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ABSTRACT
Aims. We sought to explore the role of the SLC6A3 rs393795 allelic variant in cerebral
spontaneous activity and clinical features in Parkinson’s disease (PD) via imaging
genetic approach.
Methods. Our study recruited 50 PD and 45 healthy control (HC) participants to
provide clinical, genetic, and resting state functional magnetic resonance imaging (rs-
fMRI) data. All subjects were separated into 16 PD-AA, 34 PD-CA/CC, 14 HC-AA, and
31 HC-CA/CC four subgroups according to SLC6A3 rs393795 genotyping. Afterwards,
main effects and interactions of groups (PD versus HC) and genotypes (AA versus
CA/CC) on cerebral function reflected by regional homogeneity (ReHo) were explored
using two-way analysis of covariance (ANCOVA) after controlling age and gender.
Finally, Spearman’ s correlationswere employed to investigate the relationships between
significantly interactive brain regions and clinical manifestations in PD subgroups.
Results. Compared with HC subjects, PD patients exhibited increased ReHo signals in
left middle temporal gyrus and decreased ReHo signals in left pallidum. Compared with
CA/CC carriers, AA genotype individuals showed abnormal increased ReHo signals in
right inferior frontal gyrus (IFG) and supplementary motor area (SMA). Moreover,
significant interactions (affected by both disease factor and allelic variation) were
detected in right inferior temporal gyrus (ITG). Furthermore, aberrant increased ReHo
signals in right ITG were observed in PD-AA in comparison with PD-CA/CC. Notably,
ReHo values in right ITG were negatively associated with Tinetti Mobility Test (TMT)
gait subscale scores and positively related to Freezing of Gait Questionnaire (FOG-Q)
scores in PD-AA subgroup.
Conclusions. Our findings suggested that SLC6A3 rs393795 allelic variationmight have
a trend to aggravate the severity of gait disorders in PD patients by altering right SMA
and IFG function, and ultimately result in compensatory activation of right ITG. It
could provide us with a new perspective for exploring deeply genetic mechanisms of
gait disturbances in PD.
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INTRODUCTION
Parkinson’s disease (PD), characterized by gradually aggravated nigrostriatal dopaminergic
neuronal dysfunction, is a progressive neurodegenerative disorder (Fearnley & Lees, 1991).
The pathophysiological process of PD is influenced not only by nongenetic factors such as
environmental risks and aging but also by genetic polymorphisms (Raza, Anjum & Shakeel,
2019). Recently, the role of associative gene polymorphisms in sporadic PD has increasingly
been investigated. The human dopamine transporter (DAT) gene, now known as SLC6A3
(chromosome 5p15.3), is one of the most crucial candidate genes in sporadic PD due to its
role in dopamine (DA) neuron function (Zhai et al., 2014). SLC6A3 encodes DAT, which
is a membrane protein located in the presynaptic region of dopaminergic neurons, where
it can rapidly transport DA from the extracellular space into the cytosol of the presynaptic
neuron, contributing to overall DA neurotransmission in brain (Cragg & Rice, 2004; Lohr
et al., 2017). Recently, a large prospective trial from the Parkinson Progression Marker
Initiative (PPMI) believed that the dopaminergic denervation in presynaptic striatum
could be a bad predictor for the later development of freezing of gait (FOG) in almost 400
early PD patients (Kim et al., 2018). Moreover, a pharmacogenetic study suggested that
SLC6A3 polymorphisms appeared to be associated with the response to levodopa observed
in advanced PD patients with gait disorders (Moreau et al., 2015). Hence, these studies
confirmed the important role of SLC6A3 polymorphisms in PD progression. However,
in SLC6A3, most previous literature focused on the role of variable number tandem
repeat (VNTR) polymorphism in the 3′ untranslated region in PD (Kim et al., 2000; Kang,
Palmatier & Kidd, 1999). Recently, growing attention was paid to other single nucleotide
polymorphisms (SNPs), such as rs393795. Moreover, several latest studies indicated that
SLC6A3 rs393795 played an important role in PD (Purcaro et al., 2019; Kaplan et al., 2014).
However, the SLC6A3 rs393795 polymorphisms were not widely investigated in PD,
particularly about how the variant affected cerebral spontaneous neuronal activity and
clinical manifestations in PD. Therefore, we employed this study to investigate the effects
of the SLC6A3 rs393795 allelic variant on the brain spontaneous neuronal activity and
relevant clinical features in PD.

