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ABSTRACT

As the most prevalent internal modification in eu-
karyotic RNAs, N6-methyladenosine (m6A) has been
discovered to play an essential role in cellular prolif-
eration, metabolic homeostasis, embryonic develop-
ment, etc. With the rapid accumulation of research
interest in m6A, its crucial roles in the regulations
of disease development and drug response are gain-
ing more and more attention. Thus, a database of-
fering such valuable data on m6A-centered regula-
tion is greatly needed; however, no such database
is as yet available. Herein, a new database named
‘M6AREG’ is developed to (i) systematically cover,
for the first time, data on the effects of m6A-centered
regulation on both disease development and drug re-
sponse, (ii) explicitly describe the molecular mech-
anism underlying each type of regulation and (iii)
fully reference the collected data by cross-linking to
existing databases. Since the accumulated data are
valuable for researchers in diverse disciplines (such
as pathology and pathophysiology, clinical labora-
tory diagnostics, medicinal biochemistry and drug
design), M6AREG is expected to have many impli-
cations for the future conduct of m6A-based regula-

tion studies. It is currently accessible by all users at:
https://idrblab.org/m6areg/

GRAPHICAL ABSTRACT

INTRODUCTION

As the most prevalent internal modification in eukaryotic
RNAs, N6-methyladenosine (m6A) is widely known to play
essential roles in cellular proliferation, metabolic homeosta-
sis, embryonic development, and so on (1–6). With the rapid
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increase in research interest in m6A, its crucial roles in the
occurrence and progression of various diseases, including
cardiovascular disease (7), influenza (8), gastroenteritis (9),
liver fibrosis (10), diabetes (11) and cancer (12), are gaining
more and more attention. Moreover, various types of m6A
regulation are found to affect the responses of a drug in its
corresponding disease via mediating the expression of tar-
get genes (13–15). In other words, the regulation of disease
development and drug response by m6A has emerged as one
of the most promising directions in recent years (7–19), and
various studies have been conducted to uncover the molecu-
lar mechanism underlying regulation (mediated by the regu-
lators of methyltransferase (writers), demethylase (erasers)
and m6A-binding proteins (readers) (20–22).

The above-mentioned studies have accumulated valuable
data for researchers in the diverse directions of (i) pathol-
ogy and pathophysiology clarifying the essential role of
m6A modifications in the occurrence/progression of dis-
ease (23–26), (ii) clinical laboratory diagnostics promot-
ing the discovery of new therapeutic targets (27–31) and
diagnostic/prognostic biomarkers (32–37) and (iii) medic-
inal biochemistry and drug design facilitating the discov-
ery of m6A’s mechanisms in determining drug sensitivity
and the design of new drug and drug combinations (38–
42). Therefore, it is essential to have a database that provides
data on the effect of m6A-centered regulation on disease de-
velopment and drug response, together with the molecular
mechanisms underlying each type of regulation.

So far, a variety of popular m6A-related databases
have been developed (43–52). Some focus on describing
the genome-wide landscape of RNA modification, vari-
ants and a variant’s effect on post-transcriptional regu-
lation [such as RMDisease (43), RMBase (44) and RM-
Var (45)]. Some others aim to show the m6A modifica-
tion sites of RNAs based on sequencing experiments and
transcriptome-wide prediction [such as m6A-Atlas (46),
WHISTLE (47), m6Avar (48) and SRAMP (49)]. The re-
maining databases provide the validated or predicted tar-
gets of m6A regulators based on low-/high-throughput
studies [such as MeT-DB (50) and M6A2Target (51)]. The
majority of these existing databases have been frequently
accessed and highly cited due to their considerable contri-
butions to the needs of research communities (44–50). How-
ever, to date, there is no database available to provide data of
m6A-centered regulation of disease development and drug
response. Moreover, such a database is needed to systemat-
ically describe the molecular mechanisms underlying each
type of regulation.

