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Abstract

Motivation: Zoonosis, the natural transmission of infections from animals to humans, is a far-reaching
global problem. The recent outbreaks of Zikavirus, Ebolavirus, and Coronavirus are examples of viral
zoonosis, which occur more frequently due to globalization. In case of a virus outbreak, it is helpful
to know which host organism was the original carrier of the virus to prevent further spreading of viral
infection. Recent approaches aim to predict a viral host based on the viral genome, often in combination
with the potential host genome and arbitrarily selected features. These methods are limited in the number
of different hosts they can predict or the accuracy of the prediction.
Results: Here, we present a fast and accurate deep learning approach for viral host prediction, which is
based on the viral genome sequence only. We tested our deep neural network (DNN) on three different
virus species (influenza A virus, rabies lyssavirus, rotavirus A). We achieved for each virus species an
AUC between 0.93 and 0.98, allowing highly accurate predictions while using only fractions (100-400 bp)
of the viral genome sequences. We show that deep neural networks are suitable to predict the host of a
virus, even with a limited amount of sequences and highly unbalanced available data. The trained DNNs
are the core of our virus-host prediction tool VIDHOP (VIrus Deep learning HOst Prediction). VIDHOP
also allows the user to train and use models for other viruses.
Availability: VIDHOP is freely available under https://github.com/flomock/vidhop
Supplementary information: Available at DOI 10.17605/OSF.IO/UXT7

1 Introduction
Zoonosis, more specifically, the cross-species transmission of
viruses, is a significant threat to human and livestock health.
Besides, during a viral outbreak, it may be challenging to de-
termine the origin of certain viruses(Saéz et al., 2015; Longdon
et al., 2014). However, this information can be crucial for the
effective control and eradication of an outbreak, as the virus
needs time to fully adapt to the new human or animal host be-
fore it can spread within the new host species. Only with this
information, the original host can be separated from humans
and livestock. Such isolation can limit the zoonosis and thus
can also limit the intensity of a viral outbreak.

Various computational tools for predicting the host of a virus
by analyzing its DNA or RNA sequence have been developed.
These methods can be divided in three general approaches: su-
pervised learning (Eng et al., 2014; Zhang et al., 2017; Li and
Sun, 2018), probabilistic models (Galiez et al., 2017) and simi-
larity rankings (Edwards et al., 2016; Ahlgren et al., 2017). All
of these approaches require features with which the input se-
quence can be classified. The features used for classification are
mainly k-mer based on various k sizes between 1-8. In the case of
probabilistic models and similarity rankings, not only the viral
genomes but also the host genomes have to be analyzed.

Still today, it is mostly unknown how viruses adapt to
new hosts and which mechanisms are responsible for enabling
zoonosis (Taubenberger and Kash, 2010; Villordo et al., 2015;

1

© The Author(s) (2020). Published by Oxford University Press. All rights reserved. For Permissions, please email: 
journals.permissions@oup.com 



2 Florian Mock et al.

Longdon et al., 2014). Because of this incomplete knowledge, it
is likely to choose inappropriate features, i.e., features of little
or no biological relevance, which is problematic for the accuracy
of machine learning approaches. In contrast to classic machine
learning approaches, deep neural networks can learn features
necessary for solving a specific task by themselves.

In this study, we present a novel approach, using deep neu-
ral networks, to predict viral hosts by analyzing either the
whole or only fractions of a given viral genome. We selected
three different virus species as individual datasets for train-
ing and validation of our deep neural networks. These three
datasets consist of genomic sequences from influenza A, rabies
lyssavirus and rotavirus A, composed of 49, 19, and 6 differ-
ent known host species, respectively. These known viral hosts
are often phylogenetically closely related, resulting in similar
genetic adaptations of the virus (Longdon et al., 2018), making
correct host prediction difficult. Previous prediction approaches
have combined single species or even genera to higher taxonom-
ical groups to reduce the classification complexity to the price
of prediction precision (Zhang et al., 2017; Galiez et al., 2017).
In contrast, our approach is capable of predicting at the host
species level, providing much higher accuracy and usefulness of
our predictions.

Our training data consists of at least 100 genomic sequences
per virus-host combination. The amount of sequences per com-
bination is unbalanced, which means that some classes are much
more common than others. We provide an approach to handle
this problem by generating a new balanced training set at each
training circle.

