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Abstract: Pre-mRNA processing factors (PRPFs) are vital components of the spliceosome and are
involved in the physiological process necessary for pre-mRNA splicing to mature mRNA. As an
important member, PRPF6 mutation resulting in autosomal dominant retinitis pigmentosa (adRP) is
not common. Recently, we reported the establishment of an induced pluripotent stem cells (iPSCs;
CSUASOi004-A) model by reprogramming the peripheral blood mononuclear cells of a PRPF6-related
adRP patient, which could recapitulate a consistent disease-specific genotype. In this study, a disease
model of retinal pigment epithelial (RPE) cells was generated from the iPSCs of this patient to further
investigate the underlying molecular and pathological mechanisms. The results showed the irregular
morphology, disorganized apical microvilli and reduced expressions of RPE-specific genes in the
patient’s iPSC-derived RPE cells. In addition, RPE cells carrying the PRPF6 mutation displayed a
decrease in the phagocytosis of fluorescein isothiocyanate-labeled photoreceptor outer segments and
exhibited impaired cell polarity and barrier function. This study will benefit the understanding of
PRPF6-related RPE cells and future cell therapy.

Keywords: retinitis pigmentosa; retinal pigment epithelium; PRPF6; disease model

1. Introduction

Retinitis pigmentosa (RP) is one of the most common inherited retinal diseases charac-
terized by progressive degeneration of retinal pigment epithelial (RPE) cells and photore-
ceptors [1]. The disease initially manifests as nyctalopia, followed by a gradual decrease
in vision, visual field contraction and eventually blindness. The prevalence of RP is ap-
proximately one in 4000, affecting about 1.5 million individuals worldwide [2,3]. To date,
mutations in more than 84 genes and loci have been identified, and 23 of them cause
autosomal dominant RP (adRP; RetNet: sph.uth.edu/retnet, last accessed 9 June 2022). The
effective treatment of RP remains a major challenge in medicine, as gene therapy for RP is
limited by the high genetic heterogeneity of the disease, emphasizing the importance of
studying the molecular mechanisms that are independent of mutated genes [4].

The spliceosome is an RNA and protein complex involved in the generation of mature
mRNA transcripts carrying the coding protein sequence by removing non-coding introns
and joining exons from pre-mRNA [5]. The spliceosome mainly consists of five small
nuclear ribonucleoprotein particles (snRNPs), namely U1, U2, U4, U5 and U6. The U1 and
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U2 snRNPs recognize the 5′-splice site and branch site of targeted introns, respectively. The
U4, U5 and U6 snRNPs are recruited to form a tri-snRNP complex [6]. Subsequently, the U1
and U4 snRNPs are released from the pre-catalytic spliceosome, and the catalytic complex
is generated and activated to complete the two steps of the pre-mRNA splicing process [7].
Pre-mRNA processing factors (PRPFs) are essential for the U4/U6/U5 tri-snRNP complex,
playing a critical role in the splicing process. Mutations in PRPF genes linked to adRP have
been identified, including PRPF3, PRPF4, PRPF6, PRPF8, PRPF31, SNRNP200 and RP9 [8].

PRPF6, an important member of the PRPF family, is located on chromosome 20q13.33.
More and more studies have confirmed that the PRPF6 protein not only acts as the bridge be-
tween U5 snRNP and U4/U6 snRNPs, but also promotes the formation of tri-snRNP [9–11].
PRPF6 mutation can lead to adRP, while its overexpression is a common oncogenic driver
of proliferation in some malignant tumors [12–14]. However, there is very limited pub-
lished research on the pathogenesis of adRP patients with PRPF6 mutation due to its low
incidence [15]. With the advancement of molecular diagnosis, two novel missense variants,
c.514C > T (p.Arg172Trp) and c.551A > G (p.Asp184Gly), were discovered in a cohort
of Chinese patients with RP [16]. Still, only one variant reported in 2011, c.2185C > T
(p.Arg729Trp), has been further studied [9,11,17]. Another recent manuscript showed that
the expression of the mutated form of PRPF6, c.67C > T (p.Arg23Trp), caused mis-splicing in
periventricular heterotopia disease [18]. For adRP patients with PRPF6 mutation, it remains
unclear whether some unique pathological features may predispose them to accelerated
disease progression.

RPE is composed of a monolayer of polarized epithelial cells, anatomically located
between the neural retina and the choroid. The RPE collaborates with the choriocapillaris
and Bruch’s membrane to form the outer blood–retinal barrier, which is essential in main-
taining the stability of the subretinal environment [19]. There is a rich extracellular matrix
(ECM) between them. RPE cells are also responsible for the daily phagocytosis of shed
outer segment membrane discs, nutrients and ions’ transepithelial transport, directional
secretion of growth factors and visual cycle [20,21]. Retina degeneration is known to be
a significant feature of RP, but its effect on the biological function of RPE needs to be
further investigated. Induced pluripotent stem cells (iPSCs) are similar to human em-
bryonic stem cells in their self-renewal, reproduction and differentiation potential, which
can be used in disease modeling, regenerative medicine and gene therapy [22]. RPE cells
can be effectively produced from iPSCs based on established protocols [23–25]. Regent
et al. [26] developed an automated system that obtained a pure population of RPE cells
without the 3-dimensional culture and manual dissection of pigmented foci during the
differentiation process.