Herein, a database named ‘m6A-centered regulations of
disease development and drug response (M6AREG)’ is
therefore introduced. First, a systematic literature review on
m6A’s regulation of disease development and drug response
was conducted. The development of various diseases and
the response data of drugs that were reported to be reg-
ulated by the corresponding m6A were systematically col-
lected into the M6AREG database. Second, the molecular
mechanisms underlying each type of regulation discussed
above were then retrieved from the literature. The target
RNAs regulated by the identified m6A regulators and their
corresponding pathways were systematically collected. In

particular, their regulation profiles (including m6A mod-
ification pattern, up-/down-regulation of expression and
the cell processes regulated) were provided. Finally, because
some xenobiotics were reported to interact with and medi-
ate a particular m6A regulator (53–55), a number of xeno-
biotics regulating disease development and drug response
through the mediation of certain m6A regulators were also
provided. M6AREG data were also fully cross-linked to
available databases. Since the data provided in M6AREG
(https://idrblab.org/m6areg/) are valuable for diverse direc-
tions, it is expected to have great implications for the future
conduct of m6A-based regulation studies.

FACTUAL CONTENT AND DATA RETRIEVAL

Data collection for m6A-centered regulation

Data on m6A-centered regulation of disease developments
and drug responses were collected based on the following
procedure. First, a large number of diseases, drugs and the
m6A regulators were retrieved from ICD-11 (56), Drug-
Bank (57), TTD (58), NCBI Gene (59), UniProt (60) and
HGNC (61). Second, the data about m6A-centered regula-
tions of disease development and drug response were col-
lected by a comprehensive literature review in PubMed (59)
using the keywords: ‘m6A + disease’, ‘m6A + drug’, ‘m6A
Regulator Name + disease’, ‘m6A Regulator Name + drug’,
‘m6A + Disease Name’, ‘m6A + Drug Name’, ‘Regulator
Name + Disease Name’, ‘Regulator Name + Drug Name’,
etc. As a result, the development of 165 classes of diseases
(such as diabetes, lung cancer and rheumatoid arthritis)
and the response data of 70 drugs (such as cisplatin, so-
rafenib and tamoxifen) which were regulated by 31 regula-
tors (such as FTO, METTL3 and ALKBH5) were collected
in M6AREG. Third, all identified publications were re-
viewed and their detailed regulation information was manu-
ally collected, which included cell lines, animal models, tar-
gets and pathways. In addition, a total of 93 xenobiotics that
regulated disease development and drug response via affect-
ing m6A regulators were also collected.

The m6A regulators and their biological function

The m6A modification is an important RNA methylation
without affecting the nucleotide sequence, which is achieved
by m6A regulators (14). Such regulators include writers (e.g.
METTL3, METTL14 and METTL16), erasers (e.g. FTO
and ALKBH5) and readers (e.g. YTHDC1-2, IGF2BP1-3
and SND1), which have been reported to play key biological
roles in many epigenetic directions, such as the mRNA life
cycle and the cellular/developmental/disease process (62).

The biological function of writers, erasers and readers. As
shown in Figure 1, m6A methyltransferase complexes are
composed of the catalytic core METTL3, the RNA sup-
port element METTL14, the stabilizer WTAP and various
adaptors [e.g. RBM1515B, ZC3H13, GBLL1 and VIRMA
(63,64)]. m6A modifications are reversible and dynamic,
since they can be removed by erasers, such as FTO and
ALKBH5. Both writers and erasers regulating the level of
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Figure 1. Function and corresponding mechanism of m6A writers and erasers in various cellular processes. The m6A modification is reversible and dynamic,
which can not only be introduced into various target RNAs using the core methyltransferase complex (METTL3/METTL14/WTAP) and other adaptors,
but can also be removed by the demethylases. These m6A-regulated RNAs which are involved in disease occurrence/progression and drug response were
collected in M6AREG.

a target’s m6A modification by methylation or demethy-
lation play a critical role in the development of different
classes of diseases (such as cancer, diabetes and rheuma-
toid arthritis) and drug response by targeting both cod-
ing and non-coding RNA (65–68). Taking the oscillatory
shear stress-induced proatherogenic process as an example
(shown in Figure 2), the expression of a writer METTL3
is up-regulated, which induces METTL3-dependent m6A
hypermethylation of two targets (NLRP1 and KLF4), and
then results in the elicitation of atherogenic responses, such
as inflammation and cell adhesion (69). Another example of
a writer is METTL14, which is reported to be remarkably
down-regulated in trastuzumab-resistant cancer cells com-
pared with their parental HER2-positive breast cancer cells.
Some mechanistic studies reveal that it decreases the expres-
sion of FGFR4 by m6A modification (as shown in Figure
2), and FGFR4 could phosphorylate GSK-3� and stim-
ulate �-catenin/TCF4 signaling to drive anti-HER2 resis-
tance (70,71). Moreover, the first identified m6A demethy-
lase (eraser), FTO, is found to play critical roles in leukemo-
genesis and drug response. It promotes leukemic oncogene-
mediated cell transformation and leukemogenesis, and in-
hibits all-trans-retinoic acid-induced leukemia cell differen-
tiation. Mechanistic studies show that FTO performs its
oncogenic role by reducing the m6A level in mRNA tran-