Typically the training of recurrent neural networks on very
long sequences is very time consuming and inefficient. Trun-
cated backpropagation trough time (TBPTT) (Puskorius and
Feldkamp, 1994) tries to solve this problem by splitting the se-
quences into shorter fragments. We provide a method to regain
prediction accuracy lost through this splitting process, leading
to fast, efficient learning of long sequences on recurrent neural
networks.

In conclusion, our deep neural network approach is capable
of predicting far more complex classification problems than pre-
vious approaches (Eng et al., 2014; Kapoor et al., 2010; Zhang
et al., 2017; Galiez et al., 2017; Li and Sun, 2018). Meaning,
it is more accurate for the same amount of possible hosts and
can predict for more hosts with similar accuracy. Furthermore,
our approach does not require any host sequences, which can
be helpful due to the limited amount of reference genomes of
various species, even ones that are typically known for zoonosis
such as ticks and bats (Dilcher et al., 2012; Mostajo et al., 2019;
Teeling et al., 2018; Van Zee et al., 2007).

2 Methods

2.1 General workflow

We designed our general workflow to achieve multiple goals:
(I) select, preprocess and condense viral sequences with as lit-
tle information loss as possible (II) correctly handle highly
unbalanced datasets to avoid bias during the training phase
of the deep neural networks (III) present the output in a
clear, user-friendly way while providing as much information
as possible.

Our workflow for creating the deep neural networks, used
in VIDHOP, to predict viral hosts consisted of five major steps
(see Figure 1). First, we collected all nucleotide sequences of
influenza A, rabies lyssavirus, and rotavirus A with a host
label from the European Nucleotide Archive (ENA) database
(Leinonen et al., 2010). We curated the host labels using the
taxonomic information provided by the National Center for
Biotechnology Information (NCBI), leading to standardized sci-
entific names for the virus taxa and host taxa. Standardization
of taxa names enables swift and easy filtering for viruses or hosts
on all taxonomic levels. Next, we divide the sequences from the
selected hosts and viruses into three sets: the training set, the
validation set, and the test set. We provide a solution to use all
sequences of an unbalanced dataset without biasing the train-
ing in terms of sequences per class while limiting the memory
needed to perform this task. Then, the length of the input se-
quences is equalized to the 0.95 quantile length of the sequences
and subsequently further truncated in shorter fragments and
parsed into numerical data to facilitate a swift training phase
of the deep neural network. After the input preparation, the
deep neural network predicts the hosts for the subsequences of
the originally provided viral sequences. In the final step, the
predictions of the subsequences are analyzed and combined to
a general prediction for their respective original sequences.

2.2 Collecting sequences and compiling datasets

Accession numbers of influenza A, rabies lyssavirus, and ro-
tavirus A were collected from the ViPR database (Northrop
Grumman Health IT and Technologies, 2017, viprbrc.org/)
and Influenza Research Database (for Biotechnology Informa-
tion, 2017, ncbi.nlm.nih.gov/genomes/FLU/) and all nucleotide
sequence information were then downloaded from ENA (status
2018-07-12). From the collected data, we created one dataset
per virus species, with all known hosts that had at least 100
sequences. All available sequences were used for each of these
hosts (see Supplement Figure S1).

To train the deep neural network, we divided each dataset
into three smaller subsets, a training set, a validation set, and a
test set. Classically, in neuronal network approaches, the data
is divided into a ratio of 60% training set, 20% validation set,
and 20% test set with a balanced number of data points per
class.

Since in our example, nucleotide sequences are the data
points, and the different hosts are the classes, this would lead
to an unbiased training per host. But for heavily unbalanced
datasets, such as typical viral datasets, the majority of se-
quences would not be used. This is because the host with the
smallest number of sequences would determine the maximum
usable amount of sequences per host (see Figure 2).