Imaging genetics was applied in our research, which could provide us with new insights
into the influence of genetic variant on brain function (Bogdan et al., 2017). The method
has been widely employed to explore several neurological and psychiatric diseases, such
as Alzheimer’s disease (AD) (Apostolova et al., 2018). Actually, resting-state functional
magnetic resonance imaging (rs-fMRI) can reveal the brain spontaneous neuronal activity
by examining spontaneous fluctuations in the blood oxygen level dependent (BOLD)
signal at rest (Prodoehl, Burciu & Vaillancourt, 2014). So, it makes it possible to explore
the probable role of gene polymorphisms in brain activity. Calculating the similarity of
voxel fluctuations within a given cluster, regional homogeneity (ReHo) can embody the
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local synchronization of spontaneous BOLD signals (Long et al., 2008). This approach has
been widely adopted in PD studies, and even was considered as a potential diagnostic
biomarker for PD (Li et al., 2016). However, few researchers focused on the probable role
of gene polymorphisms in brain region dysfunction in PD. Thus, we employed this study
to explore the role of SLC6A3 rs393795 allelic variant in cerebral spontaneous neuronal
activity and relevant clinical presentations in PD, by examining cerebral ReHo signal
alterations as well as the correlations between altered brain interactive regional ReHo
values and clinical symptoms.

MATERIALS & METHODS
Subjects
Our study enrolled 50 PD patients and 45 healthy control (HC) participants, which were
initially clinically evaluated byKezhong Zhang, a neurologist expert inmovement disorders,
especially in PD. Inclusion criteria were as follows: (1) meeting the diagnostic criteria
for idiopathic PD according to the United Kingdom Parkinson’s Disease Society Brain
Bank criteria (Hughes et al., 1992); (2) having no medical history of stroke, brain tumor,
traumatic brain injury, dementia or psychiatric disorders; (3) without contraindications
for MRI scans; (4) not taking sedative and hypnotic medications.

Subjects were evaluated by face-to-face interviews and clinical associative scales. Unified
Parkinson’s Disease Rating Scale section III (UPDRS-III) (Goetz, 2003), Tinetti Mobility
Test (TMT) (Kegelmeyer et al., 2007), Freezing of Gait Questionnaire (FOG-Q) (Tambasco
et al., 2015) and Timed Up and Go (TUG) test (Chantanachai, Pichaiyongwongdee &
Jalayondeja, 2014) were performed to detect motor symptoms in PD. Moreover, Hamilton
Anxiety Rating Scale (HAMA) (Kummer, Cardoso & Teixeira, 2010), 17-item Hamilton
Rating Scale for Depression (HAMD-17) (Worboys, 2013), Apathy Scale (AS) (Leentjens
et al., 2008), Epworth Sleeping Scale (ESS) (Schrempf et al., 2014) and Fatigue Severity
Scale (FSS) (Valderramas, Feres & Melo, 2012) were used to evaluate the non-motor
manifestations in PD. In addition, we calculated the total levodopa equivalent daily dose
(LEDD), LEDD of levodopa preparations and LEDD of dopamine receptor agonists for
each PD individual (Tomlinson et al., 2010).

