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Abstract: Protein quality control is essential for cellular homeostasis. In this study, we examined
the effect of improperly folded proteins that do not form amyloid fibrils on mitochondria, which
play important roles in ATP production and cell death. First, we prepared domain 3 of the dengue
envelope protein in wild type and four mutants with widely different biophysical properties in
misfolded/aggregated or destabilized states. The effects of the different proteins were detected using
fluorescence microscopy and Western blotting, which revealed that three of the five proteins disrupted
both inner and outer membrane integrity, while the other two proteins, including the wild type, did
not. Next, we examined the common characteristics of the proteins that displayed toxicity against
mitochondria by measuring oligomer size, molten globule-like properties, and thermal stability.
The common feature of all three toxic proteins was thermal instability. Therefore, our data strongly
suggest that thermally unstable proteins generated in the cytosol can cause cellular damage by
coming into direct contact with mitochondria. More importantly, we revealed that this damage is not
amyloid-specific.

Keywords: dengue envelope protein domain 3; membrane; mitochondria; misfolded protein; thermal
instability

1. Introduction

Quality control of proteins is essential for cell viability, and nascent polypeptides
undergo complex, multi-step folding processes before they can become functionally active
proteins. Cells possess a variety of quality control mechanisms to deal with improp-
erly folded proteins, and they repair or digest misfolded proteins. However, deficient
quality control systems can lead to the accumulation of misfolded or partially folded
proteins that can trigger neurodegenerative diseases by interacting with various cellular
components [1–7].

Mitochondria are important cellular organelles that synthesize adenosine triphosphate
(ATP) and regulate various cellular metabolism like Ca2+ homeostasis, hormone signaling,
and cell death under normal conditions. Consequently, mitochondria are involved in the
pathological mechanisms of many diseases, as evidenced by the disruption of mitochon-
drial function, morphology, and dynamics. Amyloid fibrils are a well-known cause of
neurodegenerative disease [8–10] which can induce mitochondrial damage, leading to
serious cellular dysfunction. Although other types of misfolded proteins, such as small
oligomeric or monomeric sheets [11] or amorphous aggregates [12,13], have also been
observed to cause cellular dysfunction, the specific underlying mechanisms remain unclear.

In this study, we investigated the mechanisms of mitochondrial damage caused by
non-amyloid-misfolded proteins. Importantly, we used highly active isolated mitochondria
to observe the direct action of added proteins on mitochondria. As a model protein for
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interaction with mitochondria, we used the domain 3 of the envelope protein (ED3) of
dengue virus serotype 3 (DENV3), which is a small β-sheet protein of 106 residues that
contains an Ig fold [14] and folds spontaneously. The variants were chosen because a
single or a few mutations induced a significant change in the oligomerization state/thermal
stability of the protein. We prepared a wild-type DENV3-ED3 and generated four variants
with very similar sequences but substantially different biophysical properties, and used
them to analyze how biophysical properties of a protein can affect mitochondrial toxicity.

In particular, our study aims to examine whether a protein (any protein) becomes
toxic upon aggregation/ destabilization. We chose DENV3-ED3 as a model protein for
a practical reason: Several variants with single or few mutations that exhibited uniquely
different biophysical properties in terms of oligomerization and thermal stability [15–17]
were available, and DENV3-ED3′s native structure was well characterized [18]. Altogether,
this study provided insights into the mechanisms of cellular and in particular mitochondrial
damage caused by non-amyloid-misfolded proteins.

2. Results
2.1. Effects of DENV3-ED3 Variants on Mitochondrial Membrane Potential

Mitochondrial membrane potential is an important indicator of mitochondrial ac-
tivity as it affects the uptake of cations into mitochondria. Therefore, we first evaluated
the effects of the DENV3-ED3 variants’ physico-chemical properties on mitochondrial
membrane potential using mitochondria isolated from porcine hearts or HeLa cells. The
variants were chosen from a larger pool of mutants, and named according to the number
and type of amino acids added to the C-terminus of the protein [19], as summarized in
Table 1 and Figure S1. The structural/physical origin of the aggregation/destabilization
has been reported in our previous studies and mainly originates from hydrophobic effect
and atomic clashes.

Table 1. DENV3-ED3 variants and their definitions.

