
© 2018 Chen and Lee. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms. 
php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work 

you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For 
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

Clinical Epidemiology 2018:10 489–497

Clinical Epidemiology Dovepress

submit your manuscript | www.dovepress.com

Dovepress 
489

M E T H O D O L O G Y

open access to scientific and medical research

Open Access Full Text Article

http://dx.doi.org/10.2147/CLEP.S160205

Attributing diseases to multiple pathways: a 
causal-pie modeling approach

Christine Chen1

Wen-Chung Lee1,2 
1Institute of Epidemiology and 
Preventive Medicine, College of Public 
Health, National Taiwan University, 
Taipei, Taiwan; 2Research Center 
for Genes, Environment and Human 
Health, College of Public Health, 
National Taiwan University, Taipei, 
Taiwan

Abstract: Characterizing the relations between exposures and diseases is the central tenet of 

epidemiology. Researchers may want to evaluate exposure-disease causation by assessing whether 

the disease under concern is induced by the various exposures – the so-called “attribution”. In 

this paper, the authors propose a method to attribute diseases to multiple pathways based on the 

causal-pie model. The method can also be used to evaluate the potential impact of an interven-

tion strategy and to allocate responsibility in tort-law liability issues. 
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Introduction
Characterizing the relations between exposures and diseases is the central tenet of 

epidemiology. Epidemiologists may be interested in knowing the influence of a single 

exposure on a disease (using effect measures such as risk difference, risk ratio, and 

odds ratio) or the total influence of multiple exposures on the disease. They may also 

be interested in knowing any possible interaction between exposures. Through epide-

miological studies, the complex relations between multiple exposures and a disease 

can be clarified.1

Attention has also been given to the “processes”, “pathways”, or “mechanisms” 

themselves, through which an exposure brings about the disease. For example, one 

may want to know whether the causal relationship between an exposure and a disease 

is mediated by a specific “mediator”. If so, the influence of the exposure on the disease 

can be decomposed: the “indirect effect” is the effect mediated by the mediator, and the 

“direct effect” is the one not mediated by it. A statistical method that can decompose 

the exposure effect is structural equation modeling (SEM).2–4 Effect decomposition 

in SEM is straightforward; the effect pertaining to a specific pathway is simply the 

product of the path coefficients of the traveled paths. For the indirect effect, we sum up 

the effects of those pathways that pass through the mediator, and for the direct effect, 

those that do not pass through it. However, this only works for a continuous mediator 

and continuous disease. The methods proposed by Robins and Greenland,5 Pearl,6 and 

VanderWeele7 are more general. These methods can accommodate any variable type and 

can cope with exposure–mediator interactions and nonlinear relations between variables. 

The aforementioned methods evaluate exposure–disease causation by going from 

exposures to a disease. Sometimes we may be interested in backward induction by 

assessing whether the disease under concern is induced by the various exposures – the 
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so-called “attribution”. (Note that the attribution here is based 

on epidemiologic data,8–14 and should not be confused with 

attribution in social psychology where the human perception 

of causations is in focus.)15 For example, when planning 

intervention strategies, policymakers may want to compare 

the effectiveness of various intervention programs directed 

at removing different exposures in the population. In this 

case, we need to know the proportion of disease that was 

induced by each exposure. As another example, in some tort 

litigation, the court is concerned about the contribution of a 

specific exposure to the disease occurrence of the plaintiff. 

If probabilistic apportionment of causal responsibility16,17 

is adopted, the court needs to know the probability that the 

occurrence of the disease was induced by this exposure. In 

situations like these, we can use indices such as the attribut-

able fraction8–12 and the causal-pie weight13,14 for attribution. 

When there are multiple exposures, a summation of the 

attributable fractions for all exposures may exceed 100%. 

Clearly, this makes no sense, and the index needs some rec-

tifications.18–23 When there are multiple exposures, one can 

compute a panel of causal-pie weights (summing up to 100%) 

for the individual effects of each and every exposure as well 

as the interactive effects between them. However, neither the 

attributable fraction nor the causal-pie weight takes disease 

pathways into account.