To reduce the pharmacological effects on neural activity, clinical assessments and MRI
scans were performed at least 12 h after withdrawal from drugs for all PD participants.
Meanwhile, age, gender, education and ethnicity matched HC subjects were enrolled in
this study to eliminate other neurological and psychological disorders or neuroimaging
disturbances. In addition, fasting peripheral blood samples from all participants were
collected for genetic assessment. Each subject agreed to join our study and signed an
informed consent form. Our study was approved by the Ethics Committee of the First
Affiliated Hospital of Nanjing Medical University (2014-SRFA-097).

Genotyping
Fasting peripheral venous blood samples were obtained from all consenting participants
after at least 12 h after withdrawal from drugs and foods in the morning. All blood samples
were randomly numbered and genotyped by a ‘‘blinded’’ independent researcher. Each
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subject’s genomic DNAwas extracted using a DNA direct kit (BioTeKe Corpration, Beijing,
China). The SLC6A3 rs393795 data were obtained and analyzed by the Beijing Genomics
Institute (BGI) using MassARRAY TYPER 4.0 software (Agena Bioscience, San Diego, CA,
USA). According to the manufacturer’s instructions, a series of experimental procedures
were strictly carried out, including DNA isolation, polymerase chain reaction (PCR)
amplification, shrimp alkaline phosphatase (SAP) treatment, addition to SpectroCHIP
bioarray and matrix-assisted laser desorption ionisation time-of-flight mass spectrometry
analysis. Afterwards, all participants were further divided into four different subgroups
(PD-AA, PD-CA/CC, HC-AA, and HC-CA/CC) in agreement with previous genetic studies
(van Munster et al., 2010a; van Munster et al., 2010b).

Magnetic resonance imaging Acquisition
MRI was performed on a 3.0 T Siemens MAGNETOM Verio whole-body MRI scanner
(Siemens Medical Solutions, Munich, Germany) with eight-channel phase-array head
coils. During the resting experiments, we adopted tight foam to fix head and ear-plugs to
reduce noise. Falling asleep, thinking about anything and movements were not advised,
when participants were relaxed with their eyes closed. Whole brain anatomical images were
obtained for all individuals. Scan parameters were as follows: repetition time (TR)/echo
time (TE) = 1900/2.95 ms, flip angle = 9◦, field of view (FOV) = 230×230 mm2, matrix
size = 256×256, voxel size = 1×1×1 mm3, slice thickness = one mm, and number of
slices = 160. Whole brain rs-fMRI images were gained with an echo-planar imaging (EPI)
sequence. Scan parameters were as follows: TR/TE= 2,000/21 ms, flip angle= 90◦, FOV=
256× 256 mm2, in-plane matrix = 64× 64, slice thickness = three mm, number of slices
= 35, no slice gap, voxel size = 3×3×3 mm3, and total volumes = 240.

Resting-state fMRI Data Processing and ReHo Acquisition
Data preprocessing was performed using the Data Processing Assistant for rs-fMRI
(DPARSF: http://www.restfmri.net/forum/DPARSF) based on Statistical Parametric
Mapping (SPM: http://www.fil.ion.ucl.ac.uk/spm/). Image data were analyzed with SPM
and Resting-State fMRI Data Analysis Tookit (REST: http://www.restfmri.net). Removed
the first 10 time points to reduce transient signal changes caused by unstable magnetic
field and to permit subjects to be accustomed to the scanning circumstance. Preprocessing
included standard slice timing, head motion correction, realignment, spatial normalization
by diffeomorphic anatomical registration through exponentiated lie algebra (DARTEL;
voxel size [3, 3, 3]). Additionally, nuisance signal removal via multiple regression adjusting
for white matter, cerebrospinal fluid, head motion parameters, and 0.01–0.08 Hz pass
filtering were applied to reduce signal to noise ratios. Individuals with more than 2.0 mm
or 2-degree cumulative translation or rotation head motion were excluded from our study.

