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Abstract: Natural products (NPs) are evolutionarily optimized as drug-like molecules and remain
the most consistently successful source of drugs and drug leads. They offer major opportunities for
finding novel lead structures that are active against a broad spectrum of assay targets, particularly
those from secondary metabolites of microbial origin. Due to traditional discovery approaches’ limi-
tations relying on untargeted screening methods, there is a growing trend to employ unconventional
secondary metabolomics techniques. Aided by the more in-depth understanding of different biosyn-
thetic pathways and the technological advancement in analytical instrumentation, the development
of new methodologies provides an alternative that can accelerate discoveries of new lead-structures
of natural origin. This present mini-review briefly discusses selected examples regarding advance-
ments in bioinformatics and genomics (focusing on genome mining and metagenomics approaches),
as well as bioanalytics (mass-spectrometry) towards the microbial NPs-based drug discovery and
development. The selected recent discoveries from 2015 to 2020 are featured herein.
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1. Introduction

Natural products (NPs) originating from plants, animals, marine organisms, and
particularly from microbial sources continue to inspire novel discoveries in chemistry [1],
biology [2], and medicine [3]. They possess immense structural and chemical diversity with
a wide variety of biological properties. Most pharmacologically relevant antimicrobial,
antiviral, anti-inflammatory and analgesic, and antitumor agents and approved small
molecule drugs have either been NPs, their derivatives, synthetic compounds with NP
pharmacophore, or their synthetic mimics. Notably, more than half of the new small
molecule drugs have been developed from microbial NPs over the past decades [4,5].

Current interest in the discovery of NPs, especially from microbial sources, is mostly
due to the failure of synthetic libraries to generate the expected number of developmental
drug candidates in the pharmaceutical industry during the past 20–30 years. Additionally,
the emergence of clinically relevant pathogens becoming increasingly resistant to currently
used anti-infectives, i.e., antibiotics, warrants the search for novel bioactive metabolites in
the field of microbial NPs [5–9]. However, finding novel NPs has become more difficult as
the rediscovery of known NPs is still an increasing challenge. A high rate of the discovery
of NPs was yielded by classical methods that recover only a fraction or even none of the
desired secondary metabolites. The sharp decline in discoveries arose with limitations of
the traditional top-down screening approaches. Those approaches, including bioassay-
and chemical signature-guided isolations, have largely been exhausted and may no longer
be capable of delivering novel lead compounds [10].

In the search for alternative methods, advancements made in bioinformatics and chemi-
cal analysis might hold the key to lead a renaissance in the field of microbial NP discovery.
The growing knowledge of different biosynthetic machinery, drug targets, and resistance
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mechanisms has served as a launch platform to a new era in the methodological approach
for drug discovery [11,12]. Given the rising limitations imposed by uncultivable strains
and silent gene clusters, the integrative approach of bottom-up targeted screening, em-
ploying advanced analytical methods and guided by bioinformatics analysis, provides a
promising alternative for unlocking the microbial metabolomes on an unprecedented scale.
This approach eventually leads to disclosing the potential of microbial NP discovery [13–15].
This mini-review highlights in particular some of the most recent advances in microbial NP
discoveries as well as their discovery examples in the last five years achieved by the use
of genomic and metabolomic approaches. In terms of this, a genomic strategy uncovers
the large number of microbial clustered genes (biosynthetic gene clusters) that encode the
proteins responsible for the biosynthesis of a new NP that is undetected under standard
fermentation conditions, while a metabolomics method embraces the global measurement of
small-molecule metabolites from a microbe.

2. Bioinformatics- and Genomics-Driven Discovery

Genomics and metagenomics (which has also been described as environmental ge-
nomics, relating to the genomic DNA from an environmental sample) revealed the remark-
able biosynthetic potential of microbial NPs and their vast chemical inventory that can be
prioritized and systematically mined for novel or new secondary metabolites with desir-
able bioactivities. The growing application of bioinformatics into a standard practice in
discovery projects has varied approaches to identify novel lead structures [16]. Herein, ad-
vances in genomics-driven NPs discovery covering bioinformatics-guided identification of
biosynthetic gene clusters (BGCs) in (meta)genomes are briefly highlighted. Additionally,
the application of innovative technology in situ cultivation in novel compound discovery
is also included.