scripts of ASB2 and RARA, and then decreasing their ex-
pression (72).

Once RNA has been m6A methylated, the m6A writ-
ers (including YTHDFs, YTHDCs, IGF2BPs, eIF3, HN-
RNPs and FMRPs) could bind to the methylation site and
play a specific role in RNA nuclear export, stabilization,
splicing, translation and decay (73,74). As shown in Fig-
ure 3, due to such characteristics, great diversity in the
m6A modification pattern and expression regulation (up-
/down-) toward target RNAs was exhibited, which resulted
in different regulation mechanisms in diseases and drug re-
sponses (75,76). As illustrated in Figure 2, the m6A reader
HNRNPA2B1 is up-regulated in multiple myeloma and
negatively correlated with a favorable prognosis. It pro-
motes multiple myeloma progression (such as promoting
cell proliferation and inhibiting cell apoptosis) by stabiliz-
ing the mRNA of ILF3 and AKT3 (77). Another example
of a reader is YTHDF2, which causes the decay of PD-1,
CXCR4 and SOX10, and then sensitizes melanoma cells to
interferon � and anti-PD-1 (76). As a subtype of YTHDF,
YTHDF1 mediates m6A-increased translation of Snail that
is a key transcription factor of the epithelial–mesenchymal
transition, which has been considered as a negative prog-
nostic factor for the overall survival rate of liver cancer
patients (78).
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Figure 2. Representative examples describing the roles and corresponding molecular mechanisms of each m6A regulator in disease development and drug
response. The m6A writer METTL3 can induce hypermethylation of NLRP1 and KLF4, and then up-regulate NLRP1 while downregulating KLF4 to
elicit an atherogenic responses such as inflammation and cell adhesion. METTL14 decreases FGFR4 expression which could phosphorylate GSK-3�
and stimulate �-catenin/TCF4 signaling to drive anti-HER2 resistance. FTO, as an eraser, promotes leukemogenesis and inhibits all-trans-retinoic acid-
induced leukemia cell differentiation via reducing the m6A level in mRNA transcripts of ASB2 and RAR. The m6A readers, HNRNPA2B1, YTHDF1
and YTHDF2 individually promote multiple myeloma progression via stabilizing ILF3 mRNA, upregulating key transcription factors of the epithelial–
mesenchymal transition in cancer via increasing translation of Snail, and sensitize melanoma cells to interferon � and anti-PD-1 by causing the decay of
PD-1, CXCR4 and SOX10.

The description and statistics of regulators in M6AREG.
For each m6A regulator shown in M6AREG, the de-
tailed descriptions on its general information were pro-
vided online, which included regulator name, synonyms,
gene name, sequence, protein family, biological function,
regulator type, a full list of potential target genes of the reg-
ulator and other molecular information associated with the
external links to NCBI Gene (59), UniProt (60), etc. The po-
tential targets for a certain m6A regulator were discovered
based on the transcriptomic studies collected from GEO
(79), such as RIP seq, CLIP-seq, eCLIP-seq, PARCLIP-
seq, iCLIP-seq and RNA-seq. For each regulator and its
targets, detailed information such as gene name, experimen-
tal method, fold change, cell line and the external links to
GEO (79), NCBI Gene (59), UniProt (60), etc. was also de-
scribed. A diagram of the mechanism of each m6A regulator
was also provided in the regulator page of the M6AREG

database, which included representative information of its
role in m6A modification, interactions with other regula-
tors, target genes, etc. A full list of experimentally validated
disease development and drug responses that were mediated
by this regulator was provided, and detailed information,
such as the m6A regulation pattern, in vivo/in vitro model
and pathway, was also provided.