ReHo maps were accomplished in a voxel-wise way via calculating Kendall’s coefficient
of concordance (KCC, also called ReHo signal) between time series of a given voxel with its
nearest neighbors (26 voxels). In order to reduce individual differences, ReHo maps was
normalized by dividing the KCC for each voxel by the average KCC of the whole brain.
Ultimately, a four mm full width at half-maximum (FWHM) Gaussian filter was adopted
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to smooth the data in order to suppress noise and effects caused by residual differences in
functional and rotational anatomy during inter-subject averaging period.

Statistical analysis
Demographic and clinical characteristics of participants in different groups were compared
using SPSS 20.0 statistical analysis software (SPSS Inc. Chicago, IL, USA). Actually, chi-
square test, one-way analysis of variance (ANOVA), and Kruskal-Wallis test were applied
to test gender, age, and education difference among the four subgroups, respectively. Other
clinical features were analyzed by Mann–Whitney tests between PD two subgroups due to
the non-normality of data distribution. Besides, the Hardy-Weinberg Equilibrium (HWE)
of the genotype frequencies was analyzed by chi-square test. P < 0.05 was considered
significant.

Two-way factorial analysis of covariance (ANCOVA: groups × genotypes; groups: PD
versus HC; genotypes: AA versus CA/CC) was employed to examine significantly different
brain clusters, adjusting for age and gender (voxel-wise p< 0.001 and cluster size >11
voxels, corrected by AlphaSim program in the REST software). Afterwards, post hoc tests
were conducted to explore further statistical differences.

Finally, Spearman’s correlations were applied to the examine the relationships between
the ReHo values extracted from the significantly interactive regions and clinical symptoms
in PD, respectively (p< 0.05).

RESULTS
Clinical features
The demographic and clinical characteristics of all participants (n= 95) were presented
in Table 1. All individuals were of Han Chinese descent. No significant differences were
found in gender, age and education among the four subgroups. Moreover, PD-AA and
PD-CA/CC groups exhibited similar disease duration, H&Y stage, LEDD, LEDD of
levodopa preparations and LEDD of dopamine receptor agonists, UPDRS-III, Total TMT,
TMT balance subscale, TMT gait subscale, FOG-Q and TUG test scores. No significant
differences were observed in HAMA, HAMD-17, AS, ESS and FSS scores as well. In
addition, 40 of 50 (80%) PD patients were taking dopaminergic agents; of those, 38 of 50
(76%) took levodopa, 29 of 50 (58%) dopamine receptor agonists, and 26 of 50 (52%)
both agents.

Hardy–Weinberg equilibrium
The Table 2 showed that the distribution of genotype frequencies of the candidate SNP
SLC6A3 rs393795 was in HWE (PD: χ2

= 1.974, p= 0.160; HC: χ2
= 1.867, p= 0.172).

Regional homogeneity
The effects of diagnostic groups (PD versus HC) and genotypes (AA versus CA/CC) on
ReHo values analyzed by two-way ANCOVA were shown in Table 3. The significant
main effect of groups (PD versus HC, regardless of allelic variant status) was observed in
left middle temporal gyrus (F = 17.91, p< 0.001, corrected) and pallidum (F = 22.66,
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Table 1 Demographic and clinical characteristics of all subjects.