In this paper, we propose a method to attribute diseases 

to multiple pathways based on the causal-pie model.1,24 The 

method can also be used to evaluate the potential impact 

of an intervention strategy and to allocate responsibility in 

tort-law liability issues. 

Methods
Relations between an exposure, a 
mediator, and a disease
A “directed acyclic graph” (DAG)1,25,26 is used to depict 

the causal relations between an exposure (E) and a disease 

(D), which can be mediated by a mediator (M) (Figure 1). 

Causality (also referred to as causation, or cause and effect) 

is a process (arrows in Figure 1) that connects one set of 

variables (the “causes” or “risk factors”) with another set 

of variables (the “effects” or “outcomes”), where the first 

is partly responsible for the second, and the second is partly 

dependent on the first. An effect (outcome) can, in turn, be 

a cause (risk factor) for many other effects (outcomes). Note 

that a DAG depicts a simplified biology, ignoring any feed-

back loop where an effect can feed back to the same cause 

that leads to the very effect in the first place. 

We consider the exposure, the disease, and the media-

tor as dichotomous variables. We call the occurrence of the 

mediator, the M-stage, such as the paths M1 and M2, and the 

occurrence of the disease, the D-stage, such as the paths D1, 

D2, D3, and D4 (Figure 1). Note that to indicate “interac-

tion”, we allow two DAG arrows to meet and merge before 

pointing at the same variable, such as the D4 path in Figure 1.

A causal-pie model for mediator and 
disease
We follow the causal-pie framework for mediator and disease 

proposed by Hafeman.27 We invoke the “sufficient-cause 

positive monotonicity assumption” at the individual level, 

that is, the effects of the exposure on the mediator and on the 

disease as well as the effect of the mediator on the disease, 

if any, can only be harmful and cannot be preventive for any 

individual.1,13,14,27,28 In Figure 2, under the assumption, there 

is a total of six classes of causal pies – two for the M-stage 

and four for the D-stage. The two causal-pie classes for the 

M-stage are: 1) a causal-pie class not containing E as its 

component and 2) a causal-pie class containing E as its com-

ponent (1 and 2 correspond to paths M1 and M2 in Figure 1, 

respectively). The four causal-pie classes for the D-stage 

are: 3) a causal-pie class containing neither E nor M as its 

component, 4) a causal-pie class containing E but not M as 

its component, 5) a causal-pie class containing M but not E 

as its component, and 6) a causal-pie class containing both E 

and M as its components (3, 4, 5, and 6 correspond to paths 

D1, D2, D3, and D4 in Figure 1, respectively). 

Aside from the exposure and the mediator, each causal-pie 

class contains a distinct constellation of unknown compo-

nents. We denote these by U – the U
M1

, U
M2

, U
D1

, U
D2

, U
D3

, 

and U
D4

, respectively, in Figure 2. When all components in 

a causal pie appear, the causal pie is completed, and the cor-

responding mediator or disease is meant to occur. The arrivals 

Path D1
Path D3

Path M2

Path M1
M

DE

Path D2

Path D4

Figure 1 The two paths for M-stage and four paths for D-stage.
Abbreviations: D, disease; E, exposure; M, mediator.

www.dovepress.com
www.dovepress.com
www.dovepress.com


Clinical Epidemiology 2018:10 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

491

Attributing diseases to multiple pathways: a causal-pie modeling approach

of the unknown components (U) are random events. When the 

U of a particular causal pie arrives and other component(s) (E, 

M, or both), if any, in the causal pie all exists, the causal pie 

is completed, and as mentioned previously, the corresponding 

mediator or disease occurs. Otherwise, the U departs, and 

the completion of this causal pie is contingent on the events 

that the same U arrives again.

Disease pathways
An individual can follow the paths depicted in Figure 1 to 

become diseased. A total of six distinct disease pathways can 

thus be identified (Figure 3):

I. The exposure causes the disease directly (D2).

II. The exposure causes the mediator, which in turn causes 

the disease (M2D3). 

III. The exposure causes the mediator, and then both interact 

to cause the disease (M2D4).

