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Abstract: Harmonious synthesis and distribution of melanin in the skin contribute to the expression
of beauty and the maintenance of health. When skin pigmentary disorders occur because of internal
or external factors or, when there is a need to artificially increase or reduce the pigmentation level
of the skin for aesthetic or therapeutic purposes, various pharmacological therapies are applied
but the results are not always satisfactory. Studies have been conducted to improve the efficacy
and safety of these treatment strategies. In this review, we present the latest studies regarding
peptides and related compounds that may be useful in artificially increasing or reducing skin melanin
levels. Certain analogs of α-melanocyte stimulating hormone (MSH) and oligopeptides with the
sequences derived from the hormone were shown to promote melanin synthesis in cells and in vivo
models. Various amino acids, peptides, their analogs, and their hybrid compounds with other
chemical moieties were shown to inhibit tyrosinase (TYR) catalytic activity or downregulate TYR gene
expression. Certain peptides were shown to inhibit melanosome biogenesis or induce autophagy,
leading to decreased pigmentation. In vivo and clinical evidence are available for some compounds,
including [Nle4-D-Phe7]-α-MSH, glutathione disulfide, and glycinamide hydrochloride. For many
other compounds, additional studies are required to verify their efficacy and safety in vivo and
in clinical trials. The accumulating information regarding pro- and antimelanogenic activity of
peptides and related compounds will lead to the development of novel drugs for the treatment of
skin pigmentary disorders.

Keywords: pigmentation; melanin; peptide; amino acid; tyrosinase; inhibitor; melanocortin 1 receptor;
agonist; antagonist; melanogenesis; melanosome biogenesis; autophagy

1. Introduction

Melanin plays an important role in the appearance of skin color, protection against ultraviolet
(UV) radiation, and maintenance of homeostasis in many organs [1,2]. Both over- and underproduction
of melanin are a major research theme in cosmetology and dermatology, not only from the aesthetic
viewpoint pursuing a harmonious skin tone, but also from a medical viewpoint preventing and treating
various skin diseases [3–7].

Melanin synthesis begins with tyrosinase (TYR)-catalyzed oxidation of L-Tyr or

L-dihydroxyphenylalanine (DOPA), followed by the production of pheomelanin or eumelanin
depending on whether conjugation reactions with L-Cys or glutathione (γ-Glu-Cys-Gly) are included
in the intermediate process [8–10]. Proopiomelanocortin (POMC)-derived peptide hormones, such as
α-melanocyte stimulating hormone (MSH),β-MSH, and adrenocorticotrophic hormone (ACTH), induce
the expression of many key enzymes involved in melanin synthesis, including TYR, tyrosinase-related
protein 1 (TYRP1), and dopachrome tautomerase (DCT) [3,11].
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As numerous amino acids and peptides directly and indirectly participate in the melanin synthesis
process, it is reasonably assumed that the process could be artificially regulated by certain structurally
related compounds. In this review, we discuss recent studies on natural or synthetic peptides and
related compounds that have been reported to increase or decrease melanin synthesis in vitro and
in vivo. Some of these compounds may be useful in artificially up- or downregulating melanogenesis
for the purpose of aesthetics or therapeutics. Hopefully, this review will assist researchers in their goal
of discovering substances that regulate melanin synthesis and the industrial or medical application of
such substances.

In this review, three-letter or one-letter codes for amino acids are used: alanine, Ala, A; arginine,
Arg, R; asparagine, Asn, N; aspartic acid, Asp, D; cysteine, Cys, C; glutamic acid, Glu, E; glutamine,
Gln, Q; glycine, Gly, G; histidine, His, H; isoleucine, Ile, I; leucine, Leu, L; lysine, Lys, K; methionine,
Met, M; phenylalanine, Phe, F; proline, Pro, P; serine, Ser, S; threonine, Thr, T; tryptophan, Trp, W;
tyrosine, Tyr, Y; valine, Val, V; norleucine, Nle. L- and D- are used to indicate stereoisomers of each
amino acid (except glycine).

2. Melanin and Pigmentation

Melanin is a polymeric brown or dark pigment produced by melanocytes and distributed
throughout the skin, hair, eye, and other tissues [10,12]. It plays an important function in maintaining
epidermal homeostasis [1,2]. Melanin absorbs UV radiation and dissipates most of the absorbed energy
as heat, thus protecting the skin [13]. The photoprotective effects of melanin are evidenced by the
lower incidence of malignant melanoma in dark-skinned compared with light-skinned people [4].
In an in vitro study, we demonstrated that small interfering RNAs targeting TYR decreased melanin
content and melanocyte viability following UV light exposure [14]. Skin’s UV protection capability
may be aided by external use of natural products that can act as UV absorbers, promoters of melanin
synthesis, antioxidants, and anti-inflammatory agents [15].

The number of melanocytes per unit area of skin is not significantly different between individuals,
even if they exhibit different skin color. However, melanocytes derived from different skin color groups
show different melanogenic activity [12,16] and there is a close relationship between melanogenic
activity and human skin color [17,18]. The vertical and horizontal distribution of melanin, as well
as aggregation and dispersion of melanin in the skin affects skin color [19,20]. Skin color is largely
associated with genetic mutations in the solute carrier proteins genes, SLC24A5 and SLC45A2 [21,22].
Single nucleotide polymorphisms in these genes and the resulting changes in activity of the encoded
potassium-dependent, sodium-calcium exchangers affect the biogenesis of melanosomes as well as
melanogenesis in melanocytes [23,24].

Disrupted melanin metabolism can cause skin pigmentary disorders, which can be congenital or
acquired, temporary or permanent, restricted to skin or systemic, and hypo- or hyperpigmented [3,5].
Hyperpigmentation occurs when melanin synthesis is abnormally increased in response to certain
stimulating factors [25]. It can occur as a result of inflammatory reactions caused by pathophysiological
and physicochemical factors, or as a change accompanying intrinsic or photo-aging of the skin [26].
Hypopigmentation occurs when melanin synthesis is abnormally decreased by genetic or epigenetic
variations, as in the cases of albinism and vitiligo [27,28]. Even though skin pigmentary disorders are
not life-threatening, they can cause mental stress and diminish life quality [29]. Therefore, there is a
great need to develop an effective treatment for unwanted hypo- and hyperpigmentation [30–32].

3. Melanogenesis and Key Regulators

Melanin is synthesized and stored in melanosomes, lysosome-related organelles in epidermal
melanocytes, which lie at the junction of the dermis and epidermis [10,33]. A number of enzymes,
such as TYR, TYRP1, and DCT, are involved in melanin synthesis [34,35]. TYR catalyzes the
initial step of melanin synthesis, which is the oxidation of L-Tyr or L-DOPA to DOPAquinone [36].
The subsequent reactions vary depending on the presence or absence of thiol compounds, such as
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L-Cys and glutathione, and results in the production of reddish-yellow pheomelanin or brownish
black eumelanin [9]. The addition of L-Cys or glutathione to DOPAquinone is followed by the
subsequent transformation and polymerization to the final product, pheomelanin. In the absence
of thiol compounds, DOPAquinone is oxidized to form DOPAchrome, which is then converted to
5,6-dihydroxyindole (DHI) or 5,6-dihydroxyindole-2-carboxylic acid (DHICA). Polymerization of DHI
and DHICA and their quinones leads to eumelanin production. Melanin synthesis in the skin is
affected by diverse factors including genetic background, hormonal changes, nutritional status, and
environmental conditions [3,37].

The melanocortins are a group of peptide hormones derived from the posttranslational cleavage
of the POMC gene product catalyzed by prohormone convertases, which include ACTH, α-MSH,
β-MSH, and three γ-MSH isotypes [38]. The melanocortins show different binding affinities for each
of the five melanocortin receptors (MC1R–MC5R), which are expressed in a tissue-specific fashion [39].
This central melanocortin system is a main subject not only in dermatology, but in other disciplines
as it is involved in various pathways including pigmentation, lipolysis, food intake, thermogenesis,
sexual behavior, memory, and inflammatory response [40,41].

