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ABSTRACT: The impact of folate on health and disease, particularly pregnancy complications and congenital malforma-
tions, has been extensively studied. Mandatory folic acid fortification therefore has been implemented in multiple coun-
tries, resulting in a reduction in the occurrence of neural tube defects. However, emerging evidence suggests increased 
folate intake may also be associated with unexpected adverse effects. This literature review focuses on contemporary is-
sues of concern, and possible underlying mechanisms as well as giving consideration the future direction of mandatory 
folic acid fortification. Folate fortification has been associated with the presence of unmetabolized folic acid (PteGlu) in 
blood, masking of vitamin B12 deficiency, increased dosage for anti-cancer medication, photo-catalysis of PteGlu leading 
to potential genotoxicity, and a role in the pathoaetiology of colorectal cancer. Increased folate intake has also been asso-
ciated with twin birth and insulin resistance in offspring, and altered epigenetic mechanisms of inheritance. Although 
limited data exists to elucidate potential mechanisms underlying these issues, elevated blood folate level due to the ex-
cess use of PteGlu without consideration of an individual's specific phenotypic traits (e.g. genetic background and un-
diagnosed disease) may be relevant. Additionally, the accumulation of unmetabolized PteGlu may lead to inhibition of di-
hydrofolate reductase and other enzymes. Concerns notwithstanding, folic acid fortification has achieved enormous ad-
vances in public health. It therefore seems prudent to target and carefully monitor high risk groups, and to conduct well 
focused further research to better understand and to minimize any risk of mandatory folic acid fortification. 
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INTRODUCTION

Folate plays an essential role in the human body as a 
major coenzyme in one-carbon metabolism, including 
DNA synthesis (dTMP) and methylation. A growing 
body of literature indicates that these critical roles in 
cellular homeostasis are associated with altered risk for 
several diseases including cancer (1-4), Alzheimer’s dis-
ease (AD) (5,6), thrombogenetic and atherogenetic vas-
cular disease (7-12) including hypertension (13,14). 
They additionally influence the underlying mechanism 
which explains the deficiency disease of folic acid-mega-
loblastic anaemia (15,16). As a low folate status may 
perturb dTMP and methylation pathways, and as a re-
sult, influence pregnancy complications including birth 
defects such as neural tube defects (NTDs) (15,17-20), 
the vitamin is clearly important at the reproductive 

phase of the lifecycle. Periconceptional folic acid supple-
ments have led to a significant reduction in the occur-
rence of NTDs (21-23), strengthening advocacy for, and 
implementation of mandatory folic acid fortification in a 
large number of countries (24-27). However, unexpected 
and potentially controversial issues have been increas-
ingly reported in relation to mandatory folic acid for-
tification (28,29). In light of such controversies, the 
present review focuses on these contemporary issues of 
concern and their possible relevance to the future direc-
tion of mandatory folic acid fortification.

FOLIC ACID ABSORPTION AND 
DIHYDROFOLATE REDUCTASE

Synthetic folic acid (pteroylmonoglutamic acid, PteGlu) 
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Fig. 1. Entry of synthetic PteGlu in-
to folate metabolism. PteGlu, pter-
oylmonoglutamate or folic acid; 
DHFR, dihydrofolate reductase; 
SHMT, serine hydroxymethyltrans-
ferase; MTHFR, methylenetetrahy-
drofolate reductase; MS, methio-
nine synthase; DMG, dimethylgly-
cine; BHMT, betaine-homocysteine 
methyltransferase; SAM, S-adeno-
sylmethionine; SAH, S-adenosyl-
homocysteine; Hcy, homocysteine.

has a fully oxidised pteridine ring and is a folyl vitamer 
with only a single glutamate residue conjugated to it. It 
is therefore very stable under the majority of conditions 
(i.e, temperature and pH), and is the vitamer used for 
supplements and food fortification (30). However, when 
PteGlu is exposed to UV radiation, it breaks down into 
the photo-scission products p-aminobenzoylglutamate 
(p-ABG) and 6-formylpterin (6-FP), the latter of which 
eventually oxidizes to form pterin-6-carboxylic acid 
(PCA) (31,32).