2.1. Genome Mining Approach

Fueled by the fast development of genome sequencing technologies, genome mining
evolved during the last decades and is currently an essential part of drug discovery efforts.
The genome mining approach detects and analyzes the BGCs of the chemical compounds
automatically (computationally) and subsequently connects those genes to molecules. Fur-
thermore, the significance of this approach associated with other techniques leading to drug
discovery, especially of microbial NP origin, has been extensively described elsewhere [17–
20]. Although the genome mining approach showcases the full biosynthetic potential of a
strain, it is not very worthwhile without linking the predicted secondary metabolite BGCs
to their product. Moreover, to take full advantage of NP diversity, BGCs must be priori-
tized by product novelty or function. BGCs hold the key information to understanding
and predicting a specific or a group of related metabolites. By identifying open reading
frames (ORFs) in a gene sequence, one can set the borders of the protein-encoding genes,
and therein the protein sequence can be predicted through bioinformatics tools. As in some
cases, bioinformatics can reveal BGCs with high similarities as a fast evaluation for target
novelty; consequently, the time invested with computational work would save extensive
resources and efforts only to re-isolate a previously described compound [15,20–23].

As mentioned above, progressions made in bioinformatics are mainly owed to ad-
vancements in genomics. Hence, the wealth of genomic information has led to the develop-
ment of multiple bioinformatics-guided genome mining tools that examine this genomic
data to detect and annotate potential BGCs automatically. Nevertheless, the realization of
the full potentials of bioinformatics is bound to improvements in information algorithms
towards knowledge of NP biosynthetic machinery (e.g., ribosomally synthesized and
post-translationally modified peptides/RiPPs and non-ribosomal peptide synthase/NRPS,
and polyketide synthase/PKS) [24–27]. Several widely used online platforms are still in
active development, as listed in Table 1. Many of these selected tools have been extensively
reviewed [21,28–34].
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Table 1. Selected latest bioinformatics tools dedicated to genome mining NPs (2015–2020).

Platform Description Web Server URL Reference

BIG-FAM

Global biosynthetic
space of microbial

BGC families
database

https://bigfam.
bioinformatics.nl,

accessed on 10
February 2021

Kautsar et al. [35]

MIBiG 2.0

Minimum
information on

biosynthetic gene
clusters (MIBiG)

standard respiratory
of characterized

BGCs

https://mibig.
secondarymetabolites.

org, accessed on 10
February 2021

Kautsar et al. [36]

antiSMASH 5.0
Automated pipeline
to mine secondary
metabolite BGCs

https://antismash.
secondarymetabolites.

org, accessed on 10
February 2021

Blin K et al. [37]

PRISM 4
Automated pipeline
to mine secondary
metabolite BGCs

http://prism.
adapsyn.com,
accessed on 10
February 2021

Skinnider et al. [38]

BAGEL 4 Mining of RiPP and
bacteriocins BGCs

http://bagel4
.molgenrug.nl,
accessed on 10
February 2021

Van Heel et al. [39]

BiG-SPACE -
CORASON

Biosynthetic gene
similarity clustering

and prospecting
engine

https:
//bigscape-corason.

secondarymetabolites.
org, accessed on 10

February 2021

Navarro-Muňoz et al.
[40]

ARTS

Mining of BGCs on
the basis of the
prediction of
antimicrobial

resistance genes that
are part of BGCs

https://arts.
ziemertlab.com,
accessed on 10
February 2021

Alanjary et al. [41]

CASSIS/SMIPS

Mine for PKS, NRPS,
and DMATS anchor

genes (SMIPS) in
fungal genomes;

predict gene clusters
around anchor genes

on the basis of
conserved promoter

regions

https://sbi.hki-jena.
de/cassis/, accessed
on 10 February 2021

Wolf et al. [42]