ACTH, α-MSH, and β-MSH are agonists of the melanocortin 1 receptor (MC1R), a G
protein coupled receptor [3,11]. α-MSH is a 13 amino acid peptide with the sequence,
Ac-Ser-Tyr-Ser-Met-Glu-His-Phe-Arg-Trp-Gly-Lys-Pro-Val-NH2 [8,10]. Binding of agonists, such
as α-MSH, to MC1R at the plasma membrane of melanocytes leads to the activation of adenylate
cyclase (AC) resulting in the production of cyclic adenosine monophosphate (cAMP). Subsequently,
protein kinase A (PKA) is activated and in turn phosphorylates cAMP response element-binding
protein (CREB). In the nucleus, phospho-CREB binds to cAMP response element (CRE) on the promoter
of microphthalmia-associated transcription factor (MITF) in DNA and induces the mRNA expression
of MITF [42,43].

MITF plays a primary role in inducing melanogenic enzyme gene expression in response to
various stimuli [3]. In addition to the α-MSH/MC1R/cAMP/PKA/CREB pathway described above, the
stem cell factor (SCF)/receptor tyrosine kinase protein c-Kit /mitogen-activated protein kinases (MAPK)
pathway, and WNT/frizzled/glycogen synthase kinase (GSK) 3β/β-catenin pathway can also activate
MITF [44,45]. Other intracellular signaling pathways, such as phospholipase C (PLC)/diacylglycerol
(DAG)/protein kinase C (PKC) β cascade, and nitric oxide (NO)/cGMP/protein kinase G (PKG) cascade
are also involved in the regulation of melanogenesis [46,47].

The agouti signaling protein (ASP) is an antagonist of MC1R that inhibits the binding of
agonists, such as α-MSH, in a competitive manner, and thereby suppresses melanogenesis [48].
Melanin-concentrating hormone (MCH) is a cyclic 19-amino acid hypothalamic peptide involved
in the regulation of feeding behavior, sleep-wake cycle, and energy balance [49]. In melanocytes,
MCH exhibits an antagonistic relationship with α-MSH and decreases melanin production [50].
Melanocyte-inhibiting factor (melanostatin, Pro-Leu-Gly-NH2) is a hypothalamic peptide hormone
derived from the hormone oxytocin that elicits multiple effects including the inhibition of α-MSH
release [51]. Melatonin, a hormone synthesized and released from the pineal gland, can either attenuate
or stimulate melanin synthesis depending on the situation [52,53].

Melanosome biogenesis occurs through four morphologically distinct stages [54]. Stage
1 melanosomes appear as vacuolar multivesicular endosomes, and stage 2 melanosomes exist
as ellipsoidal shapes with a striated appearance due to premelanosome protein (PMEL) fibrils.
Melanogenic enzymes that are matured through post-translational modifications in endoplasmic
reticulum and metal-loading in Golgi apparatus are sorted and transported to stage 2 melanosomes [55].
Thereafter, melanin is synthesized and deposited onto the PMEL fibrils inside melanosomes, resulting
in stage 3 melanosomes. In stage 4 melanosomes, PMEL fibrils are fully masked by melanin and
the lumen is filled with melanin. The mature stage 4 melanosomes are transferred from a single
melanocyte through dendrites to the cytoplasm of 30–40 neighboring keratinocytes, resulting in the
spread of melanin pigments throughout the epidermis [56]. Keratinocytes release cytokines, including
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α-MSH and endothelin-1, that stimulate melanocytes to promote melanogenesis and melanosome
biogenesis [57]. Potential targets for the control of skin pigmentation are schematically represented in
Figure 1.
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Figure 1. The major targets of amino acids, peptides, and their analogs for the control of skin
pigmentation. Microphthalmia-associated transcription factor (MITF) plays a primary role in inducing
gene expression of melanogenic enzymes, such as tyrosinase (TYR), tyrosinase-related protein 1
(TYRP1), and dopachrome tautomerase (DCT) in response to various internal and external stimuli. In
addition to the α-melanocyte stimulating hormone (MSH)/ melanocortin 1 receptor (MC1R) /adenyl
cyclase (AC)/ cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA)/cAMP-responsive
element-binding protein (CREB) pathway, the stem cell factor (SCF)/receptor tyrosine kinase protein,
c-Kit/mitogen-activated protein kinases (MAPK) pathway, and WNT/frizzled/glycogen synthase kinase
(GSK) 3β/β-catenin pathway can activate MITF. Other signaling pathways, such as phospholipase C
(PLC)/diacylglycerol (DAG)/protein kinase C (PKC) β cascade, and nitric oxide (NO)/cGMP/protein
kinase G (PKG) cascade are also involved in the activation of MITF. Melanosome biogenesis occurs
through morphologically distinct stages 1, −2, −3, and −4. Melanogenic enzymes matured through
post-translational modifications in endoplasmic reticulum and metal-loading in Golgi apparatus are
sorted and transported to stage 2 melanosomes. Melanin is synthesized thereafter and the mature stage
4 melanosomes with accumulated melanin are transferred through dendrites to keratinocytes.

For more details regarding melanogenesis and pigmentation, please refer to the latest review articles
on cell signaling pathways [47], melanosome biogenesis [45], autocrine and paracrine regulation [57],
pharmacological modulation of melanogenesis [31,32], and human application [58,59].

4. Artificial Upregulation of Melanin Synthesis

In this chapter, we discuss promotion of melanin synthesis by α-MSH analogs and oligopeptides
derived from the hormone sequence (Section 4.1), L-Tyr and L-DOPA (Section 4.2), and other peptide
hormones (Section 4.3). Selected studies are listed in Table 1.
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Table 1. Amino acids, peptides, and their analogs that stimulate melanin synthesis.

Compounds Key Points Literature

[Nle4-D-Phe7]-α-MSH

This α-MSH analog was more
resistant to enzymatic degradation

and more potent in biological
activity compared with α-MSH or

[Nle4]-α-MSH.

[60]

Ac-Phe-Arg-Trp-Gly-NH2

This peptide enhanced the
α-MSH-induced increase in TYR

activity in S-91 murine melanoma
cells.

[61]

Ac-His-D-Phe-Arg-Trp-NH2
n-Pentadecanoyl-His-D-Phe-Arg-Trp-NH2
4-Phenylbutyryl-His-D-Phe-Arg-Trp-NH2

These tetrapeptides increased
melanin synthesis and viability of

human melanocytes under
UV-irradiated conditions.

[62]

Bz-Gly-His-D-Phe-D-Arg-D-Trp-N(CH2CH2CH3)2

This pentapeptide induced protein
expression of MITF, TYR, and

TYRP1, and enhanced the
activation of NRF2 after

UVA-irradiation.

[63]

L-Tyr
L-DOPA

L-Tyr and L-DOPA enhanced
expression of TYR and stimulated

melanin synthesis.
[64]

Vasoactive intestinal peptide
(HSDAVFXDNYXRLRKQMAVKKYLNSXLN)

Vasoactive intestinal peptide
increased melanin production by
increasing TYR activity and gene
expression in a PKA, CREB, and
MITF–dependent mechanism.

[65]

Angiotensin II
(DRVYIHPF)

Angiotensin II upregulated TYR
activity and melanin content in

melanocytes through an
AT1-dependent mechanism.

[66]

4.1. MC1R Agonist Peptides

POMC peptides such as ACTH and α-MSH exhibit mitogenic and melanogenic activity in human
melanocytes [67,68]. Previous studies have used a strategy for melanoma prevention using α-MSH
analogs that function as MC1R agonists to enhance eumelanin synthesis [69].