IV. The exposure and an exogenous mediator interact to cause 

the disease (M1D4).

V. An exogenous mediator causes the disease directly 

(M1D3).

VI. Neither the exposure nor the mediator causes the disease 

(D1).

Note that these pathways are examined at the individual level 

rather than population, that is, the same person is followed-

up throughout for the path(s) he/she had actually taken to 

eventually become diseased. Therefore, we can distinguish 

2) M2 class for path M2

E

E E MM

A

B

1) M1 class for path M1

4) D2 class for path D23) D1 class for path D1 6) D4 class for path D45) D3 class for path D3

UM1

UD1

UD2 UD3
UD4

UM2

Figure 2 The total six causal-pie classes for M-stage and D-stage.
Notes: (A) M-stage; (B) D-stage.
Abbreviations: D, disease; E, exposure; M, mediator; U, unknown components.

Path D3

Path D1Path D3

Path M2

Pathway IIPathway I

Path M2

Path M1

Path M1

MM

BA

DEDE

Pathway IVPathway III

M

M

M

DC

Pathway VIPathway V FE

D

D

E

E

M

DE

DE

Path D4

Path D2

Path D4

Figure 3 The six disease pathways.
Notes: (A) Pathway I; (B) Pathway II; (C) Pathway III; (D) Pathway IV; (E) Pathway 
V; (F) Pathway VI. 
Abbreviations: D, disease; E, exposure; M, mediator.
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the actual “operation” from the mere “presence” of a media-

tor.29,30 Pathways IV and V (Figure 3) only imply the pres-

ence of an “M” in the disease pathway. On the other hand, 

Pathways II and III (Figure 3) not only imply the presence of 

the M but also its operation (a person goes from E to M, and 

then to D), and the M now can truly be called a “mediator”. 

Estimation of the causal-pie parameters
We assume that in the follow-up period, the arrival rates of 

U in the six classes of causal pies, denoted by l
M1

, l
M2

, l
D1

, 

l
D2

, l
D3

, and l
D4

, respectively, are constant. We also invoke 

the “no redundancy assumption”,28,31,32 that is, for each and 

every subject in the population, at most one U can arrive in 

a sufficiently short time interval.

One can conduct a cohort study to estimate the afore-

mentioned six causal-pie parameters – l
M1

, l
M2

, l
D1

, l
D2

, 

l
D3

, and l
D4

. Suppose that there are n exposed subjects and m 

unexposed subjects in the cohort. At the start of the follow-up 

(t=0), all the subjects are mediator- and disease-free. Dur-

ing the follow-up period (from t=0 to t=T), for subjects who 

contracted the disease, the researcher records their mediator 

status at the moments they contracted the disease. For sub-

jects who did not contract the disease during the following 

period, the researcher records their mediator status at the end 

of the follow-up (t=T). A tally of subjects at the end of the 

follow-up is shown in Table 1. This dataset has a total of 6 

degrees of freedom (22 - 1=3 for the exposed subjects and 

22 - 1=3 for the unexposed), which is equal to the number of 

the unknown parameters. Therefore, l
M1

, l
M2

, l
D1

, l
D2

, l
D3

, 

and l
D4

 are just identifiable. See Supplementary materials 

for details of the estimation procedure.

Attribution, a backward induction 
process
As pointed out earlier, attribution is a backward induction 

process, assessing whether the outcome under concern is 

induced by some variables. Thus, we reverse the direction 

of the usual DAG arrows in Figure 1 to become the “attribu-

tion arrows” (Figures 4 and 5). When an attribution arrow 

points at a variable (exposure or mediator), it means that 

the indicated variable is one cause of the outcome (disease 

or mediator, depending on the point from which the arrow 

originates). When an attribution arrow points at the exposure 

and the mediator simultaneously, it means that the exposure 

and the mediator interact to cause the disease. When an 

attribution arrow points at nothing, it means that neither 

the exposure nor the mediator is a cause of the disease (or 

the mediator).