A more appropriate approach to deal with large unbalanced
datasets is to define a fixed validation set and a fixed test set
and create variable training sets from the remaining unassigned
sequences. In the following, we call this the repeated random
undersampling. For each training circle (epoch), a new training
set is created by randomly selecting the same number of unas-
signed sequences per host. The number of selected sequences
per host corresponds to the number of unassigned sequences of
the smallest class. Repeated random undersampling avoids bias
in the training set in terms of sequences per host while using
all available sequences. Especially hosts with large quantities of
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Figure 1: The general workflow consists of several steps. First, suitable viral sequences have to be collected and standardized. Next,
these sequences will be distributed into the training set, validation set, and test set. The sequences are then adjusted in length
and are parsed into numerical data, which is then used to train the deep neural network. The neural network predicts the host for
multiple subsequences of the original input. The subsequence predictions are then combined to a final prediction.
The workflow used in VIDHOP to predict new sequences is framed in black.

sequences benefit from the generation of many different training
sets with random sequence composition.

2.3 Input preparation

The training data needs to fulfill several properties to be utiliz-
able for neural networks. The input (here, nucleotide sequences)
has to be of equal length and also has to be numerical. At first,
the length of the sequences was limited to the 0.95 quantile
of all sequence lengths by truncating the first positions or in
the case of shorter sequences by extension. This strategy was
used to prevent an imbalance of the training, of the neural net-
work. Because the next step could have influenced the balance,
depending on the length of the sequence.

For sequence extension different strategies were tested and
evaluated (see Figure 3, Supplement Table S1):

• Normal repeat: repeats the original sequence until the 0.95
quantile of all sequence lengths is reached, all redundant
bases are truncated.

• Normal repeat with gaps: between one and ten gap symbols
are added randomly between each sequence repetition.

• Random repeat: appends the original sequence with slices
of the original with the same length as the original. For
this purpose, the sequence is treated as a circular list. In
a circular list, the end of the sequence is followed by the
beginning of the sequence.

• Random repeat with gaps: like random repeat, but repeti-
tions are separated randomly by one to ten gap symbols.

• Append gaps: adds gap symbols at the end of the sequence
until the necessary length is reached.

• Smallest: all sequences are cut to the length of the shortest
sequence of the dataset.

In the next step each sequence is divided into multiple non-
overlapping subsequences (see Figure 3). The length of these
subsequences ranged between 100 and 400 nucleotides, depend-
ing on which length results in the least redundant bases. Using
subsequences of a distinct shorter length than the original se-
quences is a common approach in machine learning to avoid
inefficient learning while training long short-term memory net-
works on very long sequences, see Truncated Backpropagation
Through Time approach (Sutskever, 2013).

Apart from the previous methods we evaluated another input
preparation method which did not need a previous unification
of the sequence length.

• Online: uses the idea of Online Deep Learning (Sahoo et al.,
2017), i.e., slight modifications to the original training data
are introduced and learned by the neuronal network, next
to the original training dataset. In our case a fixed number
of randomly selected subsequences of the original sequences
are provided as training input. Therefore, the subsequences
can overlap, providing the neural network with more diverse
data.

Finally, all subsequences are encoded numerically, using one
hot encoding to convert the characters A, C, G, T, N into a bi-
nary representation (e.g., A = [1, 0, 0, 0, 0], T = [0, 0, 0, 1, 0],
N = [0, 0, 0, 0, 1]). Other characters that may occur in the
sequence data were treated as the character N.

2.4 Deep neural network architecture

The underlying architecture of the neural network dramatically
determines its performance. The selected architecture needs to
be complex enough to use the available information fully but,
at the same time, small enough to avoid overfitting effects.

All our models (i.e., the combination of the network ar-
chitecture and various parameter such as the optimizer or
validation metrics) were built with the Python (version 3.6.1)
package Keras (Chollet et al., 2015) (version 2.2.4) using the
Tensorflow (Abadi et al., 2015) (version 1.7) back-end.