A usable disease model of adRP associated with PRPF6 mutation plays an important
role in pathogenesis research. However, such a model has not been established so far [27].
In this study, we produced a human in vitro disease model of RPE cells derived from
the iPSCs of a patient carrying a pathogenic mutation in PRPF6 (c.G2699A:p.Arg900His)
(CSUASOi004-A) [28]. Then, the patient iPSC-derived RPE cells were compared with those
derived from age- and sex-matched normal iPSCs. Cellular, molecular and transcriptome
analyses were performed, demonstrating aberrant developmental features of the PRPF6-
related RPE cells.

2. Results
2.1. Generation and Characterization of NC-iRPE and RP-iRPE

The proband was a 15-year-old girl who has had nyctalopia, low vision acuity and
a clinical diagnosis of RP since she was a child. The fundus photographs of both eyes
showed attenuated retinal arteries and extensive bone spicule pigment of the peripheral
retina (Appendix A, Figure A1).

The normal and patient iPSC cell lines in this study were induced into RPE (NC-
iRPE; RP-iRPE) cells according to the protocol previously established by Regent et al. [26]
(Figure 1A). The morphological observation of RPE cells was determined by brightfield
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microscopy and immunofluorescence staining in the culture of approximately 2 weeks.
Mature RPE cells derived from both iPSC cell lines displayed a classic cobblestone-like
appearance, with pigmented and polygonal morphology (Figure 1B). Immunofluorescence
staining of the tight junction marker ZO-1 revealed the hexagonal structure of NC-iRPE
cells, while irregular, abnormal morphology was observed in RP-iRPE cells (Figure 1C).
Western blotting was performed to analyze the protein expression level, showing reduced
PRPF6 expression in the RP-iRPE group (Figure 1D,E).
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polymerase chain reaction (PCR) analysis revealed a significant decrease in the expression 
of pluripotency genes KLF4, NANOG and OCT4 in mature RPE cells (Appendix A, Figure 
A2). Furthermore, immunofluorescence staining results showed that RPE-specific mark-
ers were expressed in both groups, including CRALBP and RPE65 as visual cycle markers, 
pigment synthesis marker tyrosinase and transcription factor marker MITF (Figure 2A). 
The mRNA expression levels of the RPE genes, RPE65, TYR and CRALBP, were lower in 
the RP-iRPE group than in the NC-iRPE group (Figure 2B). Western blotting also showed 
the reduced protein expressions of these genes (Figure 2C,D). 

Figure 1. Retinal pigment epithelial (RPE) cells modeling retinitis pigmentosa (RP) from induced
pluripotent stem cells (iPSCs) with PRPF6 mutation. (A) Schematic diagram of differentiation
procedure from normal and patient iPSCs into RPE cells (NC-iRPE; RP-iRPE). (B) Morphological
observation of RPE cells in both groups. Scale bar 50 µm. (C) Immunofluorescence staining of tight
junction marker ZO-1. Scale bar 20 µm. (D,E) Western blotting analysis of PRPF6 expression. GAPDH
was set as the loading control. Mean ± SD (** p < 0.01; n = 3~6).

The prerequisite for human iPSC differentiation is that the self-renewal mechanism
can be switched off under the action of signaling molecules [29]. Quantitative real-time
polymerase chain reaction (PCR) analysis revealed a significant decrease in the expression of
pluripotency genes KLF4, NANOG and OCT4 in mature RPE cells (Appendix A, Figure A2).
Furthermore, immunofluorescence staining results showed that RPE-specific markers were
expressed in both groups, including CRALBP and RPE65 as visual cycle markers, pigment
synthesis marker tyrosinase and transcription factor marker MITF (Figure 2A). The mRNA
expression levels of the RPE genes, RPE65, TYR and CRALBP, were lower in the RP-iRPE
group than in the NC-iRPE group (Figure 2B). Western blotting also showed the reduced
protein expressions of these genes (Figure 2C,D).