Given the six causal-pie parameters, we can compute the 

probability for any path (Figure 4). Consider the M-stage first 

(begin with the “M” in Figure 4 and follow the attribution 

arrows), an unexposed subject who acquires the media-

tor during the follow-up can only acquire it through path 

M1 (probability=1) but not path M2 (probability=0). An 

exposed subject who acquires the mediator can acquire it 

either through path M1 or M2, but not both (because of the 

no redundancy assumption). By Bayes theorem (Supplemen-

tary materials), the probabilities are 
λ

λ λ
M

M M

1

1 2+
 (path M1) 

and 
λ

λ λ
M

M M

2

1 2+
 (path M2), respectively. Next, consider the 

D-stage (begin with the “D” in Figure 4 and follow the attribu-

tion arrows) and also apply the Bayes theorem. An unexposed 

subject who acquires the disease but not the mediator during 

the follow-up can do so only through path D1 (probability=1). 

An unexposed subject who acquires the disease and the 

mediator can take either path D1 or D3 (with probabilities 

λ
λ λ

D

D D

1

1 3+
 and 

λ
λ λ

D

D D

3

1 3+
, respectively). An exposed subject 

who acquires the disease but not the mediator can take either 

path D1 or D2 (with probabilities 
λ

λ λ
D

D D

1

1 2+
 and 

λ
λ λ

D

D D

2

1 2+
, 

respectively). An exposed subject who acquires the disease 

and the mediator can take either path D1, D2, D3, or D4 (with 

probabilities 
λ

λ λ λ λ
D

D D D D

1

1 2 3 4+ + +
, 

λ
λ λ λ λ

D

D D D D

2

1 2 3 4+ + +
, 

λ
λ λ λ λ

D

D D D D

3

1 2 3 4+ + +
,  and λ

λ λ λ λ
D

D D D D

4

1 2 3 4+ + +
, respec-

tively).

Now we can compute the probability for any pathway. 

First, we note that under the no redundancy assumption, 

no one can acquire the disease and the mediator at the 

same time. A subject who acquires both the disease and the 

Table 1 A tally of subjects at the end of the follow-up of a cohort 
study

Mediator status 
and disease status

Exposure status

E=0 E=1

M=0, D=0 m1 n1

M=1, D=0 m2 n2

M=0, D=1 m3 n3

M=1, D=1 m4 n4

Total m = m1 + m2 + m3 + m4 n = n1 + n2 + n3 + n4

Notes: Inside the box are the diseased subjects. n and m represent number of subject.
Abbreviations: D, disease; E, exposure; M, mediator.
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mediator during the follow-up must acquire the mediator 

before acquiring the disease. To calculate the probability for 

a pathway that straddles an M-stage path and a D-stage path, 

we simply multiply the two corresponding probabilities for 

the two paths. Following this multiplication rule, we can 

attribute the disease to multiple pathways probabilistically 

for a diseased subject with known exposure and mediator 

status. For a subject with unknown exposure and/or media-

tor status or for all the diseased subjects in the population, 

we can use the cell counts inside the box in Table 1 as the 

weights (shown underneath each panel in Figure 4) for 

attribution.

Next, we discuss attribution from three different per-

spectives: 1) attributing diseases to multiple pathways, 2) 

evaluating the potential impact of an intervention strategy, 

and 3) allocating responsibility in tort-law liability issues.

Attributing diseases to multiple pathways
We can attribute the diseases in the population to the afore-

mentioned six pathways. The population attributable fractions 

(PAF), which take into account all the diseased subjects in 

the population, are:

PAF
n

n n m m
n

n n m mI
D

D D D D

D

D
=

+ + +
×

+ + +
+

+ + +
×4

3 4 3 4

2

1 2 3 4

3

3 4 3 4

2

1

λ
λ λ λ λ

λ
λ ++ λD2

  

    PAF
n

n n m m
n

n n m mI
D

D D D D

D

D
=

+ + +
×

+ + +
+

+ + +
×4

3 4 3 4

2

1 2 3 4

3

3 4 3 4

2

1

λ
λ λ λ λ

λ
λ ++ λD2

, (1)