Type Variants Short Name Description of the Variants

Wild type 3ED3 WT Domain 3 of the envelope protein of the
DENV from serotype 3 (DENV3)

Tag 3ED3-C4I C4I
4-Isoleucine tag added after two

Glycine-spacer at the C-terminus of 3ED3

Mutation

3ED3-I380A IA Isoleucine 380 was replaced by Alanine in 3ED3

3ED3-V310M I380A VMIA
Valine 310 was replaced by Methionine

and Isoleucine 380 was replaced by Alanine in 3ED3

3ED3-V310M I318T
I380A VMITIA

Valine 310 was replaced by Methionine,
Isoleucine 318 was replaced by Threonine

and Isoleucine 380 was replaced by Alanine in 3ED3

Individual mitochondria adsorbed onto a cover slip were visualized as small dots
with a diameter of approximately 1 µm using fluorescence microscopy (Figure 1A,B). Since
inactive mitochondria were present in the isolated mitochondrial population, we selected
active mitochondria with a normalized tetramethyl rhodamine ethyl ester (TMRE) fluo-
rescence (R) of >1.3, following the addition of 5 mM malate and 5 mM glutamate. Most
active mitochondria maintained their membrane potential (TMRE (R) >1.3) in the absence
of the DENV3-ED3 variants (Figure 1C). When the VMITIA variant was added, some
mitochondria maintained their membrane potential (Figure 1D, Mito 1–3), while in others
the membrane potential was largely lost (Figure 1D, Mito 4,5). We also compared the
percentage of active polarized mitochondria 10 min after DENV3-ED3 variant addition
(Figure 1E,F). The percentage of polarized mitochondria isolated from both porcine my-
ocardium and HeLa cells was reduced following the addition of C4I, VMIA, and VMITIA
variants, and this trend was more apparent at 37 ◦C than at 25 ◦C. Conversely, the wild
type (WT) and IA variant did not induce significant depolarization.
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Figure 1. Effects of DENV3-ED3 variants on mitochondrial membrane potential. (A,B) Optical images
of mitochondria isolated from porcine hearts. (A) Brightfield and (B) TMRE fluorescence images
of the same microscopic field. Bar, 5 µm; (C,D) time course of the normalized TMRE fluorescence
(TMRE(R)) in five isolated mitochondria. At t = 0.5 min, 5 mM malate and 5 mM glutamate were
added. At t = 2 min, (C) Tris-sucrose buffer or (D) 50 µM VMITIA were added; (E,F) percentage
of polarized mitochondria isolated from (E) porcine hearts and (F) HeLa cells respectively, after
10 min exposure to the indicated DENV3-ED3 variant (50 µM) at 25 or 37 ◦C. Polarized mitochondria
were defined as mitochondria with TMRE (R) > 1.30 after malate and glutamate addition. Data
represent the mean ± SEM of three independent experiments. Over 50 mitochondria were analyzed
per experiment. * p < 0.05 vs. WT at 25 ◦C; # p < 0.05 vs. WT at 37 ◦C for (E). * p < 0.05 vs. WT at
37 ◦C; # p < 0.05 vs. WT at 25 ◦C for (F).