These results suggested that an adequate disease model was successfully established
for subsequent research. Compared with the NC-iRPE group, the RP-iRPE group showed an
irregular morphological structure and a decrease in RPE-specific markers, which indicated
defective characterization in RP-iRPE cells.
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Figure 2. Characterization of RPE-specific gene and protein expression. (A) Immunofluorescence
staining of MITF, CRALBP, RPE65 and tyrosinase in the NC-iRPE and RP-iRPE groups. Scale bar
20 µm. (B) Quantitative real-time polymerase chain reaction (PCR) results of mRNA expression
for RPE65, TYR and CRALBP. (C,D) Western blotting analysis of RPE65, tyrosinase and CRALBP
expression in both groups. GAPDH and β-Actin were set as the loading control, respectively.
Mean ± SD (* p < 0.05; ** p < 0.01; n = 3~6).

2.2. Association of PRPF6 Mutation with Changes in RPE Cell Polarity

The polarity of the RPE cell monolayer plays an important role in maintaining its bar-
rier function [30]. To evaluate the expression of polarity biomarkers, immunofluorescence
staining of the apical markers Na+/k+-ATPase and EZRIN was performed (Figure 3A). In
addition, confocal z-stack microscopy revealed that the expression of the Na+/k+-ATPase
marker in the RP-iRPE group was significantly lower than that in the NC-iRPE group,
while the apically-located microvilli marker EZRIN was similarly expressed in both groups
(Figure 3B). Collagen IV, the marker of basal side distribution, was reduced in RP-iRPE
cells (Figure 3B). In order to understand the differences in apical microvilli between the NC-
iRPE group and RP-iRPE group, an ultrastructural observation was carried out. Scanning
electron microscopy (SEM) revealed that compared with the disordered microvilli structure
in the RP-iRPE group, the microvilli in the NC-iRPE group were organized more neatly,
and the RPE cells were more closely connected to each other without obvious intercellular
space (Appendix A, Figure A3).
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Figure 3. The change in polarity in RP-iRPE cells. (A) Immunofluorescence staining of the apical
markers Na+/K+-ATPase and EZRIN. (B) Representative confocal z-stack micrographs showed
apical Na+/K+-ATPase and EZRIN and basal collagen IV distribution in the NC-iRPE group and
the RP-iRPE group. (C) A schematic of RPE cells seeded in a 24-transwell insert in both groups.
Enzyme-linked immunosorbent assay (ELISA) assay for the apical PEDF (D) and basal VEGF
(E) secretion levels, respectively. Mean ± SD (* p < 0.05; ** p < 0.01; n = 3~6).

To further assess the highly polarized RPE monolayer, the secretions of pigment
epithelium-derived factor (PEDF) and vascular endothelial growth factor (VEGF) from the
apical and basal sides were measured. RPE cells derived from the NC-iRPE group and
RP-iRPE group were seeded in 24-transwell inserts and cultured for 2 weeks (Figure 3C).
Media samples were collected from the upper and lower chambers of the two groups.
Enzyme-linked immunosorbent assay (ELISA) analysis showed that the secretion levels
of PEDF and VEGF proteins in the RP-iRPE group were lower than those in the NC-iRPE
group (Figure 3D,E). Together, these results revealed that the polarity was impaired in RPE
cells with PRPF6 mutation.

2.3. Aberrant Barrier Function in RPE Cells with PRPF6 Mutation

The barrier function of RPE cells was assessed by several experiments: (1) transepithe-
lial electrical resistance (TEER) measurement to monitor cellular dynamic barrier function;
(2) permeability assay to detect the apical-to-basolateral movements of molecules; (3) pho-
toreceptor outer segments (POS) phagocytosis test. The TEER values of the confluent RPE
monolayer seeded in 24-transwell inserts achieved stability at approximately 2 weeks. The
TEER values of the RP-iRPE group (184.85 ± 23.08 Ω/cm2, n = 4) were lower than those in
the NC-iRPE group (355.30 ± 16.85 Ω/cm2, n = 4) (Figure 4A). Moreover, a permeability
assay was performed after the stabilization of the TEER values. The concentrations of flu-
orescein isothiocyanate (FITC) dextran in the NC-iRPE group were 84.63 ± 35.62 ng/mL,
158.49 ± 31.99 ng/mL, 243.44 ± 11.08 ng/mL, 409.64 ± 55.40 ng/mL at 30, 60, 90 and
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120 min, respectively, while they were 254.52 ± 50.77 ng/mL, 446.57 ± 92.26 ng/mL,
749.43 ± 38.91 ng/mL and 1373.60 ± 95.96 ng/mL, respectively, in the RP-iRPE group
(Figure 4B). Over time, the FITC molecule penetrated from the apical-to-basal side in the
RP-iRPE group more than in the NC-iRPE group. In addition to the secretion of growth
factors, RPE cells are also responsible for daily POS phagocytosis, which plays an important
role in maintaining the outer retinal barrier [20]. The internalized localization of POS in the
two groups was observed via confocal z-stack imaging (Figure 4C, arrows). The results
suggested that the number of internalized POS was markedly reduced in the RP-iRPE
group (Figure 4D).
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Figure 4. Aberrant barrier function in RP-iRPE cells. (A) Measurements of transepithelial electrical
resistance (TEER) value showed a significant difference between the NC-iRPE group and the RP-iRPE
group. (B) Permeability assay of the apical-to-basolateral movements at 30 min, 60 min, 90 min and
120 min after the addition of fluorescein isothiocyanate (FITC) dextran in both groups. (C,D) The
phagocytosis assay shows the internalization of FITC-labeled photoreceptor outer segments (POS)
(arrows) and reduced POS phagocytosis in RP-iRPE cells. Scale bar 20 µm. Mean ± SD (** p < 0.01;
*** p < 0.001; **** p < 0.0001; n = 3~6).