PAF
n

n n m mII
D

D D D D

M

M M
=

+ + +
×

+ + +
×

+
4

3 4 3 4

3

1 2 3 4

2

1 2

λ
λ λ λ λ

λ
λ λ
  

    PAF
n

n n m mII
D

D D D D

M

M M
=

+ + +
×

+ + +
×

+
4

3 4 3 4

3

1 2 3 4

2

1 2

λ
λ λ λ λ

λ
λ λ

, (2)

PAF
n

n n m mIII
D

D D D D

M

M M
=

+ + +
×

+ + +
×

+
4

3 4 3 4

4

1 2 3 4

2

1 2

λ
λ λ λ λ

λ
λ λ
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n

n n m mIII
D

D D D D

M
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=
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+
4
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4
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2
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λ
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λ
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, (3)

PAF
n

n n m mIV
D

D D D D

M

M M
=

+ + +
×

+ + +
×

+
4

3 4 3 4

4

1 2 3 4

1

1 2

λ
λ λ λ λ

λ
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    PAF
n

n n m mIV
D
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M
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=

+ + +
×

+ + +
×

+
4

3 4 3 4

4

1 2 3 4

1

1 2

λ
λ λ λ λ

λ
λ λ

, (4)

PAF
n

n n m mV
D

D D D D

M

M M
=

+ + +
×

+ + +
×

+
+4

3 4 3 4

3

1 2 3 4

1

1 2

λ
λ λ λ λ

λ
λ λ
 

   

PAF
n
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+
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1
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λ
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m
n n m m

D

D D

4

3 4 3 4

3

1 3+ + +
×

+
λ

λ λ
, (5)

and

PAF
n

n n m m
n

n n m mVI
D

D D D D

D

D
=

+ + +
×

+ + +
+

+ + +
×4

3 4 3 4

1

1 2 3 4

3

3 4 3 4

1λ
λ λ λ λ

λ
λ 11 2+

+
λD 

    

PAF
n
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n

n n m mVI
D

D D D D

D

D
=

+ + +
×

+ + +
+

+ + +
×4

3 4 3 4

1

1 2 3 4

3

3 4 3 4

1λ
λ λ λ λ

λ
λ 11 2+

+
λD  

m
n n m m

m
n n m m

D

D D

4

3 4 3 4

1

1 3

3

3 4 3 4+ + +
×

+
+

+ + +
λ

λ λ
, (6)

for Pathways I, II, …, VI, respectively. It is worth noting that 

the six PAFs sum to one.

Evaluating the potential impact of an intervention 
strategy
We now consider the impact of a specific intervention. We 

note that if an intervention can block a segment of a pathway 

(for example, either path M2 or D3, but not necessarily both, 

DE

M

DE

M

DE

M

DE

E=1, M=1

weight=
n4

n3+n4+m3+m4

M

0

0

0

0
�D1

�D1+�D2

0

1

10

0

0

0

0

0

0

�D1
�D1+�D3

�D2
�D1+�D2

�D2
�D1+�D3

�D1
�D1+�D2+�D3+�D4

�D3
�D1+�D2+�D3+�D4

�D4
�D1+�D2+�D3+�D4

�D2
�D1+�D2+�D3+�D4

E=1, M=0

weight=
n3

n3+n4+m3+m4

E=0, M=1

weight= n4
n3+n4+m3+m4

E=0, M=0

weight= n3
n3+n4+m3+m4

�M2
�M1+�M2

�M1
�M1+�M2

Figure 4 Formulae for attribution.
Abbreviations: D, disease; E, exposure; M, mediator.
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of Pathway II), the whole pathway is blocked. To calculate 

the impact fraction for an intervention, we sum the PAFs for 

those pathways that are blocked by this intervention.

The impact fractions for a number of interventions are 

detailed: 1) a complete removal of the exposure from the 

population: this would block paths M2, D2, and D4 and 

therefore Pathways I, II, III, and IV. The impact fraction for 

this intervention is PAF
I
 + PAF

II
 + PAF

III
 + PAF

IV
. 2) A com-

plete obstruction of the exposure effect on the mediator: this 

would block path M2 and therefore Pathways II and III. The 

impact fraction for this intervention is PAF
II
 + PAF

III
. 3) A 

complete obstruction of the mediator effect on the disease: 

this would block paths D3 and D4 and therefore Pathways 

II, III, IV, and V. The impact fraction of this intervention is  

PAF
II
 + PAF

III
 + PAF

IV
 + PAF

V 
.