In this study, two different models were built and evaluated
to predict viral hosts only given the nucleotide sequence data
of the virus (see Figure 4). The architecture of our first model
consists of a three bidirectional LSTM layers (Hochreiter and
Schmidhuber, 1997), in the following referred to as LSTM archi-
tecture (see Figure 4A). This bidirectional LSTM tries to find
longterm context in the input sequence data, presented to the
model in forward and reverse direction, which helps to identify
interesting patterns for data classification. The LSTM layers
are followed by two dense layers in which the first collects and
combines all calculations of the LSTMs, and the second gen-
erates the output layer. Each layer consists of 150 nodes with
an exception to the output layer, which has a variable number
of nodes. Each node of the output layer represents a possible
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Figure 2: Comparison between the classic approach (A) of creating a balanced dataset and the repeated random undersampling (B).
In the classic approach, the class with the smallest number of data points defines the number of usable data points for all classes.
The repeated random undersampling creates every epoch a new random composition of training data points from all data points
which are not included in any of both fixed validation set and test set. For every epoch, the training set is balanced according to
the data points per class. The repeated random undersampling can use all available data in an unbalanced dataset, without biasing
the training set in terms of data points per class, while limiting the amount of computer memory needed.
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A = [1,0,0,0,0]
C = [0,1,0,0,0] ...
N = [0,0,0,0,1]

Repeat input sequences.
Cut off at specified length.

Split each long sequence 
in multiple subsequences.

Parse the sequences.Get samples from subsets.

Figure 3: Conversion of input sequences into numerical data of equal length using the normal repeat method. Each sequence is
extended through self-repetition and is then trimmed to the 0.95 quantile sequence length. Sequences are then split into multiple
non-overlapping subsequences of equal length. Each subsequence is then converted via one hot encoding into a list of numerical
vectors.

host species. Since each tested virus dataset contains different
numbers of known virus-host pairs, the number of output nodes
varies between the different virus datasets. This architecture is
similar to those used in text analysis but specifically adjusted
to handle long sequences, which are typically problematic for
deep learning approaches.

The second evaluated architecture uses two layers of con-
volutional neural networks (CNN) nodes, followed by two
bidirectional LSTM layers and two dense layers. In the follow-
ing we will refer to this as the CNN+LSTM architecture (see
Figure 4B). Similar to the LSTM architecture, each layer con-
sists of 150 nodes with an exception to the output layer. The
idea behind this architecture is that the CNN identifies impor-
tant sequence parts (first layer), combines the short sequence
features to more intricate patterns (second layer), which can
then be put into context by the LSTMs, which can remember
previously seen patterns.

2.5 Deep neural network training

The training was done using the repeated random undersam-
pling as described above (see Figure 2 B), i.e., having a fixed
validation set and test set while the training set was newly com-
piled during each epoch. All classes had an equal amount of
sequences during each epoch. This balancing step results in an
equal likelihood to observe each class while training, eliminating
the bias of unbalanced training sets. Both neural networks were
trained for 500 epochs during all performed tests. After each
epoch, the quality of the model was evaluated by predicting the
hosts of the validation set, comparing the prediction with the

true known virus-host pairs. As metrics, the accuracy and the
categorical cross-entropy were used. If the current version of the
model performed better, i.e., it had a lower validation loss, or
higher validation accuracy than in previous epochs, the weights
of the network were saved.

After training, the model weights with the lowest validation
loss and model weights with the highest validation accuracy
were applied for predicting the test set.

2.6 Final host prediction from subsequence predictions

When given a viral nucleotide sequence, the neural network re-
turns the activation score of the corresponding output nodes
of each host. The activation scores of all output nodes add up
to 1.0 and can, therefore, be treated as probabilities. Thus,
the activation score of each output node represents the like-
lihood of the corresponding species to serve as a host of the
given virus sequence. Due to the splitting of the long sequence
into multiple subsequences (see Figure 3), the neural network
predicts potential hosts for every subsequence. The predictions
of the subsequences are then combined to the final prediction
of the original sequence. Several approaches to combine the
subsequence predictions into a final sequence prediction were
evaluated (for a detailed example see supplement Table S2):

• Standard: shows the original accuracy for each subsequence.
• Vote: uses a majority vote on all subsequences to determine

the prediction.
• Mean: calculates the mean activation score per class on all

subsequences and predicts the class with the highest mean
activation.
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Figure 4: Comparison of the two evaluated architectures. The
first architecture (A) is similar to neural networks for text anal-
ysis. The bidirectional LSTM analyzes the sequence forwards
and backward for meaningful patterns, having an awareness of
the context as it can remember previously seen data. This ar-
chitecture is a classic approach for analyzing sequences with
temporal information, like literature text, stocks, weather. The
second architecture (B) uses CNN nodes, which are common
in image recognition, to identify meaningful patterns and com-
bines them into complex features that can then be used by the
bidirectional LSTM layers. This architecture is typically used in
either more unordered data, such as images, or data with more
noise, such as the base-caller output of nanopore sequencing
devices (Teng et al., 2018).