Variables PD-AA PD-CA/CC HC-AA HC-CA/CC P value

n 16 34 14 31 NA
Gender (M/F) 11/5 23/11 9/5 20/11 0.987a

Age (y) 65.13± 10.11 66.15± 8.36 65.43± 4.50 62.26± 4.75 0.176b

Education (y) 10.94± 3.30 11.88± 3.45 11.64± 3.46 11.55± 3.54 0.849c

Disease duration (y) 3.71± 4.86 4.75± 3.18 NA NA 0.052d

H&Y stage 2.06± 0.77 2.18± 0.67 NA NA 0.625d

LEDD (mg/d) 410.94± 300.65 386.31± 300.83 NA NA 0.708d

Levodopa preparations (mg/d) 254.69± 185.79 272.72± 202.37 NA NA 0.846d

Dopamine receptor agonists (mg/d) 33.59± 41.26 42.61± 44.18 NA NA 0.463d

UPDRS-III 22.63± 9.34 21.76± 8.96 NA NA 0.950d

Total TMT 22.63± 4.46 21.79± 6.01 NA NA 0.942d

TMT balance subscale 13.81± 2.51 12.79± 3.59 NA NA 0.409d

TMT gait subscale 8.81± 2.48 9.00± 2.79 NA NA 0.659d

FOG-Q 5.81± 5.15 5.41± 5.89 NA NA 0.599d

TUG (s) 14.13± 4.08 15.12± 6.85 NA NA 0.815d

HAMD-17 7.00± 5.18 5.06± 3.85 NA NA 0.191d

HAMA 10.19± 6.76 8.29± 4.67 NA NA 0.538d

AS 16.44± 7.96 15.76± 7.75 NA NA 0.786d

ESS 4.69± 2.57 5.71± 4.32 NA NA 0.699d

FSS 34.33± 17.75 26.41± 14.47 NA NA 0.140d

Notes.
Data are presented as mean values± SD.
Abbreviations: PD-AA, Parkinson’s disease with AA homozygous carries; PD-CA/CC, Parkinson’s disease with C allele carries; HC-AA, healthy control with AA homozygous
carries; HC-CA/CC, healthy control with C allele carries; M, Male; F, Female; y, year; H&Y, Hoehn and Yahr stage; LEDD, Levodopa equivalent daily dose; UPDRS, Uni-
fied Parkinson’s disease rating scale; TMT, Tinetti Mobility Test; FOG-Q, Freezing of Gait Questionnaire; TUG, Timed Up and Go; HAMD-17, 17-item Hamilton Rating
Scale for Depression; HAMA, Hamilton Anxiety Rating Scale; AS, Apathy Scale; ESS, Epworth Sleeping Scale; FSS, Fatigue Severity Scale; NA, Not applicable.
*p< 0.05 was considered significant.
achi-square test.
bOne-way analysis of variance.
cKruskal–Wallis test.
dMann–Whitney test.

Table 2 Genotype frequencies for SLC6A3 rs393795 in PD and HC groups.

Genotypes PD HC Total

AA 16 (32%) 14 (31%) 30 (32%)
CA 20 (40%) 26 (58%) 46 (48%)
CC 14 (28%) 5(11%) 19 (20%)

Notes.
Genotype frequencies for SLC6A3 rs393795 in PD group (χ2

= 1.974, p= 0.160) and HC group (χ2
= 1.867, p= 0.172) didn’t

deviate from Hardy–Weinberg equilibrium.
PD, Parkinson’s disease; HC, Healthy control.

p < 0.001, corrected) (Figs. 1A–1J). Furthermore, PD patients exhibited increased
ReHo signals in left middle temporal gyrus but reduced ReHo signals in left pallidum
in comparison with HC subjects. The significant main effect of genotypes (AA versus
CA/CC carriers, regardless of disease status) was discovered in right inferior frontal gyrus
(IFG, F = 32.73, p< 0.001, corrected) and supplementary motor area (SMA, F = 22.21,
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Table 3 Groups× genotypes ANCOVA of ReHo.

Brain regions (AAL) PeakMNI Coordinates x, y, z (mm) Peak
F value

Cluster
size (voxels)

(1) Main effect of groups
Temporal_Mid_L −39 6 −36 17.91 14
Pallidum_L −18 0 −3 22.66 12

(2) Main effect of genotypes
Frontal_Inf_R 36 33 12 32.73 13
Supp_Motor_Area_R 3 9 57 22.21 12