2.2. Effects of the DENV3-ED3 Variants on Mitochondrial Inner Membrane Integrity

Mitochondria with intact membranes retain calcein within their matrix; however,
calcein is released when the inner membrane loses its integrity [20,21]. To further under-
stand the mechanisms of the DENV3-ED3 variants in mitochondria, we examined their
effects on inner membrane integrity by detecting the amount of calcein released from
mitochondria incubated with the variants at 37 ◦C. Figure 2A,B show calcein fluorescence
images of mitochondria before (Figure 2A) and after (Figure 2B) addition of VMITIA. We
estimated a >80% decrease in calcein fluorescence after 10 min of incubation with the
protein mutant as a significant release of calcein (Figure 2C). Following VMITIA addition,
mitochondria 1 and 7 lost calcein fluorescence, whereas mitochondria 2–6 retained their
fluorescence (Figure 2C). Similar to the membrane potential findings, C4I, VMIA, and
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VMITIA, but not WT or IA, induced significant calcein release from mitochondria isolated
from porcine hearts and HeLa cells (Figure 2D,E). Together, these results indicate that C4I,
VMIA, and VMITIA impair the integrity of the inner mitochondrial membranes, and that
the impairment causes the observed loss of membrane potential.Figure 2
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Figure 2. Effects of DENV3-ED3 variants on mitochondrial inner membrane integrity. (A,B) Calcein
fluorescence images of mitochondria isolated from porcine hearts. Fluorescence images of the
same microscopic field (A) before and (B) after the addition of 50 µM VMITIA. Arrows indicate
mitochondria that released calcein after VMITIA addition. Bar, 10 µm. (C) time course of changes
in calcein fluorescence in seven isolated mitochondria. VMITIA (50 µM) was added at t = 3 min.
(D,E) Percentage of mitochondria that retained calcein fluorescence after 10 min exposure to the
indicated DENV3-ED3 variant (50 µM) at 37 ◦C. Control mitochondria were treated with Tris sucrose
buffer alone; (D) mitochondria isolated from porcine hearts and (E) HeLa cells. Data represent the
mean± SEM of three independent experiments. Over 50 mitochondria were analyzed per experiment.
* p < 0.05 vs. control.

2.3. Effects of the DENV3-ED3 Variants on Cytochrome C Release from Mitochondria

Cytochrome c is released from the mitochondrial intermembrane space into the cytosol
during the early stages of apoptosis [22] and can therefore be used to monitor mitochon-
drial damage. Therefore, we evaluated the release of cytochrome c from mitochondria
exposed to the DENV3-ED3 mutants by performing Western blot analysis on cytochrome
c and cytochrome c oxidase subunit IV (COXIV), an inner membrane protein that serves
as an internal control for mitochondrial proteins. Although C4I, VMIA, and VMITIA
induced a significant cytochrome c release from mitochondria, WT and IA did not, con-
sistent with the TMRE and calcein release findings (Figure 3A,B). Together, these results
indicate that C4I, VMIA, and VMITIA impair the integrity of both the outer and inner
mitochondrial membranes.
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Figure 3. Effects of DENV3-ED3 variants on mitochondrial outer membrane integrity. Outer mem-
brane integrity was evaluated by measuring cytochrome c release using Western blotting. Mito-
chondria from porcine hearts were incubated with the DENV3-ED3 variants. Control mitochondria
were treated with Tris-sucrose buffer alone. (A) Western blot analysis of cytochrome c (Cyt.c) and
cytochrome oxidase subunit IV (COXIV) inside mitochondria after incubation; (B) statistical analysis
of the amount of cytochrome c inside mitochondria after incubation. The percentage of cytochrome c
was expressed as a ratio of the band intensities for cytochrome c and COXIV. The average control
values were normalized to 100%. Data represent the mean ± SEM (n = 3). * p < 0.05 vs. control.

2.4. Oligomer Size and Molten Globule-like Properties of the DENV3-ED3 Variants

To characterize the DENV3-ED3 variants used in this study, we first examined the size
of their aggregates. Dynamic light scattering (DLS) experiments revealed that, in general,
C4I formed the largest oligomers of all the DENV3-ED3 variants, while all other variants
formed small oligomers (Figure 4A and Figure S2), indicating that the hydrophobic effects
of the four-isoleucine tag at the C-terminus of C4I induced aggregation. Next, we examined
the molten globule-like properties of the DENV3-ED3 variants using fluorescence of 8-
Anilino-1-naphthalenesulfonate (ANS), which emits fluorescence upon binding to partially
exposed hydrophobic patches of the monomeric DENV3-ED3 or its aggregates. ANS fluo-
rescence assays revealed that C4I and VMIA emitted the strongest ANS fluorescence of all
the mutants, suggesting that they contain large hydrophobic patches (Figures 4B and S3).
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Figure 4. Analysis of the DENV3-ED3 variant aggregates. (A) Hydrodynamic radius (Rh, nm) of
DENV-ED3 variants determined by DLS. Data represent the mean ± SEM (n = 3). * p < 0.05 vs. WT
at 37 ◦C. (B) ANS fluorescence intensity. ANS (20 µM) was added at to the DENV3-ED3 proteins
(50 µM); (C,D) ThT fluorescence intensity. ThT (10 µg/mL) was added to (C) 50 µM DENV3-ED3
proteins and (D) 50 µM lysozyme.