Allocating responsibility in tort-law liability issues
As pointed out earlier, if probabilistic apportionment 

of causal responsibility is adopted for tort-law liability 

issues,16,17 the court needs to know the probability that the 

occurrence of the disease was induced by the particular 

exposure. We can follow the attribution arrow(s) of a path-

way and examine whether the arrow points at the exposure 

to decide whether the exposure is involved in the pathway. 

If the attribution arrow of the disease points at the expo-

sure and the mediator simultaneously, the probability that 

the exposure is involved is taken to be 0.5 (since there is 

no further information about which path is more likely to 

be actually taken). But when the attribution arrow of the 

mediator points again at the exposure, it is then known for 

certain that the exposure is involved somewhere in the causal 

chain. Using these rules, the full attributable fractions for 

Pathways I, II, and III, a half of the attributable fraction for 

Pathway IV, and none for Pathways V and VI are allocated 

to the exposure, respectively.

To be precise, for an exposed subject who contracts 

the disease, the contribution of the exposure to his/her 

disease – the “attributable fraction among the exposed” 

(AFE) – is as follows: 1) if the subject does not acquire 

the mediator during the follow-up (the “E=1, M=0” panel 

in Figure 4),

AFE AFE AFE AFE AFEM
I
M

II
M

III
M

IV
M= = = = == + + + ×0 0 0 0 0 0 5.  

  
=

+
+ + + ×

λ
λ λ

D

D D

2

1 2
0 0 0 0 5.

 

  

=
+

λ
λ λ

D

D D

2

1 2
; (7)

2) if the subject acquires the mediator during the follow-up 

(the “E=1, M=1” panel in Figure 4), 
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and 3) if the mediator status of the subject is unknown, 

 
AFE

n
n n

AFE
n

n n
AFEM M=

+
× +

+
×= =3

3 4

0 4

3 4

1 . (9)

Example
We use Richiardi et al’s33 cohort data (m

1
=9900, m

2
=490, 

m
3
=100, m

4
=10, n

1
=4850, n

2
=800, n

3
=150, and n

4
=200, using 

the notations in Table 1) as an example. For this dataset, using 

Robins and Greenland’s5 and Pearl’s6 methods, we can decom-

pose the total effect of the exposure on the disease (0.048) 

into direct effect (0.028) and indirect effect (0.020). Using 

VanderWeele’s7 method, we can further decompose the total 

effect into four components: controlled direct effect (0.02), 

reference interaction (0.008), mediated interaction (0.019), 

and pure indirect effect (0.001). However, we cannot accom-

plish attribution using these previous methods.

We use the present method to analyze the data (R code 

in Supplementary materials). The estimates of causal-pie 

parameters are as follows: , , 

, , , and , 

respectively (Richiardi et al33 did not mention the duration 

of the follow-up in their paper; as such, we assume T=1, and 

Supplementary materials show that assuming different Ts will 

cause the six s to change according to a constant proportion 

and thus, the estimates of the attributable fractions remain 

the same). Figure 5 presents the path probabilities.

The PAFs for the six pathways are as follows: PAF
I
=22.8%, 

PAF
II
=2.2%, PAF

III
=27.8%, PAF

IV
=10.0%, PAF

V
=2.4%, and 

PAF
VI

=34.7%, respectively. The total sum of the six PAFs is 

22.8%+2.2%+27.8%+10.0%+2.4%+34.7%=100.0%.

The impact fraction for a complete removal of the expo-

sure from the population is 62.8%, for a complete obstruction 
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of the exposure effect on the mediator is 30.0%, and for a 

complete obstruction of the mediator effect on the disease 

is 42.4%.

For an exposed subject who contracts the disease, if the 

subject does not acquire the mediator during the follow-up, 

AFEM=0=64.7%; if the subject acquires the mediator during 

the follow-up, AFEM=1=84.5%; and if the mediator status of 

the subject is unknown, AFE=76.0%.