(3) Groups× genotypes interaction
Temporal_Inf_R 57 −66 −9 25.10 21

Notes.
Two-way factorial analysis of covariance (ANCOVA: groups× genotypes; groups: PD versus HC, genotypes: AA versus
CA/CC) was performed, adjusting for age and gender. A corrected threshold by Monte Carlo simulation was set at P < 0.001.
Abbreviations: PD, Parkinson disease; HC, Healthy control; ReHo, Regional homogeneity; AAL, Anatomical automatic
labeling; MNI, Montreal Neurological Institute; R, right; L, left.

p< 0.001, corrected) (Figs. 1K–1T). Besides, AA genotype participants showed aberrant
increased ReHo signals in right IFG and SMA compared with CA/CC carriers. It was
worth noting that significant interactions between groups and genotypes (affected by
both disease factor and allelic variation) were found in the right inferior temporal gyrus
(ITG, F = 25.10, p< 0.001, corrected) (Fig. 2). Hereafter, post hoc tests (Bonferroni) were
employed to explore further interactive differences, and p< 0.008 (0.05/6 [all possible
pair-wise comparisons]) was considered significant. Specially, abnormal increased ReHo
signals in right ITGwere observed in PD-AA compared with PD-CA/CC group (p< 0.001),
while reduced ReHo signals in right ITG were detected in AA homozygotes in comparison
with CA/CC carriers in HC subgroups (p= 0.004).

Correlation analysis
Correlations between the clinical scores and ReHo values extracted from significant
interactive clusters were investigated in PD patients. ReHo values in right ITG were
negatively associated with TMT gait subscale scores (r =−0.554, p= 0.026) (Fig. 3A)
and positively related to FOG-Q scores (r = 0.581, p= 0.018) (Fig. 3B) in PD patients
with AA genotype. These results suggested that the severity of gait disorders in PD was
closely associated with altered right ITG functional activity modulated by the AA genotype
of SLC6A3 rs393795. Nevertheless, in the two subgroups of PD, no other significant
correlations were found between right ITG ReHo values and any other clinical scores
(p> 0.05).

DISCUSSION
In this imaging genetic study, we explored the role of SLC6A3 rs393795 allelic variant
in brain regional homogeneous activity in sporadic PD patients. Compared with CA/CC
carriers, AA genotype individuals showed abnormal increased ReHo signals in right IFG
and SMA in all participants. Moreover, our interaction investigation revealed that AA
homozygotes exhibited aberrant increased ReHo signals in right ITG compared with
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Figure 1 Main effects of groups and genotypes in all participants. (A–J) Main effect of diagnostic
groups (PD versus HC) on ReHo was shown in left middle temporal gyrus and left pallidum in all
participants; (K–T): Main effect of genotypes (AA versus CA/CC) on ReHo was observed in right IFG
and SMA in all individuals. These findings were obtained via two-way factorial analysis of covariance
(ANCOVA: groups× genotypes; groups: PD versus HC; genotypes: AA versus CA/CC), adjusting for
age and gender. Thresholds were set at a corrected p < 0.001, determined by Monte Carlo simulation.
The color bar indicated the F values from ANCOVA. Abbreviations: ReHo, Regional homogeneity; PD,
Parkinson’s disease; HC, healthy control; IFG, inferior frontal gyrus; SMA, supplementary motor area; R,
right; L, left.

Full-size DOI: 10.7717/peerj.7957/fig-1

CA/CC carriers in PD subgroups. Notably, ReHo values in right ITG were negatively
associated with TMT gait subscale scores and positively related to FOG-Q scores in PD-AA
group.

SLC6A3 rs393795 was supposed to be the candidate SNP for sporadic PD, supported
by numerous imaging and pharmacogenetic studies validating the close relationship
between DAT and PD (Djaldetti et al., 2018; Kim et al., 2018). Particularly, the depletion of
presynaptic DA was believed to be closely connected with gait disorders in PD, and even
could be a bad prognostic sign in terms of FOG development (Kim et al., 2018; Djaldetti
et al., 2018). Moreover, the rs393795 SNP (located on intron 4) falls within the same
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Figure 2 Interaction analysis of groups and genotypes. Significant interaction of groups and genotypes
was found in right ITG by two-way factorial analysis of covariance (ANCOVA), adjusting for age and gen-
der. The color bar presented the F values from ANCOVA. Abbreviations: ITG, inferior temporal gyrus; R,
right.