The large hydrophobic region in C4I is essentially due to the four isoleucine tags at its
C-terminus, whereas the hydrophobic region in VMIA is due to the steric clash between the
Met310 and Ile387 side chains caused by the V310M mutation [18]. The conflicting results
of the ANS and DLS assays for VMIA may be caused by the location of the hydrophobic
patch, which is on the surface of the C4I protein but is relatively more internalized in
VMIA. Interestingly, none of the DENV3-ED3 variants exhibited amyloidogenicity in Tris-
sucrose buffer at either 25 or 37 ◦C, as assessed using thioflavin T (ThT) fluorescence
(Figures 4C,D and S4), suggesting that, under the conditions of the toxicity assays, DENV3-
ED3 was either monomeric or formed amorphous aggregates, but not amyloid fibrils.
Taken together, these results indicate that molten globule-like properties, aggregation size,
and amyloidogenicity are not features that are common to all the mitochondria-damaging
variants—C4I, VMIA, and VMITIA.

2.5. Secondary Structure Content and Thermal Stability of the DENV3-ED3 Variants

To further evaluate the secondary structure and thermal stability of the DENV3-ED3
variants, we performed circular dichroism (CD) analyses. As shown in Figure 5A, the far-
UV CD spectra of WT and IA were almost identical but differed from those of C4I, VMIA,
and VMITIA. These results suggest that the WT and IA proteins have similar secondary
structures to the native protein, whereas C4I, VMIA, and VMITIA are partially unfolded at
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25 ◦C. To examine the thermal stability of the variants, CD thermal denaturation curves
were obtained by monitoring the shift in CD values at a wavelength of 220 nm with an
increase in temperature (Figure S5). The melting temperature (Tm) was calculated using
a two-state model (N–D) (Figure 5B). Although VMITIA was the most unstable variant
(Tm = 37.77 ± 0.15 ◦C), C4I (Tm = 42.77 ± 0.10 ◦C) and VMIA (Tm = 53.29 ± 0.12 ◦C)
were less stable than the WT and IA proteins (Figure 5B). Interestingly, the Tm of the WT
(Tm = 70.39 ± 0.06 ◦C) was close to that of IA (Tm = 65.84 ± 0.12 ◦C), suggesting that the
I380A mutation did not alter the thermal stability of the WT protein. VMIA and VMITIA
destabilization are thought to be caused by internal atomic clashes between the sidechains
of the introduced mutations [18]. Conversely, the origin of the thermal destabilization of
C4I is different, and can be assigned to the reverse hydrophobic effect created by the 4-Ile
tag on the formation of the aggregates [23]. Thus, the thermally unstable C4I, VMIA, and
VMITIA were toxic to mitochondria, but the thermally stable WT and IA did not damage
the mitochondria.
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Figure 5. Thermal stability of the DENV3-ED3 variants. (A) Far-UV CD spectrum of the DENV3-ED3
variants; (B) melting temperature of the DENV3-ED3 variants monitored by thermal denaturation
CD at 220 nm. The melting temperature (Tm) was determined by fitting the thermal denaturation
curve with a two-state model. Fitting errors are shown.
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2.6. Resistance of the DENV3-ED3 Variants to Degradation by Proteolytic Enzymes

To confirm the structural differences between the DENV3-ED3 variants, we sub-
jected each protein to proteolytic degradation using trypsin (Figure 6A) and chymotrypsin
(Figure 6B). As shown in Figures 6 and S6, the WT, C4I, and IA proteins were the most
resistant to proteases, suggesting that their protease-mediated cleavage sites are protected
by native folding (WT and IA) or oligomer formation (C4I). Oligomerized C4I is known to
unfold due to the reversed hydrophobic effect caused by the concentration of the isoleucine
tags, which creates a highly hydrophobic local environment within the aggregates [23].
VMIA and VMITIA were the least resistant to proteolysis, likely due to their low thermal
stability which generally enhances protein flexibility or dynamics under the experimental
conditions used to measure mitochondrial toxicity [24]. These results indicate that the
resistance to proteases is not a common feature of C4I, VMIA, and VMITIA variants, which
are toxic to mitochondria.
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Figure 6. Resistance of the DENV3-ED3 variants to proteolysis. (A,B) Undigested fractions of the
DENV3-ED3 variants subjected to proteolytic digestion by (A) trypsin and (B) chymotrypsin at
37 ◦C. The average intensity of each band was analyzed using MetaMorph (Universal Imaging)
image-processing software. The value of the undigested fraction at t = 0 min was normalized to
100% for each concentration.
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3. Discussion