All in all, 14 m6A writers were reported to be involved
in the development of 57 diseases by targeting 317 RNAs
in 469 cell lines, and two m6A erasers were found to par-
ticipate in the development of 49 diseases by targeting 164
RNAs in 335 cell line models. The studies on mechanisms
showed that m6A writers and erasers regulated different cel-
lular processes (such as the cell cycle and immunity) by reg-
ulating 89 and 64 signaling pathways (such as apoptosis,
mTOR signaling and nucleotide excision repair), respec-
tively. These regulators greatly affected the efficacies of a
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Figure 3. Different roles and mechanisms of m6A readers in various cell processes. Once the RNAs have been modified, different m6A writers will bind to
the modification sites and perform diverse functions (RNA nuclear export, stabilization, translation, splicing and decay), which results in the up-/down-
regulation of target genes. All RNAs that are involved in the regulation of disease occurrence/development and drug response of m6A writers were collected
and explicitly described in M6AREG.

variety of drugs (such as cisplatin and sorafenib). More-
over, 15 m6A readers were identified to participate in the
development of 41 diseases by targeting 217 RNAs in 391
cell lines, which were actively involved in 73 signaling path-
ways and significantly affected the responses of a variety of
drugs.

For an m6A-based database, it is key to provide a quanti-
tative description on the up-/down-regulation of the m6A
target genes. The RNA-seq data were therefore incorpo-
rated into this newly developed database. First, a systematic
review was conducted in GEO (79) to retrieve the regulator-
related RNA-seq data by searching keywords such as ‘m6A
Regulator Name’, ‘m6A Regulator Name + RNA sequenc-
ing’, ‘m6A Regulator Name + RNA seq’, and so on. The
comparative data that studied the gene expression varia-
tions by knocking out, knocking down or overexpressing
certain regulators were collected, which led to a total of 236
GEO datasets. Second, these newly collected datasets were
carefully reviewed, and those datasets without a clearly
stated data pre-processing method or of <2 samples for the
control/case group were excluded from our analysis (80,81).
As a result, a total of 144 datasets were identified for subse-
quent differential expression analyses. Third, the ‘raw read

count’ and ‘TPM’ datasets were analyzed using the DESeq2
and limma packages, respectively (82–84), and the ‘RPKM’
and ‘FPKM’ datasets were transformed to ‘TPM’ and then
analyzed using the limma package (85). The genes identified
as significantly differentially expressed (fold change >1.5
and P-value <0.05) were considered as regulated by the
studied regulator (86,87). Finally, the differential expres-
sion patterns of 33 889 target genes that were regulated by
at least one regulator were collected, and the quantitative
description of such a regulated expression patten was pro-
vided in the regulator page and target page of the M6AREG
database (as illustrated in Figure 4). Detailed information
such as experimental conditions, cell line and species was
also described.

The m6A-centered regulation of disease development

Dynamic m6A modification is reported to be involved
in multiple biological processes by affecting gene expres-
sion of multiple levels including tissue development, self-
renewal and differentiation of stem cells, circadian rhythm,
heat shock, metabolism, metastasis and sex determination
(15). With the advances in technology, increasing evidence
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Figure 4. Quantitative description of the regulation pattern of target genes by m6A regulators. For a target gene and corresponding m6A regulator, the
differential gene expression of the target gene in cells with treatment (knockout, knockdown and overexpression) and control cells was provided in the form
of a bar chart and boxplot together with fold change and P-values, which were based on the RNA-seq data collected from the GEO. Detailed information
such as cell line, species and experimental condition was also explicitly described. Pink, target gene expression of the cells with treatment; blue, target gene
expression of the control cells.

showed that m6A modification plays crucial roles in the
occurrence/progression of various disease (7–12). Recent
literature indicated that m6A modification could be a new
molecular tool to understand the occurrence and progres-
sion of diseases, which is regulated by many m6A regula-
tors (24,88,89), and an increasing number of m6A regula-
tors and their corresponding target gene were identified to
have clinical implications in either diagnosis/prognosis or
therapy for various diseases (24,90,91).