• Standard deviation: similar to Mean but weights each subse-
quence with its standard deviation. Subsequences with more
distinct predictions get a higher weight.

After combining the subsequence predictions, the single most
likely host can be provided as output. However, this limits the
prediction power of the neural network. For example, a virus
that can survive in two different host species will likely have a
high activation score for both hosts. Our tool VIDHOP reports
all possible hosts that reach a certain user-defined likelihood,
or it can report the n most likely hosts, where n is also a user-
adjustable parameter.

3 Results and Discussion
To evaluate our deep learning approach, we applied it to three
different datasets, each containing a great number of either in-
fluenza A, rabies lyssavirus or rotavirus A genome sequences,
and the respectively known host species. We tested two differ-
ent architectures and seven different input sequence preparation
methods. For all fourteen combinations, a distinct model was
trained for a maximum of 1500 epochs. The training was
stopped early if the validation accuracy did not increase in
the last 300 epochs. For each combination, the prediction accu-
racy was tested using none or any of the described subsequence
prediction approaches.

3.1 Rotavirus A dataset

The rotavirus A dataset consists of over 40,000 viral sequences,
which are associated with one of six phylogenetically distinct
host species. Six different hosts result in an expected random
accuracy of ∼16.67%. Both tested architectures achieve very
high prediction accuracies, even for 239 nucleotide long subse-
quence (see Table 1). The prediction accuracy is influenced not
only by the architecture but especially by the input prepara-
tion strategy. Overall, the CNN+LSTM architecture achieves
higher accuracy than the LSTM architecture with 85.28%, and
82.88%, respectively. The highest accuracy was observed with
the combination of the CNN+LSTM architecture and the online
input preparation. Note that the LSTM architecture has diffi-
culties in learning with some input preparation methods (see
LSTM and online). On the one hand, this is probably due to
the relatively long input sequence since the LSTM must prop-
agate the error backwards through the entire input sequence
and update the weights with the accumulated gradients. The
accumulation of gradients over hundreds of nucleotides in the
input sequence may cause the values to shrink to zero or re-
sult in inflating values (Werbos et al., 1990; Tallec and Ollivier,
2017). On the other hand, the variability of the online input
could enhance the difficulty of finding working features.
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With prediction accuracies over 82%, on the subsequence
level, both the LSTM and the CNN+LSTM architectures in-
dicate that they can identify meaningful classification features.
The main differences between the two architectures in the pre-
diction accuracies derive from the applied input preparation
strategy. In total, the host prediction quality of rotavirus A
sequences achieves an area under the curve (AUC) of 0.98 (see
Supplement Figure S2). A high AUC is not unsuspected since it
is known that rotavirus A shows a distinct adaptation to their
respective host (Martella et al., 2010).

3.2 Rabies lyssavirus dataset

The rabies lyssavirus dataset consists of more than 12,000 viral
sequences, which are associated with 17 different host species,
including closely and more distantly related species. This re-
sults in an expected random accuracy of ∼5.88%. Despite using
only a subsequence length of 100 bases, the accuracy of each
subsequence prediction is very high (see Table 1). The LSTM
and the CNN+LSTM architecture reach very similar accura-
cies with 74.26 %, and 74.39%, respectively. The differences in
prediction accuracy between the architectures per input prepa-
ration method are small. An exception from this is the online
input preparation method. Similar to the rotavirus A dataset,
the LSTM is not able to train well when using the online in-
put preparation method. The highest accuracy per subsequence
is reached with the combination of the random repeat input
preparation and the CNN+LSTM architecture. Compared to
the rotavirus A dataset, the higher amount of host species
and closer relation between them makes the rabies lyssavirus
dataset harder to predict. In total, the host prediction qual-
ity of rabies lyssavirus sequences achieves an AUC of 0.98 (see
Supplement Figure S3).