Misfolded proteins and protein aggregation have been associated with various dis-
eases; however, the mechanisms underlying the cellular dysfunction caused by non-
amyloid aggregates remain unclear. In this study, we analyzed mitochondrial toxicity
by DENV3-ED3 variants and characterized their biophysical properties (Table 2). Although
the mutants used in this study were chemically almost identical, they possessed different
biophysical properties, such as thermal stability and aggregation, which were introduced
without changing the buffer conditions and by introducing a single or few mutations.
In this study, we have used isolated mitochondria and performed in vitro experiments
under well-controlled conditions in order to identify the biophysical properties of proteins
responsible for mitochondrial damage.

Table 2. Summary of the presented results.

Protein MMP IMM OMM Oligomer
Sizes

Fiber (F) or,
Amorphous (A)

Molten
Globule-like

Properties

Thermal
Stability

Protein
Digestion

WT N N N S A Lo St St
C4I D D D L A H U St
IA N N N S A Lo St St

VMIA D D D S A H U U
VMITIA D D D S A Lo U U

MMP, mitochondrial membrane potential; IMM, inner mitochondrial membrane; OMM, outer mitochondrial
membrane; N, not affected; D, disrupted; S, small; L, large; Lo, low; H, high; St, stable; U, unstable.

The DENV3-ED3 variants used in this study were classified into two groups according
to their effects on mitochondria: group 1 included C4I, VMIA, and VMITIA, while group 2
included the WT and IA proteins. Group 1 proteins acted directly on mitochondria and
caused a loss of both inner and outer mitochondrial membrane integrity, whereas group
2 proteins had no effect on the membrane potential or integrity of either mitochondrial
membrane. Since the loss of inner membrane integrity prevents ATP production and the
loss of outer membrane integrity causes the release of cytochrome c, leading to apoptosis,
group 1 proteins are likely to cause significant cell damage. Actually, several studies have
demonstrated that abnormal protein-induced apoptosis is accompanied by a decrease in
mitochondrial membrane potential [25,26], and there is compelling evidence that mitochon-
drial dysfunction plays an important role in neurodegenerative diseases caused by protein
misfolding [9].

Amyloidogenicity is thought to play a major role in proteinopathies; however, our
study suggests that proteins that do not form amyloid fibrils or even amorphous aggregates
may still cause mitochondrial damage. Indeed, we clearly observed that the DENV3-ED3
variants caused the release of cytochrome c, which is known to induce cytotoxicity [11].
Based on their biophysical characterization, a common feature of the proteins in group
1 was thermal instability, which suggests that these proteins were highly flexible and
may facilitate their interactions with mitochondria. Indeed, VMITIA, which was the least
thermally stable variant, had the highest mitochondrial toxicity and was monomeric at
ambient temperature, suggesting that aggregation is not required for mitochondrial toxicity.

Our study is the first to show that a thermally unstable protein that does not form
amyloid fibrils, or even amorphous aggregates, can cause mitochondrial toxicity. These
findings were enabled by the isolation of highly active and intact mitochondria [27], which
allowed us to directly observe the effects of mitochondria–protein interactions in vitro.
We were unable to fully elucidate the molecular mechanism via which thermally unstable
proteins disrupt inner and outer mitochondrial membrane integrity. In addition, since
the cytosol is a highly crowded environment, thermally unstable proteins resulting from
misfolding may interact with other proteins before interacting directly with mitochondria.
However, our results show that thermally unstable proteins with little or no tendency
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to form aggregates are also toxic to mitochondria. Therefore, it is conceivable that some
of these proteins may interact directly with mitochondria before forming aggregates. To
elucidate these matters, future studies should aim to determine the mechanism by which
thermally unstable proteins become toxic to mitochondria in vivo in order to confirm the
physiological significance of our findings. Although further studies are necessary, we
believe that our findings provide important novel insights into the effects of protein quality
control failures on cellular homeostasis.