To obtain such m6A-centered regulation data, the
disease-specific regulation data of both molecules and path-
ways were systematically reviewed and explicitly described
in M6AREG. A total of 165 diseases were identified to be
regulated by m6A modification according to the latest Inter-
national Classification of Diseases (56). In particular, a to-
tal of 747 RNA molecules (e.g. mRNA, lncRNA, miRNA
and cirRNA) and 78 pathways (physiological/pathological)
that were regulated by 30 regulators (e.g. METTL3, FTO
and YTHDF2) were collected. First, general information
on each disease related to an m6A regulator and target
genes (such as autophagy-related protein, cyclin-dependent
kinase, microRNA and lncRNA) were provided. Second,
as illustrated in Figure 5, the involved cellular processes
of each target gene were described, which included cell

growth, cell cycle, cell migration, cell proliferation and
macrophage infiltration. Third, the regulation mechanisms
of target genes in m6A-centered disease responses were also
collected, which included the m6A regulators involved, up-
/down-regulation of target genes and regulated pathways
(e.g. PI3K–Akt signaling, TNF signaling and JAK–STAT
signaling). Such data on m6A-centered regulation were es-
sential for understanding of the mechanism underlying tar-
get genes in m6A-centered disease response. Fourth, besides
the involved cellular processes and regulation mechanism
data, in vitro and in vivo disease models were also illus-
trated in M6AREG. As described in Figure 5, a total of
200 cell lines of various diseases together with 23 model or-
ganisms were collected and provided in this newly devel-
oped database. Fifth, the comprehensive information for
each target gene can be accessed by clicking the ‘Target
Info’ button, which includes target name, synonyms, gene
name, chromosomal location, functions and links to exist-
ing databases (59–61). Meanwhile, the comprehensive data
of m6A regulators can be accessed by clicking the ‘Regu-
lator Info’ buttons, and both the pathways altered by the
m6A regulators and the corresponding in vitro models were
directly linked to the KEGG (92) and Cellosaurus (93)
databases.



Nucleic Acids Research, 2023, Vol. 51, Database issue D1339

Figure 5. Regulation of target genes and pathways by m6A regulators in disease occurrence and progression. The detailed mechanism underlying m6A-
centered disease responses is shown, which included a summary of disease responses, the m6A regulators involved, up-/down-regulation of target genes,
regulated pathways, cellular processes and in vitro/in vivo disease models used. Extended descriptions can be accessed by clicking the corresponding
differently colored buttons.

The m6A-centered regulation of drug responses

In the course of drug therapy, the clinical treatment effect
on a patient can be seriously affected by the lack of alter-
native drugs and mutations in drug response-related genes
(94). An increasing number of studies showed that the m6A
modification plays a vital role in drug response of various
diseases, which could be regulated by various m6A regu-
lators and multiple target genes modulated by the same
regulator (15,73,95). The m6A regulators altered drug re-
sponses by modulating drug–target interaction and drug-
mediated cell death signaling. On the one hand, m6A mod-
ification interfered with drug efficacy that was mediated by
a multidrug efflux transporter, drug-metabolizing enzyme
and drug target (96–98). On the other hand, alterations of
the m6A modification can inhibit drug-mediated cell death
by inducing DNA damage and modulating its repair capac-

ity (73). A number of studies indicated that m6A regulators
or their corresponding target genes have potential as drug–
effect biomarkers in disease (99,100), and diverse xenobi-
otics could bind to m6A regulators and modify their activ-
ities, resulting in regulation of disease progression or drug
response (53,54).

As shown in Figure 6, a total of 70 drugs were iden-
tified to be regulated by 21 regulators, which were veri-
fied by in vitro/in vivo experiments. General information
on each drug [such as drug name, synonym, clinic sta-
tus, structure, formula, International Chemical Identifie
(InChI) and InChIKey] is provided, and a list of m6A tar-
get genes associated with this drug response are described
in M6AREG. For each m6A target gene, the summary of
the target-regulated drug response, response disease, in-
volved regulator, target regulation, pathway response, cel-
lular process and in vitro/in vivo models are also described
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Figure 6. A typical page describing the m6A-centered regulations of drug responses. General information on the drug and its m6A targets are shown.
For each target, the experimentally validated mechanisms are explicitly described. The regulation data are linked to their cell line or animal models, and
extended information (such as each involved disease, target gene and regulated pathway) can also be retrieved by clicking the corresponding differently
colored buttons.