3.3 Influenza A dataset

The influenza A dataset is with more than 213,000 viral se-
quences and 36 associated possible host species (32 of them are
closely related avian species), the most complex of the three
evaluated datasets. With 36 different hosts, the expected ran-
dom accuracy is ∼2.78%, which we greatly exceed with an
accuracy of over 50%. The predictions based on 400 nucleotide
long influenza A subsequences reached comparable accuracies
for nearly all input preparation methods, one notable excep-
tion was append gaps, (see Table 1). Unlike for the rotavirus
A and rabies lyssavirus dataset, the LSTM architecture outper-
forms the CNN+LSTM architecture with 50.14%, and 49.40%
host prediction accuracy. Nonetheless, the differences in predic-
tion accuracy between the architectures per input preparation
method are again small. The overall best-performing variant is
a combination of the LSTM architecture with the normal repeat
gaps input preparation.

The deep neural network achieved an AUC of 0.94 (see sup-
plement Figure S4). Despite the close evolutionary distance
between the given host species, the trained neuronal network
was able to identify potential hosts accurately. We assume that
some of the influenza A viruses which are part of the investi-
gated dataset are capable of infecting not only one but several
host species, i.e., a single viral sequence can occur in more than
one host. However, since we only consider a single host species
for each tested viral sequence within the test set, the measured
accuracy is most likely an underestimation.

3.4 Best practice and useful observations

Overall, the host prediction quality for short subsequences for
all three datasets is very high, indicating that an accurate
prediction of a viral host is possible even if the given viral se-
quence is only a fraction of the corresponding genome’s size.
Both architectures are suitable for host prediction, but the
more complex the prediction task and the data set, the more
favorable the LSTM appears. Nevertheless, for fast prototyp-
ing, it makes sense to use CNN+LSTM as it trains around
four times faster and reaches comparable results. Furthermore,
the CNN+LSTM architecture showed no difficulty in learning
long input sequences (see Supplement Figure S5). In contrast,
the LSTM architecture frequently remained in a state of ran-
dom accuracy for a long time during training (see Supplement
Figure S6).

We observed random repeat gaps and normal repeat gaps to
be the most suited input preparations for the LSTM architec-
ture, as they achieved the highest accuracies. The final selection
of the best working input preparation seems to depend on the
virus species.

The random repeat gaps approach provides the neural net-
work with an almost random selection of the original sequence.
All selections are separated by gaps. The first subsequences are
always the beginning of the original sequence, whereas the last
subsequences consist of random selections.

With the normal repeat gaps approach, the neural network
can identify not just the start but also the end of the original se-
quence because the ends are marked by gaps. This may provide
a useful context detection for the LSTM layer.

A completely random selection, as in the online approach,
seems to be too diverse. Non-random approaches such as normal
repeat seem to lead to faster overfitting of the training set, thus
limiting the ability of the deep neural network to identify general
usable features.

Smallest and append gaps proved to be unsuitable methods
for input preparation. Here append gaps leads to a prediction of
subsequences without usable information because they consist
only of gaps, whereas smallest limits the available information
so much that a prediction becomes inaccurate.

3.5 Combining subsequence host predictions results in
higher accuracy

Among the tested combination approaches of the subsequence-
predictions, std-div was observed to perform best (see Table 2).
With the combination of all subsequence predictions, the ac-
curacy rises between 2.2%– 4.6 %, with a mean increase of
3.2%. This result shows that a combination of the host pre-
diction results of all subsequences of a given viral sequence can
increase the overall prediction accuracy. Presumably, the pre-
diction combination approaches can compensate for the possible
information loss caused by the sequence splitting process during
the input preparation.

3.6 VIDHOP outperforms other approaches

Besides evaluating our deep learning approach on the three virus
datasets, we compared our results with a similar study. Our
approach predicts hosts on the species level, whereas most other
studies are limited to predicting the host genera (Zhang et al.,
2017; Galiez et al., 2017) or even higher taxonomic groups (Eng
et al., 2014; Kapoor et al., 2010).
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Table 1. Host prediction accuracy in percent on the rotavirus A, rabies lyssavirus, and influenza A dataset with different architectures and input
preparation strategies. The input preparation strategy with the highest accuracy for each architecture is marked dark grey, the second-best in light
grey. Expected accuracy by chance is ∼16.67% for rotavirus A, ∼5.88% for rabies lyssavirus and ∼2.78% for influenza A.