2.4. Transcriptome Analysis of RPE Cells with PRPF6 Mutation

To investigate the potential mechanism of PRPF6 mutation in affecting the biological
functions of RPE cells, RNA-sequencing analysis was conducted between the NC-iRPE
group and the RP-iRPE group. Principal component analysis (PCA) showed obvious
differences between the two groups (Figure 5A). Moreover, Pearson’s correlation coefficient
revealed a correlation between the biological replicates of each group (Figure 5B). A total
of 2686 differentially expressed genes (DEGs) were identified based on the threshold of
the adjusted p-value < 0.05 and fold change > 2. A volcano plot illustrated that 1460 genes
were downregulated and 1226 genes were upregulated (Figure 5C).

To further explore the bioinformatic differences between the two groups, Gene On-
tology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
analyses were performed based on all DEGs. The top 20 KEGG signaling pathways with the
most significant differences were selected (Figure 6A) (Appendix B, Table A2). Compared
with the NC-iRPE group, the ECM-receptor interaction, focal adhesion, calcium signaling
pathway, gap junction, circadian entrainment and aldosterone synthesis and secretion were
downregulated signaling pathways in the RP-iRPE group. The upregulated signaling path-
ways included cytokine–cytokine receptor interaction, the Ras signaling pathway, hippo
signaling pathway, hepatocellular carcinoma, p53 signaling pathway and viral protein
interaction with the cytokine and cytokine receptor. Notably, ECM–receptor interaction
was the most affected signaling pathway. In the GO functional enrichment, the top 15 GO
terms associated with the biological process were shown with a circle diagram, including
cell adhesion, extracellular matrix organization, nervous system development, the positive
regulation of cell proliferation, ion transport, axon guidance and the positive regulation of
the ERK1/2 cascade (Figure 6B) (Appendix B, Table A3).
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pathways in the RP-iRPE group from the Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis were selected. (B) The top 15 Gene Ontology (GO) biological process terms with
the largest differences between the NC-iRPE group and the RP-iRPE group.

Next, we selected three important signaling pathways that may be associated with
the effects of PRPF6 mutation on the biological function of RPE cells for further analysis
based on KEGG enrichment, including ECM–receptor interaction, the calcium signaling
pathway and gap junction. DEGs in these signaling pathways were obtained through
RNA-sequencing data and presented in the form of heat maps (Figure 7A–C). To validate
the results of transcriptome sequencing, the expression levels of the corresponding DEGs
were evaluated by quantitative real-time PCR. As shown in Figure 7D–F, the expression of
ECM-related genes (LAMA1, VTN), calcium signaling-related genes (CACNA1I, CAMK4)
and gap junction-related genes (ADY2, DRD2) in the RP-iRPE group were significantly
lower than those in the NC-iRPE group. The quantitative real-time PCR results were
consistent with RNA-sequencing data. Moreover, immunofluorescence staining analysis
was also performed, demonstrating lower expression of the collagen IV marker in RP-iRPE
cells (Figure 7G,H).
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3. Discussion

Despite the rapid pace of RP pathogenic gene discovery in the last decade, research into
the specific pathogenesis and precise gene therapy remain as major challenges for RP due
to its high genetic heterogenicity [31]. In this study, a disease model of the RPE cells derived
from an adRP patient with the PRPF6 missense variant of c.2699G > A (p.Arg900His)
was successfully established, while this variant has not been previously reported in other
laboratories. Moreover, we demonstrated that compared with the control, RP-iRPE cells
displayed irregular morphology, disorganized apical microvilli and aberrant functional
characteristics, including reduced phagocytosis of FITC-labeled POS, damaged cell polarity
and barrier function. Transcriptome analysis showed that a higher ratio of downregulated
DEGs in the RP-iRPE group was related to the ECM–receptor interaction, calcium signaling
pathway and gap junction.