(illustrated in Figure 6). Moreover, the additional descrip-
tion of each target, m6A regulator and disease relevant to
this drug can be accessed through clicking ‘Target Info’,
‘Regulator Info’ and ‘Disease Info’, respectively. All in all,
a total of 146 experimentally verified targets, 36 pathways
(physiological/pathological), 46 cellular processes, 269 cell
lines and 75 in vivo animal models were found to be in-
volved in identifying drug response alterations which were
mediated by m6A modification, which are all provided in
M6AREG. Based on those data provided on M6AREG’s
drug page, the user can readily retrieve a list of m6A tar-

gets that were involved in the therapeutic effects of the cor-
responding drug described.

Moreover, it is well known that some of the leading causes
of drug efficiency include the mutation/altered expression
of target proteins, deregulated drug transporters and altered
drug metabolism, and the m6A regulators are reported to
play a vital role in affecting the drug response by acting on
the related molecules (73,101–105). Thus, the potential drug
responses mediated by a specific m6A regulator are collected
into M6AREG. First, three types of critical proteins (drug
targets, transporters and metabolic enzymes) were identi-
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fied from experimentally verified targets of m6A regulators.
Second, the drugs targeting these three types of critical pro-
teins were collected. As a result, a total of 4258 drugs includ-
ing 593 approved drugs were found to interact with these
types of targets that were regulated by m6A modification.
All drugs can be accessed at the bottom of the regulator
page, which provides the drug name, drug clinical status and
mechanism leading to the drug response. Detailed informa-
tion can be retrieved by clicking the button ‘Drug Info’.

M6AREG data standardization, access and retrieval

To facilitate users accessing and analyzing the M6AREG
data, the collected raw data were carefully cleaned up and
then systematically standardized. The standardizations in-
cluded (i) all M6AREG diseases were standardized based
on the latest version of the International Classification of
Disease (56); (ii) all genes, RNAs, proteins, pathways and
in vitro models in M6AREG were standardized and cross-
linked to popular databases (such as NCBI Gene, HGNC,
miRbase, Ensembl, UniProt, KEGG and Cellosaurus); and
(iii) M6AREG drugs were cross-linked to a variety of well-
established databases (such as TTD, PubChem and Drug-
Bank). All data in the M6AREG database can be viewed,
accessed and downloaded online without a login require-
ment by all users.

CONCLUSION

Epigenetic modifications (e.g. histone modifications, DNA
methylation and RNA modifications) regulate gene ex-
pression without changing the DNA sequence and play
pivotal roles in diseases and drug responses (106–108).
RNA methylations are considered as a significant epige-
netic modification, and those widely studied include N6-
methyladenosine (m6A), 2′-O-methyladenosine (m6Am),
N1-methyladenosine (m1A), 5-methylcytosine (m5C) and
pseudouridine (�), whose dynamic changes can affect the
fate of target RNAs and play critical roles in various biopro-
cesses. Similar to m6A modification, most of these methy-
lation types are modulated by three types of regulators
(writer, eraser amd reader), and play an important role in af-
fecting the stability, translation, alternative splicing, nuclear
export and secondary structure of RNAs. Moreover, dif-
ferent methylation types show diversity in preferred target
RNAs and modification sites (109–111). Since the methyla-
tions account for >50% of 170 different types of naturally
occurring modifications in RNAs (110), it is necessary to
develop a system-wide method/tool to facilitate their effi-
cient detection, as well as to explore the molecular mecha-
nism of RNA methylation in target RNAs and their corre-
sponding roles in disease development and drug response.

All in all, the M6AREG is unique in (i) providing the
data of m6A-centered regulation on disease development
and drug responses, (ii) explicitly describing the molecu-
lar mechanisms underlying each regulation and (iii) fully
referencing the collected data by cross-linking to existing
databases. Since the accumulated data in the M6AREG are
valuable for researchers in diverse disciplines such as pathol-
ogy and pathophysiology, clinical laboratory diagnostics,
and medicinal biochemistry and drug design, this new

database is expected to have great implications for the future
conduct of m6A-based regulation studies. M6AREG is now
freely accessible and fully downloadable by all users without
any login requirement at: https://idrblab.org/m6areg/
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