Full-size DOI: 10.7717/peerj.7957/fig-2

Figure 3 Correlation analysis between gait assessments and ReHo values in right ITG among PD-AA
carriers. ReHo values in right ITG affected by the interaction between groups and genotypes, were nega-
tively associated with TMT gait subscale scores (r =−0.554, p= 0.026) (A) and positively related to FOG-
Q scores (r = 0.581, p = 0.018) (B) in PD individuals carrying AA. The associations were investigated by
Spearman’s correlation. Abbreviations: ReHo, Regional homogeneity; PD, Parkinson’s disease; ITG, infe-
rior temporal gyrus; TMT, Tinetti Mobility Test; FOG-Q, Freezing of Gait Questionnaire.

Full-size DOI: 10.7717/peerj.7957/fig-3
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linkage disequilibrium cluster with rs460000 SNP (located within the exon 4-intron 3
boundary) (Cartegni, Chew & Krainer, 2002), which has been associated with frontostriatal
response inhibition circuits (Cummins et al., 2012). Consistent with this, our study showed
that the SNP AA genotype effected the brain functional activation of right SMA and IFG
in all individuals. Furthermore, the right SMA and IFG, involved in frontal cortico-basal
ganglia motor network, had been shown to participate in the functional organization of gait
initiation or FOG phenomenon (Bartels & Leenders, 2008). Thus, we hypothesized that AA
genotype could affect gait in human via altering the spontaneous activity of right SMA and
ITG. However, no significant differences were discovered in gait associative scales between
PD-AA and PD-CA/CC groups. These findings perhaps implied that the effects of the SNP
polymorphisms were compensated and consequently not sufficient to cause significant
different clinical manifestations. In good agreement with this, abnormal increased ReHo
values in right SMA and IFG were observed in AA carriers compared with CA/CC carriers
in our study. Alternatively, the SLC6A3 rs393795 allelic variant might just play a regulatory
instead of causative role in PD patients with gait disorders, in other words, not anyone
with allelic variation will markedly develop or aggravate PD gait dysfunction. Consistent
with this, SLC6A3 rs393795 variant, falling within the same linkage disequilibrium cluster
with two of the SNPs (rs458609, rs457702) and with rs460000 SNP, was merely indicated
to participate in DAT translations by affecting alternative splicing of the DAT to some
extend (Cartegni, Chew & Krainer, 2002; Talkowski et al., 2010). However, these didn’t
represent our study worthless. On the contrary, it could deepen our understanding of
genetic mechanisms underlying gait disorders in PD, contributing to more effective and
precise diagnosis and treatments in the future.