Rodent models are used to study RP associated with splicing factors by knock-in or
knockout gene editing [32]. However, in addition to ethical concerns, none of the rodent
models are fully representative of the onset and development of human retinal diseases due
to genetic and clinical diversity [33–35]. For example, photoreceptors and RPE cells are the
primary degenerated cells for RP, but it has been reported that splicing factors-associated
animal models developed late-onset functional deficiencies in mutant RPE, while a nearly



Int. J. Mol. Sci. 2022, 23, 9049 9 of 18

normal phenotype of photoreceptor cells was observed [36,37]. In order to overcome the
translation hurdle between rodents and humans, we generated RPE cells derived from
patient iPSCs that could recapitulate the genetic background of adRP caused by PRPF6
mutation. This is beneficial for studying the correlations between the genotypes and
phenotypes of the disease.

In this study, we found that RP-iRPE cells lost their classic hexagonal appearance and
expressed lower levels of the RPE-specific markers RPE65, MITF, CRALBP and tyrosinase.
Additionally, a decreased degree of polarity, phagocytic ability and barrier function was
observed in the RP-iRPE group compared to the NC-iRPE group. Such an aberrant phe-
notype was also observed in iPSC-RPE cells with PRPF31 mutation [38,39]. Their results
also revealed that splicing defects appeared to be correlated with the ultrastructural, cel-
lular and functional deficiencies that are characteristic of RPE in the RP disease state [38].
Furthermore, it has previously been described that knock-in/knockout animal models
of some splicing factors present an RPE degenerative phenotype [36]. A heterozygous
knock-in mouse model carrying the prpf31p.A216P mutation displayed RPE pathological
morphologies, including a drusen-like deposit, large lipofuscin accumulation and atrophy
of basal infoldings [33]. However, intriguingly, it was reported that PRPF8 mutation caused
widespread splicing changes but did not display distinctly abnormal behavior in patient
iPSC-derived RPE cells [8,40]. Therefore, different member mutations from the PRPF family
may lead to different effects on RPE. We propose the hypothesis that certain spliceosome
proteins are destroyed by disease-related variants, but this has no dominant effect.

Next, RNA-sequencing was analyzed in the RP-iRPE and NC-iRPE groups. Based
on the top 20 significantly enriched pathways by KEGG enrichment analysis, this study
focused on ECM–receptor interaction, the calcium signaling pathway and gap junction.
COL4A1, LAMA1 and VTN were selected from the ECM–receptor interaction. Bruch’s mem-
brane, which is rich in collagen I, collagen IV and laminin, plays a crucial role in supporting
and maintaining the RPE structure and function [41]. The changes in Bruch’s membrane
affect the health of the RPE and photoreceptor cells and also the onset and progression of
some diseases such as RP and age-related macular degeneration [41]. Zhu et al. reported
that the ECM protein vitronectin is more conducive to the in vitro culture of RPE cells
compared with the laminin-521 [42]. Cruz et al. developed a therapeutic patch via the RPE
monolayer immobilized on a vitronectin-coated PET membrane [43]. However, our results
revealed that the expression levels of COL4A1, LAMA1 and VTN were significantly reduced
in the RP-iRPE group, which could suggest that PRPF6 mutation affects the biological func-
tion of RPE cells by downregulating ECM-related genes. In addition, defective ECM is also
associated with vascular diseases, such as cerebral cavernous malformations (CCM) [44–46].
Transcriptome analysis on human brain microvascular endothelial cells isolated by CCM
specimens revealed that DEGs were associated with neuroinflammation, ECM remodeling,
cell junction impairment and reactive oxygen species metabolism. Intriguingly, consistent
with our RNA sequencing results, the ECM-related genes of COL1A1, COL1A2, COL4A1,
LAMA4, SDC1 and TNC were also dysregulated [46].

Calcium signaling is fundamentally important for several critical RPE functions, in-
cluding the transepithelial transport of ions and water, dark adaptation of photoreceptor
activity, phagocytosis and growth factor secretion [47,48]. RPE is known to embryologically
originate from the neural ectoderm. CACNA1I and CAMK4 have been reported to be
associated with nervous development [49,50]. Moreover, the RPE cells are connected with
gap junctions, tight junctions and adherent junctions [51]. ADCY2 and DRD2 were selected
from the gap junction pathway for quantitative real-time PCR validation, and the results
were consistent with transcriptomic data.

A few limitations in the present study need to be considered. The first was that
only one patient was included in our research design due to the low incidence of PRPF6-
associated adRP. Still, a greater number of patients, or/and isogenic controls generated
by gene editing systems [52], will be included as far as possible in our future experiments.
Meanwhile, the mechanisms by which splicing factors lead to the alterations in RPE
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function need more in-depth investigation due to the likely involvement of a variety of
complex and comprehensive factors. Another limitation was that the interaction between
photoreceptors and underlying RPE was not taken into account in our research. Mature
co-culture technologies of RPE cells and retinal organoids containing photoreceptors by
microfluidic chip platform will be the focus of our future efforts [53].