Discussion
In this paper, we invoke three assumptions for the causal-pie 

model. The first assumption is the monotonicity assump-

tion.1,13,14,27,28 Without this assumption, the number of the 

causal-pie classes (12; 3 for the M-stage and 9 for the 

D-stage) will be larger than the degrees of freedom of the data 

(6), which makes the causal-pie parameters non-identifiable. 

Researchers who use the present method should have prior 

knowledge that the effects of the exposure on the mediator 

and on the disease and the effect of the mediator on the 

disease are “monotonic”. To be precise, neither the “no expo-

sure” nor the “no mediator” can be a component of any causal 

pie. Second, we assume that the arrival rates of the U’s are 

constant in the follow-up period. When the follow-up time is 

not too long (for example, less than 5 years), the assumption 

is reasonable or approximately so. The third assumption is 

the no redundancy assumption.28,31,32 This is a Poisson-like 

assumption, which is weaker than the assumption of inde-

pendent competing causes.13,14,34 Even though two causal-pie 

classes have overlapping components, the assumption still 

holds if the overlapping components are not the last one 

arriving. In addition, the assumption only specifies at most 

one arrival event of the U’s in an infinitesimally short time 

interval. Non-rarity of the mediator or the disease for the 

entire follow-up period by itself does not necessarily imply 

the violation of the no redundancy assumption.

Controlling for confounding is essential in observa-

tional studies. One can stratify the data by the confounders 

and compute the attributable fractions for each and every 

stratum. One then uses the count of the diseased subjects 

in each stratum as the weight to pool the results. This will 

yield “adjusted” attributable fractions. The present method 

can also be extended to accommodate other variable types 

or more general situations. If the exposure or the mediator 

is multilevel (a continuous variable can be categorized into 

a multilevel one for an approximation; but caution should 

be exercised as this may create bias)35 – for example, the 

exposure has a total of k
1
 levels and the mediator, a total 

of k
2
 levels – under the monotonicity assumption there 

will be a total of k
1
 × k

2
 causal-pie classes for the D-stage. 

Furthermore, if the disease has a total of k
3
 subtypes, each 

with a total of k
1
 × k

2
 causal-pie classes, then there will be 

a total of k
1
 × k

2
 × k

3
 causal-pie classes. In addition, if there 

are multiple exposures or multiple mediators (an exposure-

induced mediator-disease confounder36–38 can be viewed as 

another mediator; Figure 6), the total number of causal-pie 

classes will be even larger. It seems rather complex. But if one 

can conduct a large-scale cohort study and use appropriate 

statistical models, such as a multistate model,39–42 the many 

causal-pie parameters (or the state transition rates, using 

the terminology of a multistate model) can be amenable to 

estimation. Then, one simply follows the present method 

for attribution.

D

M

C

E

Figure 6 An exposure-induced mediator-disease confounder as another mediator.
Abbreviations: C, confounder; D, disease; E, exposure; M, mediator.
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Figure 5 Disease attributions for the example cohort.
Abbreviations: D, disease; E, exposure; M, mediator.
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Last but not least, the causal-pie model by itself deserves 

careful scrutiny. Like the DAG, a causal-pie model depicts 

an overtly simplified biology. But unfortunately, a direct bio-

logical modeling of exposure-disease relations considering 

all physical or chemical reactions among exposures, their 

metabolites, or their reaction products within individuals is 

seldom feasible. Previously, Siemiatycki and Thomas43 and 

Thompson44 held a pessimistic view that there is a limit of 

biological inference from epidemiologic data, since a number 

of very dissimilar mechanisms or models for disease devel-

opment can often fit the same data equally well. Recently, 

an emerging interdisciplinary science, the molecular patho-

logical epidemiology (MPE), has come into focus.45–47 MPE 

uses molecular pathology tools to dissect disease pathways 

and mechanisms at molecular, individual, and population 

levels. Casting the causal-pie model in the MPE framework 

is a promising future research direction. 
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