Since both PD and SLC6A3 rs393795 variant had effects on the dysfunction of frontal
cortico-basal ganglia motor pathway, their interactions might lead to greater alterations in
related brain regions. In good agreement with this, our interaction investigation revealed
that AA carriers showed aberrant increased ReHo signals in right ITG in comparison with
CA/CC carriers in PD groups. ITG was one of the key hubs in ventral visual pathway
(Weller, 1988), which was characterized to support the processing of object quality or
identity (Kravitz et al., 2013) and mainly dominated by right-hemisphere (Woolley et al.,
2010). It was worth noting that a large amount of evidence indicated the effectiveness of
various visual aids in compensating for gait difficulties in PD (Davidsdottir, Cronin-Golomb
& Lee, 2005; Lee et al., 2012). Moreover, more and more literature demonstrated that gait
was not only an automated motor activity, but also one increasingly dependent on external
information, especially visual cues (Uc et al., 2005; Sage & Almeida, 2010). Additionally,
dysfunction of right occipitotemporal ‘‘visual’’ networks was also detected in PD patients
with gait deficits from different research populations (Tessitore et al., 2012; Wang et al.,
2016). Hence, abnormal increased ReHo signals in right ITG observed in PD-AA group
could be due to its compensatory activation when PD patients had a worse trend of gait
disorders caused by a worse dysfunction of frontal cortico-basal ganglia motor network.
Consistently, our further correlation analysis displayed that ReHo values in right ITG
were negatively related to TMT gait subscale scores and positively associated with FOG-Q
scores in PD-AA group. TMT gait subscale and FOG-Q both showed excellent validity and
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reliability for the valuation of different gait characteristics and had been widely used in PD
researches (Kegelmeyer et al., 2007; Tambasco et al., 2015; Park et al., 2018; Li et al., 2018).
Besides, the lower scores of TMT gait subscale represents more serious gait deficits, in
contrast, the higher scores of FOG-Q means more serious FOG. Taken together, SLC6A3
rs393795 AA genotype might have a tendency to aggravate the severity of gait dysfunction
in PD by altering the SMA and IFG spontaneous activity, and ultimately lead to the
compensatory activation of right ITG.

Nevertheless, AA homozygous of SLC6A3 rs393795 was only previously reported to
protect the elderly from delirium possibly by reducing the concentrations of DA in the
brain (van Munster et al., 2010a; van Munster et al., 2010b). Meanwhile, the combination of
10R/10R ( rs28363170) and A carrier ( rs393795), of the SLC6A3 gene could reduce the risk
of levodopa-induced dyskinesias (LIDs) during long-term therapy with levodopa (Purcaro
et al., 2019). As we all know, LIDs are characterized by dramatically increased synaptic
DA concentrations in brain (Fuente-Fernandez et al., 2004). Thus, SLC6A3 rs393795 AA
genotypemight be involved in the pathophysiologicalmechanisms underlying gait disorders
in PD by reducing DA concentrations in frontal cortico-basal ganglia motor regions, such
as SMA and ITG, and eventually cause compensatory activation of visual regions including
right ITG. However, decreased ReHo values in right ITG were found in HC-AA compared
with HC-CA/CC. Without the effects of disease, we preferred that decreased ReHo values
of right ITG in HC-AA might be mainly caused by genetic polymorphisms. However, the
deeper mechanism remains to be studied.

There were other limitations of our research. First, our research sample size is relatively
small, i.e., small number genetic subgroups in the PD and HC samples, which may limit
our ability to further classify genotypes and explore minor brain functional alterations
related to SLC6A3 rs393795. Second, the minor allele frequencies (MAF) of rs393795 (C)
was 0.44 in our study, in good agreement with previous Chinese studies (Shang & Gau,
2014; Chu et al., 2019). Because the genetic polymorphisms are frequently different among
the races, additional studies further investigating the SNP in PD are needed to clarify its
role in different ethnicities. Third, although we had taken some measures to reduce the
pharmacological effects on neural activity, we had to admit that the long-term effect of
dopaminergic agonists could not be ruled out. Fourth, our study was conducted when PD
patients were at rest and without dopaminergic treatments, more realistic studies should
be performed, such as during a task or dopaminergic treatments. Fifth, we only investigate
SLC6A3 rs393795 in the present study, additional further and deeper studies are needed,
such as gene-gene interactions. Finally, although TMT, FOG-Q and TUG tests were used
to measure gait in our study, they could not fully assess the subtle gait characteristics that
might be affected in PD, therefore more detailed assessments should be applied in future.

CONCLUSIONS
With imaging genetics, our findings suggested that SLC6A3 rs393795 allelic variation
might have a trend to aggravate the severity of gait disorders in PD patients by altering the
SMA and IFG function, and ultimately result in compensatory activation of right ITG. It
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could provide us with a new perspective for exploring deeply genetic mechanisms of gait
disturbances in PD.
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