4. Materials and Methods
4.1. iPSCs Culture and Passaging

The patient iPSC line (CSUASOi004-A) employed in this study was generated from
the peripheral blood mononuclear cells of a patient with PRPF6 mutation, as previously
reported [28]. The cells were cultured in 6-well plates coated with Matrigel (Corning, New
York, USA) using mTeSRTMPlus medium (StemCell Technologies, Vancouver, BC, Canada)
at 37 ◦C, 5% CO2 in a humidified incubator. Medium was changed every other day and
enzymatically passaged with EDTA every 5 to 7 days at splitting ratios from 1:6 to 1:10. The
normal iPSC cell line, as a control, was also differentiated into RPE cells under the same
conditions. Sanger sequencing of all cell samples was performed regularly for genotyping
verification.

4.2. iPSCs Differentiation to RPE Cells

RPE cells were generated from iPSCs following the previously reported method [26].
Briefly, iPSCs were grown to 80% confluence in mTeSRTMPlus medium and switched to
RPE differentiation medium containing Dulbecco’s modified Eagle’s medium (DMEM;
Gibco, Grand Island, NY, USA), 20% knockout serum replacement (KSR; Thermo Fisher
Scientific, Waltham, MA, USA), 1× non-essential amino acids (NEAA; Sigma, San Luis, MO,
USA), 50 µM β-mercaptoethanol (Gibco), 1% penicillin–streptomycin (Gibco) and 10 mM
nicotinamide (MedChemExpress, Princeton, NJ, USA) for 0–7 days. Then, nicotinamide was
replaced with 100 ng/mL Activin A (Peprotech, Rocky Hill, NJ, USA) for another week. On
day 14 of differentiation, Activin A was removed from the medium, and 3 µM CHIR99021
(MedChemExpress) was added. On day 42, RPE cells were collected by incubating in
TrypLE Express (Gibco) for 30 min at 37 ◦C and then seeded on a Matrigel-coated 6-well
plate with a density of approximately 1 × 106 cells/well. Meanwhile, RPE differentiation
medium was replaced with RPE maintenance medium consisting of DMEM, 4% KSR,
1× NEAA, 1% penicillin–streptomycin and 50 µM β-mercaptoethanol without molecule
compound. At this point, the cells were defined as passage 1 (P1). Only RPE cells at P2 and
P3 were used in this study.

4.3. Immunofluorescence Staining

RPE cells were cultured for 14 days and washed two times with PBS. After fixing
with 4% paraformaldehyde (PFA), cells were permeabilized with 0.5% Triton X-100 and
blocked with 3% BSA in PBS for 1 h at room temperature. Then, cells were incubated
overnight at 4 ◦C with primary antibodies, including mouse anti-ZO-1 (1:100, Invitrogen,
Carlsbad, CA, USA), rabbit anti-MITF (1:200, Invitrogen), mouse anti-RPE65 (1:50, Abcam,
Cambridge, UK), rabbit anti-CRALBP (1:100, Proteintech, Rosemont, IL, USA), rabbit anti-
tyrosinase (1:100, Abcam), rabbit anti-EZRIN (1:200, GeneTex, Irvine, CA, USA), mouse
anti-Na+/K+-ATPase (1:50, Santa Cruz Biotechnology, Santa Cruz, CA, USA) and mouse
anti-Collagen IV (1:100, Abcam) (Appendix B, Table A1) followed by washing three times in
PBS and incubation with secondary goat anti-mouse/rabbit Alexa Fluor 594/488 antibody
(1:1000, Invitrogen) for 1 h at room temperature. After washing three times with PBS, cell
nuclei were stained with 4′,6-diamidino-2-phenylindole (DAPI; Solarbio, Beijing, China)
for 10 min. Immunofluorescence images were captured using a laser scanning confocal
microscope (LSM800; Zeiss, Thornwood, Germany).
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4.4. Reverse Transcription PCR and Quantitative Real-Time PCR

After 14 days of culture, total RNA of RPE cells was extracted with TRIzol reagent
(Thermo Fisher Scientific) following the manufacturer’s instructions. HiScipt II Q RT
SuperMix (Vazyme, Nanjing, China) was then used for reverse transcription of RNA into
cDNA. The quantitative real-time PCR was performed using ChamQ Universal SYBR qPCR
Master Mix (Vazyme) on a Roche LightCycler 96 system (Roche, Basel, Switzerland). The
total volume of each reaction solution was 10 uL. The expression levels of genes were
normalized to the GAPDH gene and calculated using the 2−∆∆Ct method. All results were
obtained from at least three independent experiments for statistical analysis.