IMG-ABC
A comprehensive

database of secondary
metabolite BGCs

https://img.jgi.doe.
gov/abc, accessed on

10 February 2021

Hadjithomas et al.
[43]

RiPPMinner

Analysis of RiPP
precursor peptides to

predict structural
features

https://www.nii.ac.
in/~priyesh/
lantipepDB/

newpredictions/
index.php, accessed
on 10 February 2021

Agrawal et al. [44]

RiPP-RODEO Mining and analysis
of RiPPs

https://www.
ripprodeo.org/,
accessed on 10
February 2021

Tiez et al. [45]

https://bigfam.bioinformatics.nl
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https://arts.ziemertlab.com
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Streptocollin [46], stackepeptins [47], bicereucin [48], curacozole [49], and lexapep-
tide [50] (Figure 1) are the recent examples of RiPPs in which their BGCs were discovered
using the genome mining approach. These metabolites were successfully characterized
by heterologous expression and monitoring production in tandem mass spectrometry
(MS) experiments.
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Figure 1. Selected recent examples of RiPPs and their BGCs discovering by the genome mining
approach. The structural genes within BGC-encoded precursor peptides are depicted in black.

Moreover, two new NRPS-PKS hybrids, guangnanmycin A and weishanmycin A1, were
discovered through BGC genome mining of promising anticancer drug leads leinamycin NP
family (Figure 2A) [51], while five out of six new NRPS-PKS polycyclic tetramate macrolac-
tams (Figure 2B) from the genome of Streptomyces sp. SCSIO 40,010 were identified to have
cytotoxic activity [52]. In addition, a broad-spectrum antibacterial of rare sulfur-containing
phosphate argolaphos B (Figure 2C) was discovered by mining the genomes of 10,000 actino-
mycetes [53]. Another example is the thiotetronic acid antibiotics of a new thiolactamycin
analog (11-methyl-thiolactomycin) and thiotetroamides A and B (Figure 2D) discovered
by a resistance-directed genome mining strategy [54]. By targeting BGCs with duplicated
housekeeping genes that may encode protein targets, one is now able to infer the target
of uncharacterized NP by analyzing BGC-associated self-resistance genes without prior
knowledge of the structure.
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2.2. Culture-Independent Strategies and Revolution in Metagenomics

It has been estimated that less than 1% of the bacteria present in most environmental
samples are readily susceptible to cultivation using current fermentation technologies.
Moreover, 5% of fungal species have been described, while many remain understudied
despite their significant source of bioactive metabolites. Extensive studies of microbial
16S rRNA have revealed that the natural diversity of the prokaryotes by far exceed the
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number of bacteria that have been described to date. Therefore, in an attempt to decipher
novel bioactive metabolites from unidentified microbes, researchers have explored several
culture-independent approaches, including the current diffusion chamber technology,
isolation chip (iChip). This multichannel device allows for the diffusion of nutrients and
growth factors through the chambers. It enables the growth of uncultured bacteria in their
natural environment. The application of this technology has led to the discovery of a novel
depsipeptide antibiotic teixobactin from a previously unculturable β-proteobacteria named
Eleftheria terrae. Interestingly, this antibiotic has displayed no detectable resistance thus
far. The BGC identification using a homology search revealed that teixobactin consists of
two large NRPS-encoding genes [55–57].

Moreover, the other culture-independent approach of metagenomics has also been
established. Metagenomics relies on sampling environmental DNA (eDNA) and assessing
their metabolomics independent from the producing organism. This has great implications
when considering strains challenging to isolate or cultivate, such as strains from extreme
environments and symbionts of marine organisms [16,58]. The revolution in this approach
encompassing the phenotypic and homology DNA screening strategies in situ has been
ameliorated by the advancement of next-generation sequencing (NGS) technologies [59–61].
By directly capturing eDNA from the environment and subsequently identifying, isolating,
and expressing BGCs in a heterologous host, metagenomics has the potential to bring
biosynthetic diversity from the environment into drug discovery pipelines.