Sawyer et al. synthesized [Nle4-D-Phe7]-α-MSH, which is a linear 13-amino acid peptide with
the sequence, Ac-Ser-Tyr-Ser-Nle-Glu-His-D-Phe-Arg-Trp-Gly-Lys-Pro-Val-NH2. It contains Nle
(norleucine) in place of Met at the fourth position of α-MSH and D-Phe in place of L-Phe at the seventh
position [60]. Compared to α-MSH or [Nle4]-α-MSH, [Nle4-D-Phe7]-α-MSH was more resistant to
enzymatic degradation by serum enzymes, and it exhibited significantly increased biological activity,
as determined by activation of AC and stimulation of TYR activity in mouse melanoma cells [60].
[Nle4-D-Phe7]-α-MSH stimulated TYR activity and inhibited the proliferation of human melanoma
cells with some variation between cell lines [70]. Subcutaneous injection of [Nle4-D-Phe7]-α-MSH
alone or in combination with UV irradiation induced tanning of human skin [71]. In a phase II trial,
[Nle4-D-Phe7]-α-MSH increased melanin density and patient tolerance following exposure to artificial
light [72].

Castrucci et al. proposed that His6-Phe7-Arg8-Trp9, or Arg8-Trp9 is the minimal message
sequence of α-MSH for its melanotropic activity observed in frog and lizard skin bioassays [73,74].
Ac-α-MSH (7-10)-NH2 (i.e., Ac-Phe-Arg-Trp-Gly-NH2) was identified to be a weak α-MSH antagonist
in lizards [74], but it was inactive in the other vertebrate species tested [61,74]. They further reported
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that Ac-Phe-Arg-Trp-Gly-NH2 peptide did not show an agonistic or antagonistic activity in the murine
S-91 melanoma cells, but rather potentiated the α-MSH-induced increase of TYR activity [61]. Thus, the
binding of Ac-Phe-Arg-Trp-Gly-NH2 peptide to the receptor or its bioactivity is considered highly
variable among the species.

Abdel-Malek et al. identified melanin synthesis stimulating tetrapeptide analogs of
α-MSH including Ac-His-D-Phe-Arg-Trp-NH2, n-Pentadecanoyl-His-D-Phe-Arg-Trp-NH2, and
4-Phenylbutyryl-His-D-Phe-Arg-Trp-NH2 [62]. These peptides stimulated melanin synthesis and
increased the viability of human melanocytes under UV-irradiated conditions [62]. Jackson et al.
identified pentapeptide analogs of α-MSH that function as MC1R agonists [63]. In an ex-vivo human
skin tissue culture model, Bz-Gly-His-D-Phe-D-Arg-D-Trp-N(CH2CH2CH3)2 induced expression of
MITF, TYR, and TYRP1 protein, and enhanced the activation of nuclear factor erythroid 2-related factor
2 (NRF2) following UVA-irradiation [63]. The in vivo efficacy of these melanogenic peptides has not
yet been reported.

4.2. L-Tyr and L-DOPA

L-Tyr and L-DOPA are substrates and allosteric modulators for TYR and their biological availability
can have an impact on melanin synthesis in mammals [75–77]. In addition, L-Tyr and L-DOPA are
known to play a hormone-like stimulatory role in stimulating melanin synthesis [64,78]. Their action
mechanism or specific receptors is not clearly established [79], but they were shown to enhance the
agonistic activity of melanocortins on their receptors [80], and to promote TYR protein expression via
a posttranscriptional mechanism [81]. In our previous study, L-Tyr was shown to increase both the
mRNA and protein levels of TYR, TYRP1, DCT, and MITF, and to promote melanin synthesis in human
epidermal melanocytes [82].

4.3. Other Peptide Hormones

Vasoactive intestinal peptide (VIP) is composed of 28 amino acids and is a ligand for the G
protein-coupled receptors, VIP receptor 1 and 2 [83]. Yuan et al. reported that VIP increased melanin
production by increasing TYR activity and gene expression through a PKA/CREB/MITF pathway [65].

Angiotensin II, a peptide hormone that plays a role in regulating blood pressure, was shown to
increase TYR activity and melanin content in human melanocytes [66]. The hormone upregulated
the expression of angiotensin II receptor type 1 (AT1) and TYR, and these effects were eliminated by
losartan, an AT1 antagonist, indicating that angiotensin II can play a regulatory role in melanogenesis
through an AT1-dependent mechanism.

5. Artificial Downregulation of Melanin Synthesis

In this chapter, we discuss basic amino acids and peptides (Section 5.1), peptides isolated from
plants or derived from natural protein sequences (Section 5.2), and hybrid peptides with other chemical
moieties (Section 5.3) that inhibit TYR catalytic activity in vitro. We additionally discuss certain peptides
that downregulate TYR gene expression or its protein level in melanocytes (Section 5.4). Finally,
we discuss the peptides that inhibit melanosome biogenesis or induce autophagy in melanocytes
(Section 5.5). IC50 is defined as the 50% inhibitory concentration.

5.1. TYR Inhibitory Amino Acids, Peptides, and Their Analogs

Various amino acids and peptides are known to inhibit TYR activity and/or cellular melanin
synthesis, and some of them show depigmenting effects in human skin (Table 2).
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Table 2. Amino acids, peptides, and their analogs that inhibit TYR activity and melanin synthesis.

Compounds Key Points Literature

L-Cys
L-Cys extended an initial delay
in DOPAchrome formation by
avocado and mushroom TYRs.

[84]

Ergothioneine

Ergothioneine inhibited
mushroom TYR activity in a

competitive manner, whereas
L-His exhibited no inhibitory

effect.

[85]

GD; GK; GH;
GG; GF; GY

Glycyl-dipeptides such as GD,
GK, and GH inhibited TYR

activity, and reduced the
browning of apples and

potatoes.

[86]

CA; YC; PD; DY;
CE; CS; CY; CW

Estimated TYR inhibitory
activity of 20 × 20 dipeptides.

N-terminal Cys-containing
dipeptides were highly active.

[87]

CRY
RCY

These antimelanogenic
peptides were identified in a

pharmacophore modeling
method.

[88]

L-Cys
L-Cystine

H-Glu(Cys-Gly-OH)-OH
H-Glo(Cys-Gly-OH)-OH

Ergothioneine
Taurine

L-Cys, L-cystine,
H-Glo(Cys-Gly-OH)-OH, and
ergothioneine inhibited TYR
activity more strongly than

glutathione
(H-Glu(Cys-Gly-OH)-OH) and

taurine.

[89]

YRSRKYSSWY
RADSRADC
KFEKKFEK

SFLLRN

These oligopeptides were
identified from an internal

library and they inhibited TYR
activity and reduced the
melanin content of cells.

[90]

RRWWRRYY
RRRYWYYR
RRYWYWRR

These peptides were identified
from a docking study against

mushroom TYR and they were
also inhibitory against the

human TYR.

[91]

D-Tyr

D-Tyr inhibited TYR activity by
a competitive mechanism and

reduced melanin content in
cells and a three-dimensional

human skin model.

[92]

D-Tyr-D-Ala-Gly-Phe-Leu
D-Ala-Gly-Phe-Leu-D-Tyr

Gly-His-Lys-D-Tyr

The addition of D-Tyr to
functional peptides endowed

antimelanogenic activity
without altering other

bioactivities.

[93]

Glutathione

Oral administration of
glutathione induced skin

lightening of human
volunteers.

[94]

Glutathione disulfide
Topical application of

glutathione disulfide lowered
melanin index in human skin.

[95]
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TYR-catalyzed DOPAchrome formation and following melanin formation was inhibited by
thiol compounds such as L-Cys and glutathione [96]. This effect may be due to the formation of a
conjugate between DOPAquinone and the thiol compounds that cannot be further oxidized to form
eumelanin [96,97].