4.5. Western Blotting

RPE cells were cultured for 14 days and lysed by RIPA buffer (Beyotime, Shanghai,
China) for 30 min. After centrifugation, total protein concentrations of all samples were
quantified using a BCA Protein Quantification Kit (Vazyme) according to the manufac-
turer’s protocols. Equal amounts (30 µg) of proteins per lane were loaded and separated
on sodium dodecyl sulfate (SDS)-polyacrylamide gel, and then transferred to nitrocellulose
membranes. After blocking with PBS containing 3% BSA for 1 h at room temperature, the
membranes were incubated with primary antibodies, including rabbit anti-PRPF6 (1:1000,
Invitrogen), rabbit anti-CRALBP (1:1000, Proteintech), mouse anti-RPE65 (1:1000, Abcam),
rabbit anti-tyrosinase (1:1000, Abcam), mouse/rabbit anti-GAPDH (1:2000, Arigo) and
mouse anti-β-Actin (1:2000, Cell Signaling Technology, Danvers, MA, USA) overnight at
4 ◦C. Then, membranes were incubated with goat anti-rabbit IRDye 680RD secondary
antibodies or goat anti-mouse IRDye 800 CW secondary antibodies (1:10,000, LI-COR
Bioscience, Lincoln, NE, USA) for 1 h at room temperature. The bands were imaged on
the Odyssey Fc Imaging System (LI-COR Bioscience), and the results were analyzed by
Fiji/Image J software (National Institutes of Health, Bethesda, MD, USA).

4.6. TEER Assay

TEER assay was used to assess the integrity of the tight junction dynamic of epithelioid
cells as described previously [54,55]. RPE cells were seeded on 24-transwell inserts at a
density of 1 × 104 cells/insert. To test the dynamic barrier of RPE cells monolayer, TEER
assay was performed every 2–3 days with a Millicell-ERS-2 volt-ohm meter (Millipore,
Billerica, MA, USA) until the TEER value reached stability. The TEER value was calculated
according to the following equation

TEER (Ω/cm2) = (Rtotal − Rinsert)/A

Rtotal is the total resistance measured (Ω), Rinsert (Ω) is the resistance of the blank insert
with media alone and A is the membrane area (cm2) of the insert.

4.7. SEM Observation

SEM was used to observe the ultrastructure of cell surface, as previously reported [56].
Briefly, RPE cells were seeded on a sterile glass slide in a 24-well plate. The slides were fixed
with 2.5% glutaraldehyde (Solarbio) for 2 h at room temperature and washed gently with
PBS three times. For post-fix, cells were transferred into 1% OsO4 (Ted Pella, Redding, CA,
USA) for 1 h at room temperature and rinsed three times with PBS, and then dehydrated
with a gradient concentration of ethanol (30%, 50%, 70%, 80%, 90%, 95%, 100%, 100%) and
isoamyl acetate (Sigma) for 15 min each time. Finally, the samples were critical point dried,
conductive metal coated and observed under a scanning electron microscope (SU8100;
Hitachi, Tokyo, Japan).
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4.8. ELISA

The media samples were collected from the upper and lower transwell chambers. The
secretion levels of VEGF and PEDF protein were measured with ELISA kits (VEGF: Novus,
CO, USA) (PEDF: CUSABIO, Wuhan, China) according to the manufacturer’s protocols.

4.9. Permeability Assay

Permeability assay was conducted by measuring the apical-to-basal movements of
FITC (MedChemExpress) dextran as reported previously [57]. Briefly, cells were seeded in
24-transwell inserts. A 200 µL medium containing 100 µg/mL FITC dextran was added
to the upper chamber and 1 mL medium alone in the lower chamber. In total, 200 µL of
FITC dextran-treated medium was collected from the lower chamber of a 96-well plate at
30, 60, 90 and 120 min after adding the molecule; meanwhile, the same volume of fresh
medium was supplemented. The fluorescence intensity of all samples at each time point
was measured by a multifunctional microplate reader (Synergy HTX; BioTek, Winooski, VT,
USA).

4.10. Phagocytosis Assay

POS were isolated from fresh porcine eyes, labeled with FITC and then applied for
phagocytosis capacity of RPE as reported previously [58,59]. Briefly, POS were resuspended
in 0.1 M sodium bicarbonate and incubated with FITC (MedChemExpress) in DMEM for
1 h at room temperature in the dark. After being labeled with FITC, POS were washed
three times with PBS and resuspended in DMEM medium. RPE cells were incubated
with FITC-labeled POS for 5 h. Then, the medium was sucked out, and the cells were
washed four times with PBS. After fixing, permeabilizing and blocking, the samples were
incubated with mouse anti-ZO-1 overnight at 4 ◦C. Cells were washed three times with PBS
and incubated with goat anti-mouse Alexa Fluor 594 secondary antibody for 1 h at room
temperature. After washing with PBS three times, cell nuclei were stained with DAPI for
10 min. Finally, sample images were acquired and analyzed quantitatively using a confocal
microscope.