4. Materials and Methods
4.1. Mutant DENV3-ED3 Design, Expression, and Purification

DENV3-ED3 (WT) sequences were retrieved from UniProt (ID P27915.1; residues
574 (294) to 678 (398)) [28]. The nucleotide sequence was synthesized and cloned into
the pET15b expression vector (Novagen; Darmstadt, Germany) between the NdeI and
BamHI sites. All mutants were prepared as described previously [28] using QuikChange
site-directed mutagenesis (Stratagene; San Diego, CA, USA). The variants were named
according to the number and type of amino acids added to the C-terminus of the protein [19],
as summarized in Table 1. C4I had a 4-isoleucine tag added after two glycine (G) spacers
at the WT C-terminus. IA had isoleucine 380 replaced by alanine. VMIA had valine
310 and isoleucine 380 substituted by methionine and alanine, respectively. VMITIA had
valine 310, isoleucine 318, and isoleucine 380 replaced by methionine, threonine, and
alanine, respectively.

The proteins were overexpressed in Escherichia coli JM109 (DE3) pLysS as inclusion bod-
ies and purified as reported previously [28]. Briefly, the cells were lysed by sonication, and
cysteines were air-oxidized for 36 h at 30 ◦C in 6 M guanidine hydrochloride. His6-tagged
proteins were purified using Ni-NTA (Qiagen; Düsseldorf, Germany) chromatography in
the presence of 6 M guanidine hydrochloride, followed by overnight dialysis against 50 mM
Tris-HCl (pH 8.0) at 4 ◦C. After the His6-tag had been removed by thrombin cleavage,
the protein was purified by a second passage through the Ni-NTA column, followed by
reverse-phase high-performance liquid chromatography (HPLC) (Shimadzu; Kyoto, Japan).
The proteins were identified using matrix-assisted laser desorption/ionization-time of
flight (MALDI-TOF) mass spectroscopy (Bruker; Billerica, MA, USA), lyophilized, and then
stored as a powder at −30 ◦C.

Before each experiment, the lyophilized protein powder was dissolved in ultrapure
water to form a stock solution. Sample solutions were prepared at a protein concentra-
tion of 0.6 mg/mL (50 µM) in Tris-sucrose buffer containing 10 mM Tris-HCl, 250 mM
sucrose, and 1 mM ethylene glycol tetraacetic acid (pH 7.4), as confirmed using a Nanodrop
spectrophotometer (Thermofisher; Waltham, MA, USA).

4.2. Preparation of Porcine Heart Mitochondria

Porcine hearts were obtained from a local slaughterhouse and mitochondria were
isolated by differential centrifugation, as described previously [27], and placed in Tris-
sucrose buffer (10 mM Tris-HCl, 250 mM sucrose, 0.5 mM EGTA, pH7.4). The mitochondria
were adsorbed onto a glass-bottomed culture dish (35 mm diameter) by incubating the
mitochondrial suspension (0.1 mg protein/mL) on the dish at 4 ◦C for 90 min [29]. Protein
content was determined using a BCA protein assay with bovine serum albumin (BSA)
(Sigma-Aldrich; St. Louis, MO, USA) as a standard.

4.3. HeLa Cell Culture and Mitochondria Isolation

HeLa cells were obtained from the RIKEN BioResource Research Center (RIKEN BRC;
Saitama, Japan) and maintained in Dulbecco’s modified Eagle’s medium supplemented
with 10% fetal bovine serum at 37 ◦C in an incubator humidified with 5% CO2 atmosphere.
Mitochondria were isolated from HeLa cells by gentle cell membrane disruption [30] and
adsorbed onto a dish using the same method described for the porcine heart mitochondria.
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4.4. Mitochondrial TMRE Fluorescence

