2013; Jurj et al., 2020). Exosomes can be used as
nanoparticles for suppressing the tumor growth and angiogenesis
in gastric cancer by delivering HGF siRNAs (Zhang et al.,
2018). Another original therapeutic strategy seems to be
the removal of exosomes from circulation by extracorporeal
hemofiltration or the prevention of the fusion and uptake of
exosomes by target cancer cells (Marleau et al., 2012; Dilsiz,
2020; Jurj et al., 2020). On the other hand, exosomes can
interfere with the activity of immunotherapeutic agents, such as
therapeutic antibodies, which, a few hours after administration,
result in approximately one-third to one-half bound to target
cell exosomes (Battke et al., 2011). Human tumor-derived
exosomes downmodulate NKG2D expression and inhibit the
binding of Abs with tumor cells, reducing the antibody-
dependent cellular cytotoxicity (ADCC) (Clayton et al., 2008;
Ashiru et al., 2010; Battke et al., 2011). Similarly, tumor-
derived exosomes participate in chemotherapeutic resistance by
exporting certain drugs from cisplatin-resistant ovarian cancer
cells (Safaei et al., 2005), thus impairing the endocellular
activity of the drug.

ITGs
When uptaken in specific organs, tumor-derived exosomes
prepare the pre-metastatic niche through distinct expression
patterns of the ITGs associated with the metastases of defined
organs. Targeting exosomal ITGs may effectively block organ-
specific metastasis; targeting ITG a6b4, the exosome uptake
and metastases in lungs decrease, as well as targeting ITG
avb5 in the liver. Exosomal ITGs and exosome-inducible
S100 molecules can constitute targets for an anti-metastatic
combination therapy (Hoshino et al., 2015). ITG a6b4
controls the expression of genes associated with cell motility,
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TABLE 1 | A very simplified model for the tabulation of tumor molecular checkpoints.

TUMOR TYPE ASPECIFIC CHECKPOINTS SPECIFIC CHECKPOINTS OTHER CHECKPOINTS

CD44v ID1/3 HSP7O HLA-G LIF/LIFr miRNAs mRNAs IncRNAs lTGs S100s

BREAST TUMORS

(a) ER/PR

(b) HER—2

(c) TN

LUNG TUMORS

.. . .. . ..

.. . .. . ..

. . .. . .. . .

OTHER TUMORS

. . .. . .. . ..

. . .. . .. . ..

. . .. . .. . ..

For each tumor type, the presence (+), absence (−), or the specific typology (i.e., CD44v3, CD44v6, etc.) might be indicated for each checkpoint. Eventual other
checkpoints could also be inserted in the last column.

invasion, and metastasis, including S100A4/metastasin (Grum-
Schwensen et al., 2005; Chen et al., 2009; Kim et al., 2009;
Lukanidin and Sleeman, 2012; Hoshino et al., 2015). In mice
lacking the S100A4 gene, tumor development and metastasis
formation are suppressed (Grum-Schwensen et al., 2005;
Lukanidin and Sleeman, 2012; Hoshino et al., 2015). Silencing
of S100A10 blocks the chemotherapy-induced enrichment of
breast CSCs, impairs tumor initiation, and delays recurrence
(Pillay et al., 2020). In three-dimensional culture and in vivo,
reversion of the malignant phenotype of human breast cancer
cells occurs by ITG blocking antibodies (Weaver et al., 1997;
Hoshino et al., 2015).

miRNAs
Besides potential diagnostic and prognostic biomarkers in
cancer monitoring, exo-miRNAs can be used in therapeutic
strategies, such as the inhibition of onco-miRNA expression
by the delivery of antagonist tumor-suppressor miRNAs:
oligonucleotides complementary to the sequences of the targeted
onco-miRNAs, loaded into exosomes, can be delivered both
systemically and by local injections in the tumor bulk (Dilsiz,
2020). Tumor-suppressor miRNAs, loaded in exosomes and
delivered, can inhibit pro-angiogenic mRNAs or knockdown
specific genes for inhibiting tumor growth (Dilsiz, 2020);
the exosome-formed synthetic miRNA-143 transferred to
osteosarcoma cells inhibits their migration (Shimbo et al.,
2014; Jurj et al., 2020). Notably, consistent with the para-
embryonic nature of cancer, miRNAs have been shown
in pregnancy, which may provide insights into a possible
cure for cancer (Pillay et al., 2020). Cancer cell exosomes
depend on cell surface heparan sulfate proteoglycans for
their internalization and functional activity (Christianson
et al., 2013; Vader et al., 2014), and heparin blocks EV
transfer between donor and recipient cells (Atai et al., 2013;
Vader et al., 2014).

Overall, ID1, ID3, CD44, LIF/LIFr, HLA-G, and HSP70 could
be crucial aspecific targets mainly in primary tumor development,
whereas exosome mRNAs, miRNAs, lncRNAs, ITGs, and related

S100 factors might be important specific targets for blocking
tumor progression and recurrence as well as for inhibiting
organotropic metastasis locations.