4.11. RNA-Sequencing Analyses

Total RNA of samples from the NC-iRPE and RP-iRPE groups were extracted using
TRIzol reagent. RNA-sequencing was conducted by BGI Biotech Co., Ltd. (Wuhan, China).
Raw data were filtered with SOAP [60] to remove the reads containing sequencing adaptors,
low-quality and unknown bases. Next, the clean reads were mapped to the reference
transcriptome sequence using Hisat2 [61] as previously described, and Bowtie2 [62] was
applied to align the clean reads to the reference coding gene set. To obtain normalized gene
expression levels, the reads per kilobase of exon model per million mapped reads values
were calculated. The DEGs between the NC-iRPE group and RP-iRPE group were analyzed
using the DESeq2 [63] with the parameters of adjusted p < 0.05 and fold change > 2. To
gain insight into the functional enrichment of all DEGs, the GO terms and KEGG signaling
pathways were performed, and the significant levels were corrected with an adjusted
p < 0.05.

4.12. Statistical Analysis

Statistical analysis was performed using SPSS 26.0 software (SPSS Inc., Chicago, IL,
USA) and GraphPad Prism 9.3 software (GraphPad Inc., Bethesda, MD, USA). The data
were presented as mean ± SD obtained from at least three independent experiments. For
a comparison between two different groups, an unpaired Student’s t-test was applied;
comparisons among multiple groups were determined by one-way ANOVA. p-value < 0.05
was considered to be statistically significant.
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5. Conclusions

In conclusion, our study confirms that the splicing factor PRPF6 mutation affects the
morphological characteristic, polarity, daily phagocytosis and barrier function of RP-iRPE
cells. Long-term dysregulation of RPE functions under such conditions can cause RPE
degeneration and atrophy. Our findings are helpful for understanding PRPF6-related
RPE cells, and this study may provide a basis for gene therapy and other therapies in
these patients.
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Table A2. The top 20 KEGG signaling pathways.

ID Pathway Gene Num Ratio Q Value

Downregulated
ko04512 ECM-receptor interaction 24 0.038 4.90 × 10−8

ko05414 Dilated cardiomyopathy (DCM) 22 0.035 4.40 × 10−6

ko04925 Aldosterone synthesis and
secretion 22 0.035 6.31 × 10−6

ko04270 Vascular smooth muscle
contraction 26 0.041 1.19 × 10−5

ko04540 Gap junction 20 0.032 1.36 × 10−5

ko04510 Focal adhesion 34 0.054 1.50 × 10−5

ko04713 Circadian entrainment 21 0.033 1.85 × 10−5

ko04020 Calcium signaling pathway 33 0.052 1.96 × 10−5

ko04926 Relaxin signaling pathway 25 0.040 2.34 × 10−5

ko04921 Oxytocin signaling pathway 28 0.044 2.34 × 10−5

Upregulated
ko04390 Hippo signaling pathway 20 0.043 5.85 × 10−4

ko04115 p53 signaling pathway 12 0.026 8.29 × 10−4

ko05210 Colorectal cancer 13 0.028 1.31 × 10−3

ko05213 Endometrial cancer 10 0.022 1.70 × 10−3

ko05205 Proteoglycans in cancer 23 0.050 1.70 × 10−3

ko05225 Hepatocellular carcinoma 20 0.043 1.75 × 10−3

ko04061 Viral protein interaction with
cytokine and cytokine receptor 14 0.030 1.85 × 10−3

ko04060 Cytokine-cytokine receptor
interaction 29 0.063 3.58 × 10−3

ko04014 Ras signaling pathway 24 0.052 4.27 × 10−3

ko05134 Legionellosis 9 0.020 4.67 × 10−3

Table A3. The top 15 GO biological process terms.

ID Term Gene Num Ratio Q Value

GO:0007155 cell adhesion 183 0.27 5.70 × 10−21

GO:0007156 homophilic cell adhesion via plasma
membrane adhesion molecules 58 0.35 3.99 × 10−12

GO:0030198 extracellular matrix organization 75 0.30 7.64 × 10−12

GO:0001525 angiogenesis 79 0.29 5.73 × 10−11

GO:0045766 positive regulation of angiogenesis 51 0.34 2.41 × 10−10

GO:0007399 nervous system development 130 0.23 4.43 × 10−10

GO:0007411 axon guidance 67 0.28 1.02 × 10−8

GO:0030335 positive regulation of cell migration 68 0.27 1.71 × 10−8

GO:0006811 ion transport 142 0.21 2.33 × 10−8

GO:0031290 retinal ganglion cell axon guidance 13 0.65 1.88 × 10−7

GO:0007417 central nervous system development 46 0.29 4.51 × 10−7

GO:0008284 positive regulation of cell
proliferation 119 0.21 4.83 × 10−7

GO:0070374 positive regulation of ERK1 and
ERK2 cascade 59 0.26 6.81 × 10−7

GO:0007275 multicellular organism development 222 0.19 1.10 × 10−6

GO:0001501 skeletal system development 45 0.28 1.17 × 10−6
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