A study by Brady and his co-workers [62] employing targeted metagenomics of soil
samples from different geographic regions led to the discovery of two new antifungal
structures belonging to the rare class of tryptophan dimers NPs, hydroxysporine and reduc-
tasporine (Figure 3A). Soil samples were pre-screened to identify the most phylogenetically
unique CPAS (responsible for the dimerization of activated Trp) gene sequences. Molecules
associated with this gene were accessed through targeted metagenomic library construction
and heterologous expression in S. albus or E. coli. Moreover, a class of calcium-dependent
antibiotics called malacidins (Figure 3B) was recently discovered by the metagenomics ap-
proach of 2000 unique soils. These antibiotics exhibited activity against multidrug-resistant
pathogens and sterilized methicillin-resistant Staphylococcus aureus [63]. The cyclic lipopep-
tides of malacidins A and B contain eight amino acids macrocycles and polyunsaturated
lipid, incorporating a rare 3-hydroxyl aspartic acid. Another recent breakthrough discovery
was the finding of antiviral peptide divamide A (Figure 3C) exhibiting activity against
the human immune virus infection. These compounds were synthesized by symbiotic
cyanobacteria Prochloron didemni living in marine tunicate Didemnum molle E11-036 [64].
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3. Technological Advancements in Bioanalytics: Mass Spectrometry-Based Metabolomics

The key step in compound detection and identification relies directly on analyti-
cal instrumentation and data processing software for increased sensitivity and accuracy.
Given the need for increased sensitivity in metabolomics, mass spectrometry (MS) is a
predominant analytical technique with wide applicability in high-throughput screening
programs. It has the potential to uncover elemental composition; structural information,
i.e., mass-to-charge ratios (m/z); isotopic patterns; and abundance, as well as fragmentation
patterns of molecules. Current separation techniques, including high-performance liquid
chromatography (HPLC) or ultra-high-pressure liquid chromatography (UPLC), as well as
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gas chromatography (GC), are routinely coupled to MS towards efficient detectability of
the generated ions. This coupled system has proved a powerful technique that has con-
tributed towards metabolic profiling [65–67]. It has been known that chemical and electron
impact ionization (EI/CI) frequently used with GC–MS and the more recent electrospray
ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) allow for the
analysis of complex molecules such as proteins and peptides. Moreover, the mass analyzer
has been developed to employ various detectors, including the time-of-flight analyzer
(TOF), the quadrupole ion trap (QIT), the ion cyclotron resonance (ICR), and the orbitrap.
While the single-stage MS technique mainly reveals the mass compound, the fragmentation
through collision-induced dissociation (CID) for tandem MS (MS/MS or MSn) and during
electron ionization (EI) provides the building blocks used to characterize molecules and
study their fragmentation behavior. The interpretation and in-depth analysis of these
molecular fragments towards accurate identification of NP compounds have been made
possible by recent MS technique advances [68–71].