Kahn et al. compared the effects of various L-amino acids on the ortho-dihydroxyphenolase
activity of mushroom TYR [84]. Most amino acids, including L-Ala and L-Pro (330 mM), L-Ser and

L-Ile (165 mM), L-Leu, L-Asn and L-Val (60 mM), DL-Asp, and L-Glu and L-Trp (15 mM), had no effect
on ortho-dihydroxyphenolase activity as determined using DL-DOPA as a substrate. However, L-Lys,

L-Gly, L-His, and L-Phe exhibited 50% inhibition of TYR activity at approximately 50, 65, 120, and 200
mM, respectively. The highest inhibitory effect was observed with L-Cys which extended an initial
delay (lag period) in DOPAchrome formation and suppressed it completely at 0.3 mM. Liao et al.
reported that ergothioneine (a naturally occurring L-His derivative containing a sulfur atom on the
imidazole ring) inhibited mushroom TYR activity (IC50 = 4.47 mM) in a competitive manner, whereas

L-His exhibited no inhibitory effect [85].
Girelli et al. investigated the inhibitory activity of various glycyl-dipeptides (GD, GG, GH, GL,

GK, GF, GP, GY) against mushroom TYR activity [86]. Most of the tested dipeptides, except for GP and
GL, exhibited an inhibitory effect on TYR activity, with GD being the most active. Dipeptides GD, GK,
and GH diminished the browning of fresh Golden Delicious apples and Irish White Skinned potatoes.
Tseng et al. estimated the inhibitory capacity of 20 × 20 dipeptides against mushroom TYR [87].
Cys-containing dipeptides exhibited highly potent TYR inhibition, and N-terminal Cys-containing
dipeptides, such as CE (IC50 = 2.0 µM), outperformed C-terminal Cys-containing dipeptides. Of the
dipeptides (CA, YC, PD, and DY) tested in cells, PD reduced melanin content (16.5% reduction at 100
µM; 28.5% at 400 µM), whereas the Cys-containing CA and YC dipeptides exhibited weaker activities.

Hsiao et al. used a pharmacophore modeling method to identify crucial complementary functional
groups essential for mushroom TYR inhibition [88]. They identified active compounds A5 and B16,
which resemble the chemical structures of the peptides WY and KFY, respectively, indicating that
the C-terminal L-Tyr residue is important for TYR inhibition. Of the tripeptides tested, RCY and
CRY exhibited high inhibitory activity against mushroom TYR. CRY containing an L-Cys residue
at its N-terminus showed the more potent TYR inhibitory activity (IC50 = 6.16 µM) compared with
kojic acid (IC50 = 84.4 µM) and arbutin (IC50 = 1008.7 µM). Luisi et al. compared the TYR inhibitory
effects of a series of sulfurated amino acids and tripeptides [89]. In particular, L-Cys, L-Cystine,
H-Glo(Cys-Gly-OH)-OH (the γ-oxa-glutamyl (Glo) analog of glutathione), and ergothioneine exhibited
higher activity compared with glutathione (H-Glu(Cys-Gly-OH)-OH), whereas taurine exhibited a
slightly weaker activity on a mass concentration basis.

Abu Ubeid et al. screened an internal library and identified active oligopeptides that inhibited
mushroom TYR [90]. In particular, the oligopeptides, YRSRKYSSWY (IC50 = 40 µM) and RADSRADC
(IC50 = 123 µM), were more active compared with hydroquinone (IC50 = 680 µM). Other peptides
including KFEKKFEK (IC50 = 3.6 mM) and SFLLRN (IC50 = 8 mM) were less active. The
peptides YRSRKYSSWY and RADSRADC also inhibited human TYR more effectively compared with
hydroquinone. Treatment of human melanocytes with the peptides YRSRKYSSWY and RADSRADC
at 100 µM for seven days reduced melanin content by 43% and 27%, respectively. This research group
also performed a docking study using a library of short sequence oligopeptides against the crystal
structure of mushroom TYR and identified a number of oligopeptides that exhibited favorable binding
free energies and direct interaction with the catalytic pocket of the enzyme [91]. The mushroom
TYR inhibitory activity of the identified peptides, RRWWRRYY (IC50 = 238 µM), RRRYWYYR
(IC50 = 398 µM), and RRYWYWRR (IC50 = 282 µM), were more potent compared with hydroquinone
(IC50 = 560 µM). The peptides showed a competitive mechanism of inhibition. The oligopeptides
also inhibited human TYR activity and exhibited no cytotoxicity in melanocytes, keratinocytes, or
fibroblasts up to 3 mM. However, it was not determined whether they exhibited antimelanogenic
effects in melanocytes.
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Park et al. reported that D-Tyr inhibited TYR activity by a competitive mechanism and reduced
melanin content in human MNT-1 melanoma cells and primary human melanocytes stimulated by
α-MSH or UV radiation [92]. Treatment with 10 mM D-Tyr reduced melanin synthesis in the epidermal
basal layer of a 3D human skin model [92]. In a subsequent study, this research group demonstrated
that the addition of a D-Tyr residue to the C-terminus of certain functional peptides could increase
their TYR inhibitory activity in vitro and antimelanogenic activity in cells, while retaining the intrinsic
properties of the unmodified peptides [93].

Arjinpathana et al. showed that oral administration of glutathione resulted in the lightening of
human skin color [94]. Watanabe et al. reported that topical treatments of glutathione disulfide showed
skin depigmenting effects [95]. Thus, both the reduced and oxidized form of glutathione can reduce
melanin levels in the skin, probably by increasing pool of sulfhydryl compounds in melanocytes.

5.2. TYR Inhibitory Peptides Derived from Natural Protein Sequences

Various peptides derived from natural protein sequences inhibit TYR activity and display
antimelanogenic effects in cells (Table 3).

Table 3. TYR inhibitory peptides derived from natural protein sequences.

Compounds Key Points Literature

Cyclo[GGYLPPLS]
Cyclo[GTLPSPFL]
Cyclo[PFSFGPLA]

These cyclic peptides from
Pseudostellaria heterophylla

inhibited TYR activity.
[98,99]

MMSFVSLL
VSLLLVGI
LILVLLAI

These antimelanogenic peptides
were selected from octameric
peptides with sequences of

industrial proteins.

[100]

LQPSHY
HGGEGGRPY

HPTSEVY

LQPSHY derived from rice bran
protein hydrolysates inhibited

TYR activity and reduced melanin
content in B16 cells.

[101]

SSEYYGGEGSSSEQGYYGEG

Of the peptides from the rice bran
albumin hydrolysates, this peptide
showed the highest TYR inhibition

activity.

[102]

ECGYF

The peptide with a sequence of the
protein midasin inhibited TYR
activity and reduced melanin

content in A375 melanoma cells.

[103]

NGVQPKY
NGVQPKC
CNGVQPK

These antimicrobial peptides
inhibited TYR activity and

reduced melanin content in B16F1
melanoma cells.

[104]

Morita et al. discovered several cyclic peptidic compounds from the roots of Pseudostellaria
heterophylla that exhibited mushroom TYR inhibitory activity [98,99]. Of these compounds,
cyclo[GGYLPPLS] (IC50 = 50 µM), cyclo[GTLPSPFL] (IC50 = 63 µM), and cyclo[PFSFGPLA]
(IC50 = 75 µM) exhibited more potent inhibitory effects compared with the other compounds and
arbutin (IC50 = 1.2 mM). These compounds represent rare examples of naturally occurring TYR
inhibitory peptides.