To examine the effects of the DENV3-ED3 variants on mitochondrial membrane poten-
tial, the adsorbed mitochondria were washed twice with Tris-sucrose buffer and stained
with the potentiometric fluorescent dye, tetramethyl rhodamine ethyl ester (TMRE) (10 nM;
Thermo Fisher Scientific; Waltham, MA, USA), in the same buffer for 10 min at 25 and 37 ◦C,
respectively [27]. The glass-bottom culture dish was placed on the stage of an inverted
epifluorescence microscope (IX-70; Olympus, Tokyo, Japan) with a 20× objective lens
(Uapo20×/340, NA = 0.7; Olympus). TMRE was excited at a wavelength of 510–550 nm
emitted from a 75 W xenon lamp. Emission > 580 nm was detected using a cooled charge-
coupled device camera (MD-695, Molecular Device Japan; Tokyo, Japan). To observe
time-resolved fluorescence, a series of image frames were acquired at 3 s intervals with
binning of 2 × 2 pixels under computational control. The exposure time for each frame was
1 s. To avoid mitochondrial damage from illumination, the excitation light was reduced
to 25% with a neutral density filter and was cut off using a mechanical shutter for the
remaining 2 s. The isolated mitochondria were observed at 25 or 37 ◦C.

The fluorescence intensity of each mitochondrion was averaged over an area of 0.6 µm2

using image-processing software (MetaMorph; Universal Imaging; Downingtown, PA,
USA). The background fluorescence intensity (TMRE in buffer) was measured in the same
field at a position where fluorescence intensity was not affected by mitochondrial TMRE.
Mitochondrial TMRE fluorescence was normalized against background fluorescence to
obtain the fluorescence intensity dependent on membrane potential (TMRE (R)) [31].

4.5. Measurement of Intramitochondrial Calcein Release

Inner mitochondrial membrane integrity was assessed by observing calcein fluores-
cence in the mitochondrial matrix. Briefly, mitochondria isolated from porcine hearts or
HeLa cells were adsorbed on glass base dishes, incubated with 1 µM calcein-AM in Tris-
sucrose buffer for 30 min at 25 ◦C, and then washed three times with Tris-sucrose buffer
at 37 ◦C and kept in Tris-sucrose buffer at 37 ◦C. Mitochondrial calcein fluorescence was
observed using the inverted epifluorescence microscope described above at 37 ◦C with an
excitation wavelength of 470–490 nm and emission wavelength of 515–550 nm [21]. Just
before observation, 5 mM malate and 5 mM glutamate were added to the mitochondria.

4.6. Western Blot Analysis

The suspension of mitochondria (0.6 mg/mL) isolated from porcine hearts was incu-
bated with each protein variant (50 µM) in Tris-sucrose buffer containing 5 mM malate
and 5 mM glutamate at 37 ◦C for 10 min and then centrifuged at 5000 rpm for 10 min
at 4 ◦C. Once the supernatant had been discarded, the pellets were resuspended in SDS-
polyacrylamide gel electrophoresis (SDS-PAGE) sample buffer (0.1 M Tris-HCl, 20% glyc-
erol, 1 mM dithiothreitol, 4% sodium dodecyl sulfate (SDS), and 0.004% bromophenol
blue, pH 6.8) and denatured at 98 ◦C for 10 min. Equal amounts of protein (60 µg) were
then placed on each lane of a 12% SDS-polyacrylamide gel, separated using SDS-PAGE,
and blotted onto nitrocellulose membranes (0.45 µm, BIO-RAD; Hercules, CA, USA). The
membranes were incubated with anti-cytochrome c (Proteintech Japan; Tokyo, Japan) and
anti-cytochrome c oxidase subunit IV (Proteintech Japan; Tokyo, Japan) antibodies diluted
1:5000 in phosphate-buffered saline with Tween 20 (PBST) (137 mM NaCl, 2.7 mM KCl,
8 mM Na2HPO4, 1.5 mM KH2PO4, 0.1% (w/v) Tween 20) for 1 h at 25 ◦C with gentle
agitation. After washing with PBST, the membranes were incubated with horseradish
peroxidase-coupled anti-rabbit IgG (1:10000 dilution) (Santa Cruz Biotechnology; Santa
Cruz, CA, USA) for 1 h at 25 ◦C with gentle agitation. Specific proteins were identified
using a Typhoon 8600 molecular dynamics system (BioSurplus; San Diego, CA, USA) [32].