Input preparation
vs training setup

normal
repeat

normal
repeat gaps

random
repeat

random
repeat gaps

append
gaps

online smallest

LSTM rotavirus A 78.64 82.88 78.86 82.12 43.18 25.14 75.83
CNN+LSTM rotavirus A 80.38 83.79 80.30 83.03 43.78 85.28 72.50
LSTM rabies lyssavirus 73.68 72.37 72.98 74.26 24.39 9.39 69.41
CNN+LSTM rabies lyssavirus 74.24 73.82 74.39 72.82 24.53 72.81 73.82
LSTM influenza A 48.08 50.14 48.52 49.40 35.21 49.75 48.08
CNN+LSTM influenza A 48.38 49.28 47.22 49.40 43.39 48.36 46.94

Table 2. Percentage accuracy of the best working input preparation with respect to the combination methods of the subsequence predictions. The
combination method with the highest accuracy for each combination is marked in grey.

Combination method
vs training setup

Standard Voting Mean Std-div

LSTM rotavirus A, normal repeat gaps 82.88 87.50 86.67 87.50
CNN+LSTM rotavirus A, online 85.28 87.50 87.50 88.33
LSTM rabies lyssavirus, random repeat gaps 74.26 76.47 76.18 76.18
CNN+LSTM rabies lyssavirus, random repeat 74.39 77.06 76.18 76.47
LSTM influenza A, normal repeat gaps 50.14 52.92 54.31 54.31
CNN+LSTM influenza A, random repeat gaps 49.40 52.64 52.22 52.64

Mean accuracy 69.40 72.35 72.18 72.57

In a relatively comparable study (Li and Sun, 2018), the au-
thors also tried to predict potential hosts on species level for
influenza A and rabies lyssaviruses. In their study, they mainly
tested three different approaches, which were mostly combina-
tions of already published methods (Ahlgren et al., 2017; Zhang
et al., 2017; Kapoor et al., 2010), including a support vector
machine approach and two sequence similarity approaches, one
of which alignment-based, the other without alignment. These
three methods represent the state of the art.

The rabies lyssavirus dataset from Le et al. consisted of 148
viral sequences and 19 associated bat host species. Our rabies
lyssavirus dataset consists of 12,025 viral sequences and has 17
associated host species, but none of them is a bat species. Since
both data sets do not have a common species, the difficulty
of both prediction tasks is difficult to estimate when compared
to each other, and therefore comparability is limited. Le et al.
reached an accuracy below 79% on the bat species dataset with
the similarity-based approaches, one of which relies on align-
ment data and vice versa. The SVM reached an accuracy below
76%. On our dataset, VIDHOP reached a similar accuracy of
around 77 %. However, in contrast to our analysis, Le et al.
used an unbalanced dataset, which often leads to an overesti-
mation of the prediction accuracy. Furthermore, the presented
accuracy from Le et al. is based on n-fold cross-validation. N-
fold cross-validation lowers the comparability with other studies
since the quasi-standard for accuracy determination is 10-fold
cross-validation. When applying 10-fold cross-validation, their
host prediction accuracy for their rabies lyssavirus dataset drops
under 65%.

The influenza A dataset from Le et al. consisted of 1,200 vi-
ral sequences and six associated host species. For this dataset,
they reached a host prediction accuracy of below 61% with the
alignment-free method (below 40% when applying 10-fold cross-
validation). The alignment-based method reached bellow 52%,
and the SVM bellow 57 %. Our influenza A dataset consists
of 211,679 viral sequences and has 36 associated host species,

Table 3. Comparison of VIDHOP with previous approaches. Due to
differences in the number of predicted hosts (VIDHOP 36 hosts, Le
et al. 6 hosts), the average accuracy (Sokolova and Lapalme, 2009)
was chosen for comparison. The prediction method with the highest
accuracy is marked in grey.

Average accuracy comparison influenza A
VIDHOP 97.46
Le et al. alignment free method 87.00
Le et al. alignment based method 84.00
Le et al. SVM 85.67

Table 4. Comparison of the average accuracy of VIDHOP on the three
different datasets.