Many natural proteins and peptides derived from milk, egg, wheat, rice, and vigna have been
demonstrated to exhibit TYR inhibitory activity. Nakajima et al. examined the effects of whey proteins
from bovine milk on melanogenesis in cultured human melanocytes [105]. Of the primary milk
protein components, only β-lactoglobulin exhibited a significant depigmenting effect at a concentration
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of 1 mg/mL, whereas α-lactalbumin, serum albumin, and IgG showed no effect. β-Lactoglobulin
decreased cellular TYR activity and reduced cell pigmentation induced by retinol and retinoic acid.
Hernandez-Ledesma et al. reported that the β-lactoglobulin-derived peptide fragments, YFYPEL,
WYSLAMAA, YVEEL, and MHIRL showed potent free radical scavenging activity against 2,2′-azobis
(2-methylpropionamide) dihydrochloride [106]. Schurink et al. screened a large peptide library
composed of octameric peptides from various industrial protein sources, including milk (β-casein,
α-lactalbumin, and β-lactoglobulin), egg (ovalbumin), and wheat (gliadin, glycinin, and β-conglycinin),
in order to identify peptides capable of inhibiting mushroom TYR activity [100]. As a result, they
identified several TYR-inhibiting peptides, including MMSFVSLL and VSLLLVGI from α-lactalbumin
and LILVLLAI from gliadin. They concluded that the presence of hydrophobic, aliphatic residues,
such as Val, Ala, or Leu, is important for the TYR inhibition activity observed with these peptides.

Ochiai et al. prepared hydrolysates of rice bran protein by simultaneous treatment with
chymotrypsin and trypsin, and identified several peptides that inhibited the monophenolase activity of
mushroom TYR. These included LQPSHY (IC50 = 156 µM), HGGEGGRPY, and HPTSEVY in the order
of decreasing activity. The peptide LQPSHY at 125–500 µM, but not the other two peptides, inhibited
melanogenesis in mouse B16 melanoma cells without causing cytotoxicity [101]. Kubglomsong et
al. compared the TYR inhibition activity of rice bran protein fractions, including albumin, globulin,
glutelin, and prolamin, and found that the albumin fraction exhibited higher activity compared with
the other protein fractions [102]. They also hydrolyzed rice bran albumin with papain and compared
the TYR inhibition and copper chelation activities of the peptide fractions. Of the peptides from the rice
bran albumin hydrolysate, SSEYYGGEGSSSEQGYYGEG showed the highest TYR inhibition activity
(IC50 = 1.31 mg/mL), which was between that of citric acid (IC50 = 9.38 mg/mL) and ascorbic acid (IC50

= 0.03 mg/mL). This peptide also exhibited copper-chelating activity (IC50 = 0.62 mg/mL) which was
stronger than that of ethylenediaminetetraacetic acid (EDTA) (IC50 = 1.06 mg/mL).

Shen et al. reported TYR inhibitory activity of the ECGYF peptide, which consisted of a short
sequence of the protein midasin found in Vigna [103]. The TYR inhibition activity of ECGYF (IC50

= 0.46 mM) was greater compared with that of arbutin and glutathione. The peptide ECGYF (0.5 –
1 mM) reduced melanin content in cultured A375 melanoma cells more effectively compared with
arbutin or glutathione without exhibiting cytotoxic effects. This peptide also exhibited potent free
radical scavenging activity against hydroxyl and superoxide radicals in vitro.

Some antimicrobial peptides were reported to have TYR inhibitory activity. Leucrocin I
(NGVQPKY) is an antimicrobial peptide originating from crocodile white blood cell extracts [107].
Joompang et al. reported the mushroom TYR inhibitory activity of leucrocin I (IC50 >200 µM) and
its modified peptides, NGVQPKC (IC50 = 132 µM) and CNGVQPK (IC50 = 113 µM), were relatively
weaker compared with kojic acid (IC50 = 26 µM) [104]. Lineweaver–Burk plots indicated that leucrocin
I (NGVQPKY) is a mixed type inhibitor, whereas NGVQPKC and CNGVQPK are competitive inhibitors.
When B16F1 melanoma cells were treated with these peptides up to 350 µM, the greatest reduction of
melanin content was observed with CNGVQPK, followed by NGVQPKC and leucrocin I (NGVQPKY).
The melanin decreasing activity of CNGVQPK was similar to that of kojic acid.

5.3. TYR Inhibitory Peptides Conjugated with Other Chemical Moieties

Some amino acids and peptides have been hybridized with other antimelanogenic compounds,
such as kojic acid, protocatechuic acid, α-resocylic acid, gentisic acid, gallic acid, caffeic acid,
para-coumaric acid, and ascorbic acid to improve their activity, stability, or bioavailability (Table 4).
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Table 4. TYR inhibitory peptides conjugated with other chemical moieties.

Compounds Key Points Literature

Kojic acid-FWY
Kojic acid-FHY
Kojic acid-FRY

Kojic acid-FWY-NH2
Kojic acid-FHY-NH2
Kojic acid-FRY-NH2

These kojic acid-tripeptide amides
showed enhanced stability and
potent inhibition against TYR

activity.

[108]

Kojic acid-F-NH2
Kojic acid-C-NH2

Of the kojic acid-amino acid
amides, kojic acid-F-NH2 and kojic
acid-C-NH2 showed the highest

and lowest TYR inhibition,
respectively.

[109]

Kojic acid-PS
Kojic acid-CDPGYIGSR

These kojic acid-peptides inhibited
TYR activity and reduced melanin

synthesis in B16F10 cells.
[110]

Protocatechuic acid-F-NH2
Protocatechuic acid-W-NH2
Protocatechuic acid-Y-NH2

These hybrid compounds
inhibited TYR activity and
protocatechuic acid-F-NH2

reduced melanin synthesis in B16
cells most effectively.

[111]

Caffeic acid-MHIR
β-Lactoglobulin fragment

peptides were conjugated with
caffeic acid.

[112]

para-Coumaric acid-GGG-ARP
The compound inhibited TYR

activity and decreased melanin
content in cells.

[113]

Ascorbic acid-KTTKS
Ascorbic acid-KTTKS hybrid

inhibited TYR activity and
decreased melanin content in cells.

[114]

In 2007, Noh et al. synthesized various hybrid compounds between kojic acid and tripeptides
with a C-terminal carboxylic acid group or amide group [108]. The kojic acid-tripeptide amides
showed enhanced stability at elevated temperature (50 ◦C) and, in an acidic solution (pH 4.8 and
pH 5.8), although their inhibitory activity against mushroom TYR was similar to that of hybrid
compounds between kojic acid and tripeptide acids. Of the hybrid compounds tested, kojic acid-FWY
(IC50 = 1.28 µM), kojic acid-FHY (IC50 = 4.55 µM), kojic acid-FRY (IC50 = 5.92 µM), kojic
acid-FWY-NH2 (IC50 = 2.2 µM), kojic acid-FHY-NH2 (IC50 = 2.36 µM), and kojic acid-FRY-NH2

(IC50 = 3.59 µM) exhibited higher inhibitory activity against mushroom TYR compared with kojic acid
(IC50 = 94 µM). This research group also conjugated kojic acid with various amino acid amides and
compared their TYR inhibitory activities [109]. Of these hybrid compounds, kojic acid-Phe-NH2

showed the highest inhibitory activity (IC50 = 14.7 µM), whereas kojic acid-Cys-NH2 exhibited the
lowest. Kojic acid-Phe-NH2 was determined to be a non-competitive inhibitor by kinetic analysis and
the inhibition mechanism was supported by docking simulation data. No data from cell experiments
were presented.