4.7. DLS Assays

Prior to the experiments, stock protein solutions were centrifuged at 10,000 rpm and
4 ◦C for 10 min to remove precipitates and equilibrated to the measurement temperature for
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10 min. Oligomer size was assessed using dynamic light scattering (DLS) with a Malvern
Zetasizer Nano-S system (Malvernpanalytical; Malvern, UK) at a protein concentration
of 50 µM in Tris-sucrose buffer at 25 and 37 ◦C, respectively. Protein samples (100 µL)
were measured at least three times using disposable plastic cuvettes and the hydrodynamic
radius (Rh) was calculated from size–number plots using the Stokes–Einstein equation.

4.8. ANS and ThT Assays

1-anilino-8-naphthalene sulfonate (ANS) and thioflavin T (ThT) fluorescence were
measured using an FP-8500 spectrofluorometer (JASCO; Tokyo, Japan). Prior to the ex-
periments, stock protein solutions were centrifuged at 10,000 rpm at 4 ◦C for 10 min to
remove precipitates and equilibrated to the measurement temperature for 10 min. The
molten globule-like properties of the proteins were assessed by mixing 20 µM ANS with
50 µM protein in Tris-sucrose buffer at 25 and 37 ◦C, respectively. ANS fluorescence was
measured at an excitation wavelength of 380 nm, and an emission spectrum of 400–650 nm
was monitored. The fluorescence intensity was calculated at an emission wavelength of
470 nm.

To examine amyloid fibril formation, the protein variants were mixed at 50 µM with
10 µg/mL ThT in Tris-sucrose buffer at 25 and 37 ◦C. As a positive control, 690 µM chicken
egg white lysozyme was incubated in 10 mM glycine buffer at pH 2 containing 0.2% sodium
azide for 130 h at 57 ◦C [33]. Subsequently, the lysozyme solution was diluted to 50 µM in
the same buffer, and mixed with 10 µg/mL ThT. ThT fluorescence intensity was measured
at excitation and emission wavelengths of 440 and 480 nm, respectively. To obtain the
emission spectrum, the fluorescence between 460 and 640 nm was measured upon excitation
at 440 nm.

4.9. Far-UV CD Assays

All circular dichroism (CD) measurements were performed using a JASCO-820 spec-
tropolarimeter (JASCO). CD spectra were obtained using CD values in the wavelength
range of 200–260 nm in a quartz cuvette with a 1 mm optical path length. CD thermal
denaturation curves were obtained using CD values at a wavelength of 220 nm and a
scan rate of +1 ◦C/min in a quartz cuvette with a 1 cm optical path length. Prior to the
experiments, stock protein solutions were centrifuged at 10,000 rpm at 4 ◦C for 10 min to
remove precipitates and equilibrated at the measurement temperature for 10 min. Thermal
denaturation curves were obtained at a protein concentration of 10 µM to avoid thermal
aggregation at high temperatures. The melting temperature (Tm) was determined by fit-
ting the thermal denaturation curve to a two-state model using Origin 2020b (OriginLab;
Northampton, MA, USA), as reported previously [15,34].

4.10. Proteolysis Assay

Limited proteolysis was performed using two proteases, trypsin and chymotrypsin
(Nacalai Tesque; Kyoto, Japan) in phosphate-buffered saline (PBS) (pH 7.4). The protein
variants were dissolved at 0.3 mg/mL (25 µM), centrifuged at 20,000× g at 4 ◦C for 10 min,
and incubated with different final concentrations of trypsin and chymotrypsin (1, 2, and
4 µg/mL) for 0, 30, 60, and 120 min, respectively, at 37 ◦C. Approximately 5 µL of the
reaction mixture was sampled after the incubation period and proteolysis was stopped by
heating the sample in a loading buffer supplemented with β-mercaptoethanol at 95 ◦C for
2 min. Proteolysis was monitored using SDS-PAGE, and the average intensity of each band
was analyzed using MetaMorph image-processing software.

4.11. Statistical Analysis

Data obtained using mitochondria prepared from porcine hearts and HeLa cells were
expressed as mean ± standard error of the mean (SEM) of at least three independent
samples. Data were analyzed using a two-tailed analysis of variance (ANOVA) followed
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by the Student–Newman–Keuls test. Differences were considered statistically significant at
p < 0.05.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms23179881/s1.
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