Recent advances in MS that integrate molecular networking (MN) of the MS/MS data
have allowed for more rapid dereplication of known molecules from complex mixtures
(Figure 4), which in turn have enabled not only the identification of related analogs but
also contributed towards unraveling novel compounds by avoiding re-isolation of known
compounds. It can be used to explore thousands to millions (and potentially billions) of
MS/MS spectra without any prior knowledge regarding the chemical composition of sam-
ples. An open-access MN platform Global Natural Products Social Molecular Networking
(GNPS; http://gnps.ucsd.edu, accessed on 10 February 2021), can automatically perform
a spectral library search for known molecules (if available in public MS/MS spectral li-
braries) [72,73]. Furthermore, Allard et al. (2016) [74] integrated MN and an extensive in
silico MS/MS database, offering a more powerful tool to navigate through the chemistry of
complex NP extracts, dereplicate metabolites, and annotate analogs.
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Application of the MN approach to marine microbial Vibrio strains has led to the
discovery of a series of antibacterial polyketide vitroprocines A-J (Figure 5A) [75] and
anti-inflammatory and analgesic sphongonucleosides (Figure 5B) [76]. Recently, MN has
been coupled with genome mining to dig more into the BGCs responsible for metabolite
production. This method may also be applied in elucidating biosynthetic pathways and
conjugation with stable-isotope labeling by amino acids in cell culture (SILAC) in order to
provide more comprehensive insights into metabolomics studies, e.g., NPRS-PKS nidulin
A [77] and colibactin [78,79]. The information provided by the MN–BGC correlation appar-
ently can be exploited to augment discovery, isolation, and structural prediction of novel
compounds produced by an organism, including a microbial strain [80,81]. An association
between genomics and metabolomics data allowed for the detection of three new antibiotic
NPs, columbamides A, B, and C [82], and a new type of thiomarinol [83] from marine bac-

http://gnps.ucsd.edu


Molecules 2021, 26, 2542 9 of 13

teria. Additionally, MS-guided genome mining called metabologenomics detects new NPs
and connects them with their BGCs. Matched BGC sequence information may be harnessed
to elucidate compound structures further and/or to identify additional molecular features
for searching. Metabolomics works by grouping similar BGCs from diverse bacteria into
gene cluster families (GCFs) [16,84–86]. It should be noted that peptide-based NP discov-
ery has primarily employed this method (peptidogenomics) due to its well-characterized
biosynthetic machinery. Non-ribosomal peptide (NRP) tambromycin [87] and the hybrid
NRPS-PKS rimosamides [88] are examples of novel NPs detected by the metabologenomic
approach (Figure 5C). Through metabologenomic workflow of a 178-strain actinomycetes
dataset applying scoring metrics to identify correlations between NP and GCF, these pep-
tides were successfully afforded. Furthermore, a recent discovery of NRP tyrobetaines
(Figure 5C) utilizing this workflow in combination with MN showed the great potential of
MN-based metabologenomics for identifying novel NPs [89]. The approach has also been
extended to the discovery of glycosylated NPs (glycogenomics) such as the marine-derived
antibiotic rosamicin derivative and salinipyrone A and pacificanone A (Figure 5D) [90].
By matching tandem MS spectra of a marine bacterium Salinispora pacifica SNS237 with
the BGC of type I PKS encoding desosamine (deoxysugar) biosynthesis, research revealed
several rosamicin derivatives. Interestingly, mutagenesis experiments have revealed that
salinipyrone and pacificanone seem to be by-products of the rosamicin PKS. Moreover, both
peptidogenomic and glycogenomic approaches, as well as metabologenomics, have been
extensively reviewed very recently elsewhere [81].
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in combination with MN showed the great potential of MN-based metabologenomics for 
identifying novel NPs [89]. The approach has also been extended to the discovery of 
glycosylated NPs (glycogenomics) such as the marine-derived antibiotic rosamicin 
derivative and salinipyrone A and pacificanone A (Figure 5D) [90]. By matching tandem 
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encoding desosamine (deoxysugar) biosynthesis, research revealed several rosamicin 
derivatives. Interestingly, mutagenesis experiments have revealed that salinipyrone and 
pacificanone seem to be by-products of the rosamicin PKS. Moreover, both 
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nomics. (A) Polyketides. (B) Sphongonucleosides. (C) NRP and the hybrid NRPS-PKS. (D) Glycosy-
lated NPs.

4. Conclusions

Remarkably, advancements in bioinformatics tools, genomics, and bioanalytics (par-
ticularly in MS) have recently enhanced the field of microbial NP research. These strategies
outlined above offer alternatives to accelerate NP drug discovery over conventional meth-
ods efficiently. With continued significant progress in both genomics and metabolomics
approaches and/or combined with synthetic biology, the microbial NPs discovery field
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shows strong signs of developing and is ready to lead at the forefront of delivering drugs
or drug leads.
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