Singh et al. also synthesized five types of peptides conjugated with kojic acid, including kojic
acid-PS, kojic acid-ECG, kojic acid-KECG, kojic acid-PKEK, and kojic acid-CDPGYIGSR [110]. Of these
hybrid peptides, kojic acid-PS showed the most potent inhibitory effect against mushroom TYR activity
(IC50 = 30 µM), followed by kojic acid-CDPGYIGSR (IC50 = 70 µM). Kojic acid-PS also attenuated
melanin synthesis at 2–5 mM in cultured B16F10 mouse melanoma cells stimulated by α-MSH without
exhibiting cell toxicity.
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In 2011, Noh et al. prepared hybrid compounds conjugating different aromatic amino acids, such
as L-Phe, L-Trp and L-Tyr, to different hydroxyphenolic acids, including protocatechuic acid, α-resocylic
acid, gentisic acid, and gallic acid [111]. Of these hybrid compounds, protocatechuic acid-amino
acid amides showed potent TYR inhibitory activity. Protocatechuic acid-Phe-NH2, protocatechuic
acid-Trp-NH2, and protocatechuic acid-Tyr-NH2 inhibited the diphenolase activity of mushroom TYR
(IC50 = 0.56–0.66 mM). Of these compounds, protocatechuic acid-Phe-NH2 reduced melanin synthesis
in B16 cells most effectively (56% inhibition at 100 µM).

Yang et al. synthesized β-lactoglobulin fragment peptides conjugated with caffeic acid, including
caffeic acid-MHIR, caffeic acid-HIRL, and caffeic acid-HIR [112]. The inhibitory activities of these
peptide conjugates against mushroom TYR were higher compared with that of kojic acid. Caffeic
acid-MHIR exhibited the highest TYR inhibition activity (IC50 = 47.9 µM), and it was determined to be
a non-competitive inhibitor in a Lineweaver−Burk plot. All peptides including caffeic acid-MHIR did
not show cytotoxicity toward B16-F1 melanoma cells at 100 µM, although changes in melanin content
were not presented in this study.

Park et al. compared various caffeic acid- and para-coumaric acid-conjugated peptides for their
TYR inhibitory effects in vitro and their antimelanogenic effects in SK-MEL-2 human melanoma cells
stimulated by α-MSH [113]. Of the conjugated peptides tested, para-coumaric acid-GGG-ARP inhibited
TYR activity the most. It also reduced melanin content in cells and downregulated the expression
of TYR, TYRP1, TYRP2, and MITF mRNA. Choi et al. synthesized ascorbic acid-KTTKS hybrid
peptides. These compounds were significantly more stable compared with ascorbic acid and retained
the antimelanogenic and collagen biosynthesis stimulating properties of ascorbic acid [114].

In our previous studies, para-coumaric acid was shown to be a potent inhibitor of TYR [115,116], and
its antimelanogenic effects were verified in several in vitro and in vivo studies [117–119]. In addition,
ascorbate coumarates, which are hybrid compounds between para-coumaric acid and ascorbic acid,
were shown to inhibit melanin synthesis in epidermal melanocytes while increasing collagen synthesis
in dermal fibroblasts [120]. Thus, both para-coumaric acid and ascorbic acid moieties are useful in
making hybrid compounds with antimelanogenic activity.

5.4. Peptides That Inhibit TYR Gene Expression

Some peptides are known to downregulate TYR expression by acting as a MC1R antagonist or by
other mechanisms (Table 5).

Table 5. Peptides that reduce TYR gene expression or its protein level in melanocytes.

Compounds Key Points Literature

H-His-D-Arg-Ala-Trp-D-Phe-Lys-NH2

This hybrid peptide analog
derived from growth

hormone-releasing peptide and
α-MSH sequences demonstrated

the antagonistic efficacy,
attenuating the response to

α-MSH or [Nle4,D-Phe7]-α-MSH
in the lizards.

[61,121]
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[122] 

SFKLRY-NH2 The peptide decreased TYR protein level in cells and showed 
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[123] 

INHHLG-NH2 
ISHHLG-NH2 
INHNLG-NH2 
ISHNLG-NH2 

FNHHLG-NH2 
FNHNLG-NH2 
FSHNLG-NH2 

These antimelanogenic hexapeptides were identified using 
PS-SCL. FNHHLG-NH2 reduced TYR expression and melanin 

synthesis in cells stimulated by α-MSH. 
[124] 

RFWG-NH2 
RLWG-NH2 
FRWG-NH2 
FWG-NH2 
LWG-NH2 
RWG-NH2 
WG-NH2 

G-NH2 

These low molecular antimelanogenic peptides with 
sequences overlapping with α-MSH inhibited melanin 

synthesis in cells stimulated by α-MSH. G-NH2 (glycinamide) 
attenuated phosphorylation of CREB and expression of MITF 
and TYR. Neither Ac-G-NH2 nor G showed antimelanogenic 

activity.  

[125] 

The tetrapeptide reduced melanin
synthesis in cells by a

receptor-mediated,
ERK-dependent suppression of
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[122]
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Table 5. Cont.

Compounds Key Points Literature

SFKLRY-NH2

The peptide decreased TYR
protein level in cells and showed

antimelanogenic effects in B16
cells.

[123]

INHHLG-NH2
ISHHLG-NH2
INHNLG-NH2
ISHNLG-NH2

FNHHLG-NH2
FNHNLG-NH2
FSHNLG-NH2

These antimelanogenic
hexapeptides were identified

using PS-SCL. FNHHLG-NH2
reduced TYR expression and

melanin synthesis in cells
stimulated by α-MSH.

[124]

RFWG-NH2
RLWG-NH2
FRWG-NH2
FWG-NH2
LWG-NH2
RWG-NH2
WG-NH2

G-NH2

These low molecular
antimelanogenic peptides with

sequences overlapping with
α-MSH inhibited melanin

synthesis in cells stimulated by
α-MSH. G-NH2 (glycinamide)
attenuated phosphorylation of

CREB and expression of MITF and
TYR. Neither Ac-G-NH2 nor G

showed antimelanogenic activity.

[125]

Gly-NH2•HCl

Glycinamide hydrochloride
exhibited depigmenting effects

without noted adverse effects in
the human skin.

[126]

Choi et al. reported on the antimelanogenic effects of a disulfanyl peptide, which is a homo dimer
of dipeptides containing Cys and Met residues connected by an intramolecular disulfide bond [122].
The peptide had no effect on TYR catalytic activity in vitro but decreased cellular levels of TYR and
MITF while inducing the prolonged activation of extracellular signal-regulated kinase (ERK). The
peptide-induced downregulation of MITF was abrogated by ERK inhibition with PD98059, G-protein
coupled receptor inhibition with pertussis toxin, and lysosome inhibition with chloroquine, but not
by proteasome inhibition with MG132. This indicated that the peptide reduced melanin synthesis by
receptor-mediated, ERK-dependent suppression of MITF, resulting in downregulation of TYR in cells.

Lee et al. reported that a hexapeptide, SFKLRY-NH2, exhibited antioxidant effects in human
dermal fibroblasts and antimelanogenic effects in B16 cells [123]. Prior to this study, the peptide
had been originally identified to increase intracellular calcium in MS-1 mouse endothelial cells by
another research group using a positional scanning substrate combinatorial library (PS-SCL) [129].
The SFKLRY-NH2 peptide induced proliferation, migration, and tube formation in human umbilical
vein endothelial cells (HUVECs), supporting its angiogenic activity [129].