DISCUSSION AND PROPOSALS:
“TUMOR CHECKPOINT PROFILES” FOR
“SHIELDED” CANCER TREATMENTS

Final Considerations
One first consideration about the aforesaid targets is that
the non-specific checkpoints (ID1, ID3, CD44v, LIF/LIFr,
HSP70, and HLA-G) would be theoretically associated with
the development of different tumor types, while the specific
checkpoints (miRNAs, lncRNAs, mRNAs, ITGs, and S100s)
could be associated with a defined tumor type or, perhaps,
to a single tumor. Thus, since these specific factors are
circulating in biological fluids (Dilsiz, 2020) and reflect the
status of tumor donor cells (Kucharzewska et al., 2013; Han
et al., 2019), it would be important to detect and identify
the different EV factors from tumors of the same kind,
with similar differentiation degree and molecular features, for
knowing whether common crucial characterizing checkpoints
exist and act in the induction and maintenance of a specific
phenotype in the CSCs and non-CSCs of similar tumors.
To this end, it might be useful to collect, in a systematic
manner (Table 1), all the data about each tumor in a sort
of “cancer checkpoint hub” (Mege et al., 2016) in order to
create a “molecular checkpoint profile” of each tumor type.
This might allow characterizing the different tumor types,
knowing their evolution, and detecting eventual common specific
and aspecific targets suitable for aimed tumor treatments.
In such a direction, it could be relevant to explore, for
example, the potential properties of the ITG a2b1 as a
potential marker and driver of all cancer metastasis types,
protection from which could avoid all metastatic events
(Hoshino et al., 2015).
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Targeting the tumor cells immunologically with mAbs
binding the complement (ADCC), or with other cytolytic
immune mechanisms (NK cells and cytotoxic TLs), could result
unfavorably (Wieckowski et al., 2009; Chen X. et al., 2018; Lin
and Yan, 2019) since EVs released from killed tumor cells would
spread in the microenvironment and in circulation, transferring
their pathogenetic components to other cells, which might be
induced to convert from non-CSCs into CSCs (Chen et al.,
2017; Lu et al., 2020), enslaved to tumor ends (Sheu and
Shih, 2010; Vader et al., 2014; Crange et al., 2015; Chen X.
et al., 2018), or even killed by apoptosis (Lindman et al., 2006;
Wieckowski et al., 2009).

Chemo- or radiotherapeutic treatments also could have the
aforesaid unfavorable effects (Yan et al., 2005; Chen et al.,
2017; Lu et al., 2020) since they might spread the cellular
contents of the killed tumor cells, in particular EVs, which
would enter other cancer and non-cancer cells, leading to the
recurrence of the disease in time, as, in general, really occurs
with these therapeutic treatments. In such a direction, it would
be interesting to explore the blocking effect of heparin on the
EV transfer between donor and recipient cells (Atai et al., 2013;
Christianson et al., 2013) as a potential anti-EV molecular shield
in cytotoxic cancer treatments.

Removal of immunosuppressive exosomes from the patient
circulation by extracorporeal hemofiltration has been suggested
and carried out as a therapeutic adjuvant in cancer treatment
(Marleau et al., 2012). This idea appears to be good since
such a technique could eliminate a likely crucial mechanism
of tumor relapse and metastasis, in accordance with the
above considerations.

The tumor bulk hierarchic structure, for which I suggested
a modular organization of different cancer cell populations
(Figures 1, 3) (Manzo, 2020), also might be a crucial problem to
be considered in cytotoxic therapeutic strategies.

“Shielded” Cytolytic Cancer Treatments
The emerging data about the induction properties of EVs and
their contents in tumor progression and metastasis now allow a
better view of the whole cancer process, where exosome contents
appear to be crucial specific checkpoints in tumor immune
evasion, recurrence, and metastasis. In this scenario, it seems very
important to consider that any destruction of CSCs, by surgery
or radio-, chemo-, or immunotherapy, could inevitably lead to
disease recurrence and metastasis because of the induction of
stemness by EV contents (Yan et al., 2005; Chen et al., 2017;
Lu et al., 2020). Therefore, it would be indispensable to carry
out cytotoxic antitumor treatments under protection from this
activity, on the basis of the molecular checkpoint profile of a

defined tumor type. To this end, the following general multistep
therapeutic strategy could be proposed for back-dismantling the
tumor hierarchic histological structure, preventing recurrence
and metastasis:

Step 1: Depletion of non-proliferative differentiated
tumor cells (CDCs) by conventional chemotherapeutic
agents (Wang T. et al., 2016; Roy et al., 2018) and/or
radiotherapy, killing different bulk cancer cells. Since
non-specific chemotherapies or radiotherapy, besides
CDCs, also kill random CSCs, releasing exosomal
factors with stemness induction properties (Chen et al.,
2017), these cytolytic treatments should be effectuated
under protection from whole exosomes (for example by
hemofiltration or heparin) (Atai et al., 2013; Christianson
et al., 2013) and free exosomal factors (for example
by anti-HLA-G/HSP70/ITG/S100 mAbs or by miRNAs
targeting onco-RNAs) (Weaver et al., 1997; Stangl
et al., 2011; Hoshino et al., 2015; Tilburgs et al., 2015;
Dilsiz, 2020) to avoid immune system impairment, non-
CSC/CSC transition (recurrence), and pre-metastatic niche
induction (metastasis).
Step 2: Depletion of actively proliferating tumor cells
(CSC2s and CPCs) by cell cycle-independent apoptotic
drugs, like alkylating agents (Wang T. et al., 2016; Roy et al.,
2018), yet under a protected approach, as in step 1.
Step 3: Elimination of slow- and non-proliferating CSCs
(CSC1s and CSC3s), always under a shielded approach, like
in step 1, by anti-CSC chemotherapeutic agents (Wang
T. et al., 2016; Roy et al., 2018), mi-Abs or aptamers
specifically targeting ID1, ID3, CD44, and LIF/LIFr (Heap
et al., 2005; Pecak et al., 2020), or also in a natural way by
NK cells that preferentially target tumor cells with a CSC
phenotype (Ames et al., 2015), now easily accessible in the
tumor site, after the depletion of CSC2s, CPCs, and CDCs.
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