Average accuracy
comparison

rotavirus A rabies
lyssavirus

influenza A

VIDHOP 96.11 97.30 97.46

including the six species from the Le et al. dataset. Our deep
learning approach reached a host prediction accuracy of 54.31%,
which is very good, given that we had to predict six times
the number of potential host species with closer phylogenetic
relationships among them. To reach better comparability by
considering the number of classes, we calculated the average
accuracy (see Equation 1).

average_accuracy =
2 · accuracy + |classes| − 2

|classes|
(1)

With an average accuracy of 97.46% VIDHOP surpassed the
previous methods which reached an average accuracy between
84% and 87% (see Table 3).

To our best knowledge, no comparable study exists for the
rotavirus A dataset.

VIDHOP reached on all three datasets a very high average
accuracy between 96.11% for rotavirus A, 97.30% for rabies
lyssavirus and 97.46% for influenza A (see Table 4). These
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results indicate the versatility of the presented deep learning
approach for the task of host prediction.

4 Conclusion
In this study, we presented the tool VIDHOP and investigated
the usability of deep learning for the prediction of hosts for
distinct viruses, based on the viral nucleotide sequences alone.
We established a simple but very capable prediction pipeline,
including possible data preparation steps, data training strate-
gies, and a suitable deep neural network architecture. Besides,
we provide three different neural network models, which can
predict potential hosts for either influenza A, rotavirus A, or
rabies lyssavirus, respectively. These deep neural networks are
used in VIDHOP and use genomic fragments shorter than 400
nucleotides to predict potential virus hosts directly on a species
level. In contrast to similar approaches, this is a more com-
plex task than performing host prediction only on the genera
level (Zhang et al., 2017; Galiez et al., 2017) or even higher tax-
onomic groups (Eng et al., 2014; Kapoor et al., 2010). Moreover,
our approach can predict more hosts with comparable accuracy
than previous approaches. The consistently high average accu-
racy of VIDHOP, on all three datasets, indicates the versatility
of the deep learning approach we used. Thanks to the high ac-
curacy of VIDHOP, it is possible to identify the host of a novel
virus fast and reliably, which helps to understand and limit the
spread of virus outbreaks.

Additionally, we addressed multiple problems that arise
when using DNA or RNA sequences as input for deep learning,
such as unbalanced datasets for training and the problem of in-
efficient learning of recurrent neural networks (RNN) on long
sequences. We evaluated different solutions to solve these prob-
lems and observed that splitting of the original virus genome
sequence in combination with merging the prediction results of
the generated subsequences leads to fast and efficient learning
on long sequences. Furthermore, the use of unbalanced datasets
is possible if a new balanced training set is generated by re-
peated random undersampling (a random selection of available
sequences) for every single epoch during the training phase.

4.1 Generalization on new viruses

Ideally, a host prediction tool can determine highly accurately
all viruses with all hosts. According to currently available viral
genome data, genome adaptations, for most types of viruses,
are different for given host species (Bahir et al., 2009). As a
result, a complex combination of features identifies the host of
a virus. Therefore, the adaptations do no generalize across dif-
ferent virus species. To address this, we would need to learn the
adaptation of each virus for each host. This learning process is
for now out of scope as the main limitation is the widely limited
and highly unbalanced amount of sequences. The available se-
quences are highly unbalanced regarding virus species and host
species (see Supplement Figure S1). Therefore we chose three
relatively well-studied viruses with up to 36 different hosts, all
with at least 100 sequences. The presented method itself can
learn other virus species and hosts. Therefore we provide the
possibility to train new models using VIDHOP. This greatly
enhances the virus and host range possible to predict. The neu-
ral network architecture is, to our best knowledge, able to learn
to predict multiple virus species at the same time. However,

predicting multiple viruses using the same neural network re-
duces accuracy and is unnecessary because the user can provide
the virus species as input, and VIDHOP then loads the specific
prediction model.

With the use of deep neural networks for host predicting of
viruses, it is possible to rapidly identify the host, without the
use of arbitrarily selected learning features, for a large number
of host species. This allows us to identify the original host of
zoonotic events and makes it possible to swiftly limit the in-
tensity of a viral outbreak by separating the original host from
humans or livestock.

In future approaches, it could be interesting to investigate
the use of newly developed deep neural network layers, such
as transformer self-attention layers (Vaswani et al., 2017). This
layer type has been shown to perform well with character se-
quences (Al-Rfou et al., 2018), such as DNA or RNA sequences,
potentially allowing for a further increase in the prediction
quality.
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