The PS-SCL was previously used to identify optimized sequences of peptide ligands and protease
substrates [130,131]. In the case of the hexapeptide combinatorial libraries, 20 amino acids were
incorporated at each of six diversity positions, resulting in 206 individual peptides. In the PS-SCL
format, the same diversity was arranged into six sub-libraries × 20 peptide pools. Each of the six
positional sub-libraries (OXXXXX, XOXXXX, XXOXXX, XXXOXX, XXXXOX, and XXXXXO) consisted
of 20 types of peptide pools. Each peptide pool has a fixed amino acid residue at the O position and an
equimolar mixture of all 20 amino acids at the X position. Thus, in principle, the activity differences
between the 20 peptide pools in a single positional sub-library is related to the different amino acids at
the O position.
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We used PS-SCL to identify antimelanogenic peptides [124]. Initial experiments, in which
antimelanogenic activity of the peptide pools was evaluated in B16-F10 cells stimulated by α-MSH,
predicted the active hexapeptide sequences as (I/F)-(N/S)-H-(H/N)-L-G-NH2 [124]. Additional
experiments confirmed the antimelanogenic activity of the individual hexapeptides, including
INHHLG-NH2, ISHHLG-NH2, INHNLG-NH2, ISHNLG-NH2, FNHHLG-NH2, FNHNLG-NH2, and
FSHNLG-NH2 [124]. Of these peptides, FSHHLG-NH2 was the most active and it was ten times
more active than arbutin. FSHHLG-NH2 reduced melanin synthesis and TYR expression in B16 cells
stimulated by α-MSH or forskolin, and it also exhibited antimelanogenic effects in human melanocytes
stimulated by L-Tyr or α-MSH.

In a subsequent study aiming to identify antimelanogenic tetrapeptides using PS-SCL, the active
sequences were predicted to be R-(F/L)-(C/W)-(G/R)-NH2 [125]. Of the individual tetrapeptides,
RFWG-NH2, RLWG-NH2, and FRWG-NH2 showed high antimelanogenic activity. The tripeptides
FWG-NH2, LWG-NH2, and RWG-NH2 were more active compared with RFW-NH2, RFG-NH2,
RLG-NH2, or RLW-NH2, suggesting that the C-terminal WG-NH2 moiety is important for
antimelanogenic activity. The dipeptide WG-NH2 and the monopeptide Gly-NH2 (glycinamide) also
retained antimelanogenic activity, while Ac-Gly-NH2 and L-Gly were inactive. These antimelanogenic
peptides have amino acid sequences similar to a part of α-MSH (Ac-SYSMEHFRWGKPV-NH2), thus
it is thought that these peptides can target MC1R [41]. The antimelanogenic activity of Gly-NH2

is approximately 10 times and 22 times more potent than that of arbutin when compared based on
molar concentration and mass concentration, respectively [125]. Sequences of POMC-derived peptide
hormones and synthetic peptides with melanogenic or antimelanogenic effects are shown in Figure 2.
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Figure 2. Sequences of proopiomelanocortin (POMC)-derived peptide hormones and synthetic peptides
with melanogenic or antimelanogenic effects. (a) The entire amino acid sequence of the human POMC
protein is shown. Sequences for different POMC-derived hormones are indicated with different
colors: adrenocorticotrophic hormone (ACTH) in blue; α-melanocyte stimulating hormone (MSH) in
underlined blue; β-MSH in green; γ3-MSH in red; and γ1-MSH in underlined red. (b) Amino acid
sequences of ACTH, α-MSH, β-MSH, γ3-MSH, and γ1-MSH including posttranslational modifications
are shown. A conserved sequence, His-Phe-Arg-Trp, is highlighted. (c) Tetrapeptides that stimulate
melanin synthesis [62]. (d) A pentapeptide that stimulates melanin synthesis [63]. (e) Tetra-, tri-, di-,
and mono-peptides that inhibit melanin synthesis [125]. (f) Molecules with no or unclear effects on
melanin synthesis [61,125].
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Glycinamide hydrochloride (Gly-NH2·HCl) suppressed the activation of CREB and the mRNA
expression of MITF and TYR in response to α-MSH, resulting in lower melanin synthesis [125].
In a subsequent clinical study, performed in a double-blinded format for eight weeks in 21 human
subjects, a preparation containing 10% glycinamide hydrochloride showed a significant depigmentation
effect without any noted adverse effects on the skin, compared with the control preparation without
glycinamide hydrochloride [126]. This very small molecule has great potential to be used as a skin
depigmentation agent.

5.5. Peptides That Inhibit Melanosome Biogenesis or Induce Autophagy in Melanocytes

A few peptides are known to display antimelenogenic effects in melanocytes through modulation
of melanosome biogenesis and autophagy (Table 6).

Table 6. Peptides and peptidic compounds that inhibit melanosome biogenesis or induce autophagy
in melanocytes.

Compounds Key Points Literature

EPLNNLQVAVK
QTVEISLPLST

QVAVK
QVA

Peptides derived from β1-adaptin
inhibited the binding of AP-1
subunit to KIF13A, thereby
inhibiting the maturation of
melanosomes and melanin

synthesis in cells.

[132]
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Melanosome biogenesis can be a target for the tuning of skin pigmentation [10]. The interaction
of heterotetrameric adaptor protein-1 (AP-1) and KIF13A, a microtubule motor protein, is an essential
step for the sorting and trafficking of TYR and TYRP1 to melanosomes [134]. AP-1 recognizes and
captures TYR and TYRP1 through specific motifs, and its β1-adaptin subunit interacts directly with
KIF13A that transports the captured enzymes to the melanosomes.

Using a peptide mapping strategy, Campagne et al. identified β1-adaptin-derived undecapeptides,
EPLNNLQVAVK and QTVEISLPLST, which inhibited the binding of AP-1 to KIF13A in HeLa or MNT-1
cells [132]. Of the several pentapeptides derived from the active undecapeptides, pentapeptide QVAVK
exhibited the most potent activity. It also inhibited the maturation of melanosomes. Undecapeptide
EPLNNLQVAVK and pentapeptide QVAVK reduced melanin content in human MNT-1 cells and
tripeptide QVA reduced melanin content in a three-dimensional reconstructed epidermis model. Thus,
it is suggested that pigmentation can be controlled by the intervention of melanosome biogenesis and
transport processes.

Autophagy is a lysosome-dependent mechanism that removes misfolded or damaged proteins and
unnecessary organelles [135]. Kim et al. reported that a synthetic peptide derivative PTPD-12, which
was originally developed as an activator of NAD-dependent deacetylase sirtuin-1, induced autophagy
in human melanocytes, and even in keratinocytes that contained transferred melanosomes [133].
Autophagy induction in melanocytes by this peptide resulted in melanosome degradation and
decreased melanin content without affecting the expression of MITF and melanogenesis pathway
proteins. Topically applied PTPD-12 induced depigmentation in human skin explants. This study
suggests that the modulation of autophagy may be a novel target for the regulation of skin pigmentation.
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6. Discussion

This review introduced recent advances in the artificial regulation of skin pigmentation using
amino acids, peptides, and their analogs. The most-studied molecular targets were the receptors
on the surface of melanocytes which transmit intracellular signals, and the enzymes and proteins
within melanocytes involved in melanin synthesis, and melanosome biogenesis and autophagy in
melanocytes (Figure 1).

L-Tyr was stimulatory, while D-Tyr and L-Cys were inhibitory to melanin synthesis in cells [76,84,92].
Many Cys-containing compounds, such as glutathione, inhibited TYR-catalyzed melanin synthesis
by acting as a reactant for the thiol conjugation reaction with DOPAquinone as well as acting as
an enzyme inhibitor [87–89]. A number of peptides from synthetic peptide libraries or natural
sources exhibited inhibitory effects against TYR activity in vitro, and some showed antimelanogenic
effects at the cell level [90,101–104]. Relatively high TYR inhibitory activities were achieved by
hybrid compounds in which certain peptide sequences were conjugated with kojic acid [108–110],
protocatechuic acid [111], caffeic acid [112,113], para-coumaric acid [113], or ascorbic acid [114].

Several peptides display more potent inhibitory effects against mushroom TYR activity and
cellular melanin synthesis than other well-known inhibitors of melanogenesis, such as arbutin and
kojic acid. CRY (IC50 = 6.16 µM) is more inhibitory than kojic acid (IC50 = 84.4 µM) and arbutin
(IC50 = 1008.7 µM) [88]. Cyclo[GGYLPPLS] (IC50 = 50 µM), cyclo[GTLPSPFL] (IC50 = 63 µM), and
cyclo[PFSFGPLA] (IC50 = 75 µM) are more inhibitory than arbutin (IC50 = 1.2 mM) [98,99]. Kojic
acid-FWY (IC50 = 1.28 µM), kojic acid-FHY (IC50 = 4.55 µM), kojic acid-FRY (IC50 = 5.92 µM), kojic
acid-FWY-NH2 (IC50 = 2.2 µM), kojic acid-FHY-NH2 (IC50 = 2.36 µM), and kojic acid-FRY-NH2

(IC50 = 3.59 µM) are more inhibitory than kojic acid (IC50 = 94 µM) [108]. Caffeic acid-MHIR
(IC50 = 47.9µM) is more inhibitory than kojic acid [112]. In cells, ECGYF reduces cellular melanin content
more effectively than arbutin or glutathione [103]. CNGVQPK decreases cellular melanin content more
effectively than kojic acid [104]. FSHHLG-NH2, RFWG-NH2, RLWG-NH2, FRWG-NH2, RFW-NH2,
RFG-NH2, RLG-NH2, RLW-NH2, WG-NH2, and G-NH2 display very potent antimelanogenic activities
in cells compared to arbutin [124,125]. Furthermore, there are lots of non-peptidic molecules, of which
antimelanogenic effects were verified in cells [15,32,82,136–138] or in vivo [139–142]. Therefore, further
studies are needed to examine the clinical utility of various peptidic molecules versus non-peptidic
molecules for the treatment of skin pigmentary disorders.

The sequences of endogenous melanocortin hormones derived from the POMC gene product and
numerous synthetic oligopeptides that showed melanogenic or antimelanogenic activity are shown
in Figure 2. Even though γ1-MSH and γ3-MSH share a conserved sequence with other melanocortin
peptides including ACTH, α-MSH, and β-MSH, they do not possess the pigmentary capabilities of
their relatives [38,143]. Thus, it is inferred that the conserved sequence, His-Phe-Arg-Trp, renders a
melanocortin peptide to be a potent agonist of MC1R, if the sequence is followed by a Gly residue
(as in ACTH, α-MSH, and β-MSH). However, if the conserved sequence of a peptide is followed by an
acidic Asp residue, the peptide may lose MC1R agonistic activity (as in γ1-MSH and γ3-MSH).

It was shown that tetra- and pentapeptides containing a conserved sequence acted as potent
agonists of MC1R [62,63]. These peptides may represent topically applicable alternatives to
[Nle4-D-Phe7]-α-MSH, a stabilized analog of α-MSH [60]. In contrast, peptides with the sequence,
Phe-Arg-Trp-Gly-NH2, or shorter sequences, did not show MC1R agonistic activities [125]. Instead, the
peptide Phe-Arg-Trp-Gly-NH2, or shorter peptides that retained a Gly residue with an amide group at the
C-terminus acted as an MC1R antagonist, preventing the melanogenic effects ofα-MSH [125]. Of interest,
while Gly-NH2 showed an antagonistic activity, neither Ac-Gly-NH2 nor Gly showed such activity [125].
In addition, while Phe-Arg-Trp-Gly-NH2 showed an antagonistic activity, Ac-Phe-Arg-Trp-Gly-NH2

rather potentiated the α-MSH-induced increase of TYR activity in murine melanoma cells, and did not
show agonistic or antagonistic activity [61]. Therefore, it is suggested that small changes in the amino
acid sequence of these peptides at conserved sequences or adjacent positions, and the presence of an
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acetyl group at the N-terminus or an amine group at the C-terminus result in significant differences in
their effects on melanogenesis.

A variety of peptides and amino acid analogs were described to modulate melanin synthesis in
cells, although their therapeutic utility remains to be further verified. In vivo and clinical results have
been provided for MC1R targeting molecules, such as [Nle4-D-Phe7]-α-MSH [71,72], and glycinamide
hydrochloride [126], and an inhibitor of melanin synthetic reaction, such as oxidized glutathione [95].
These studies suggest that certain amino acids, peptides, and their analogs may be a promising drug
candidate for up- and downregulating skin pigmentation. Melanin increasing molecules can be used
to alleviate photosensitive skin, to prevent photocarcinogenesis, and to treat vitiligo vulgaris [15,71,72].
Conversely, melanin decreasing molecules can be used to treat various types of hyperpigmentation for
medical and aesthetic purposes [58,59,95,126].

Peptides exhibit a variety of advantageous properties, including low toxicity and fewer side
effects compared with generic medicines, but they also display several disadvantages, such as low skin
penetration and cell permeability and susceptibility to enzymatic degradation [144]. Large-sized or
highly charged peptidic molecules have difficulty passing through the cell membrane and entering the
melanosome to engage the target enzyme. Thus, the receptors on the surface of the plasma membranes
of melanocytes, rather than the melanogenic enzymes inside melanosomes, represent more accessible
targets for ‘cell-impermeable’ amino acids, peptides, and their analogs [145]. Otherwise, a strategy
to target intracellular enzymes, proteins, or organelles using such peptides will require especially
efficient delivery systems [146]. Although oral delivery is preferred, most peptide drugs are delivered
intravenously or subcutaneously to avoid degradation in the gastrointestinal tract. Transdermal
peptide delivery is also used, but it faces other problems including limited absorption. Therefore,
research efforts are needed to overcome the inherent drawbacks of peptide drugs, including their poor
pharmacokinetic properties.

7. Conclusions

Probably because of the visually observable color change, the process of melanin synthesis
catalyzed by several enzymes has provided a good model of enzyme research, thereby contributing
to the advancement of biochemistry and biological science. The melanin synthesis process is also a
good target for the discovery of peptide drugs because several amino acids and analogs participate as
enzyme substrates and metabolites in the pathway, and several peptides are partly responsible for the
fine-tuning of pigmentation in the skin. As we see in this review, many studies have been conducted to
target the receptors on the surface of melanocytes, and the enzymes, proteins, and organelles within
melanocytes that are involved in melanin synthesis, melanosome biogenesis, transport, and autophagy,
using various types of amino acids, peptides, and their analogs. It is hoped that the research results so
far will be the foundation for the development of excellent new peptide-based drugs that can be used
for the treatment of skin pigmentary disorders. Additionally, it is hoped that this research experience
in melanin biology will be utilized in targeting other metabolic processes that share similar regulatory
mechanisms, contributing to the treatment of related diseases.
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Abbreviations

Ac- Acetyl
AC Adenylate cyclase
ACTH Adrenocorticotrophic hormone
AP-1 Adaptor protein-1
ASP Agouti signaling protein
AT1 Angiotensin II receptor type 1
Bz- Benzoyl
cAMP Cyclic adenosine monophosphate
CRE cAMP response element
CREB cAMP-responsive element-binding protein
DAG Diacylglycerol
DCT Dopachrome tautomerase
DHI 5,6-Dihydroxyindole
DHICA 5,6-Dihydroxyindole-2-carboxylic acid
DOPA Dihydroxyphenylalanine
EDTA Ethylenediaminetetraacetic acid
ERK Extracellular signal-regulated kinase
GSK Glycogen synthase kinase
MAPK Mitogen-activated protein kinases
MC1R Melanocortin 1 receptor
MCH Melanin-concentrating hormone
MITF Microphthalmia-associated transcription factor
MSH Melanocyte-stimulating hormone
Nle Norleucine
NO Nitric oxide
NRF2 Nuclear factor erythroid 2-related factor 2
PKA Protein kinase A
PKC Protein kinase C
PLC Phospholipase C
PMEL Premelanosome protein
POMC Proopiomelanocortin
PS-SCL Positional scanning substrate combinatorial library
SCF Stem cell factor
TYR Tyrosinase
TYRP1 Tyrosinase-related protein 1
UV Ultraviolet
VIP Vasoactive intestinal peptide
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