PteGlu is absorbed in the proximal jejunum through a 
saturable, carrier-mediated, pH and energy dependent 
transport mechanism similar to that required for natural 
methyl folate (30). However, since PteGlu is not a natu-
ral form of folate, it requires additional metabolic steps 
before it can enter the circulating plasma folate pool as 
5-methyltetrahydrofolate (5-CH3H4PteGlu). In order to 
enter folate metabolism, PteGlu needs to be reduced 
first to dihydrofolate (H2PteGlu) and then to the active 
form, tetrahydrofolate (H4PteGlu) which is the methyl 
group shuttle required for the de novo synthesis of pu-
rine, thymidylate and methionine. This additional step is 
exclusively mediated by dihydrofolate reductase (DHFR) 
(33). The main role of DHFR is to catalyse the reduction 
of H2PteGlu to H4PteGlu. It is also responsible for the 
conversion of PteGlu to H2PteGlu, but with a higher Km. 
In addition, H2PteGlu allosterically modulates the activ-
ity of methylenetetrahydrofolate reductase (MTHFR) 
which is one of the key enzymes of folate metabolism 
(34). Therefore, DHFR is critical for both the con-
tinuous circulation of reduced folate in the body and 

synthetic PteGlu metabolism (Fig. 1). 
The activity of DHFR differs between species and in-

dividuals (35,36). DHFR activity in human hepatic tis-
sue is significantly less than in other mammals and shows 
an inferior capacity to reduce PteGlu. Additionally, a 
5-fold variation between individuals in DHFR activity 
occurs (35). Genetic variation may also affect the activity 
of DHFR. Of the known DHFR polymorphisms, a 19 
base pair insertion/deletion located in intron 1 (19 bp 
del) (37-39), a C238T transition in exon 3 (40) and a 
A458T transition in exon 5 (41) have been thoroughly 
investigated, and shown to be associated with several 
disorders, including spina bifida, megaloblastic anaemia, 
and neurologic disease (37-41).

BACKGROUND TO THE IMPLEMENTATION OF 
MANDATORY FOLIC ACID FORTIFICATION

Adequate folate consumption is critical for women of 
child bearing age. Neural tube closure occurs in the early 
stages of pregnancy (within 28 days) before most wom-
en recognize that they are pregnant (42). This becomes 
even more relevant when one considers that over half of 
all pregnancies are unplanned (43). It is generally ac-
cepted that insufficient maternal folate status is the ma-
jor risk factor for NTD, along with other genetic, geo-
graphic or socioeconomic causes (44).

Early work by Hibbard suggested a putative associa-
tion between folate deficiency and various kinds of preg-
nancy complications and congenital disorders early (15). 
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Table 1. Recommendations for folic acid intake, folic acid fortification policies and reduction of NTDs in four countries 

Country Folate RDI Folic acid fortification policy Year implemented

US

Canada
Chile 
Australia 

400 g/day 
600 g/day-pregnancy
500 g/day-lactation
US requirements 
Ambiguous
400 g/day
600 g/day-pregnancy
500 g/day-lactation

140 g folic acid/100 g grain product (54)

150 g folic acid/100 g flour & 200 g folic acid/100 g pasta (55)
220 g folic acid/100 g flour (56)
135 g folic acid/100 g flour (57)

1998

1998
2000
2009

RDI: Reference daily intake.

Subsequent studies have shown the role of folate in pre-
venting NTD (45,46). A major randomized control trial 
conducted by the Vitamin Study Research Group of the 
Medical Research Council confirmed the effect of folic 
acid supplementation in the prevention of NTD, provid-
ing significant experimental evidence for implementation 
of government-mandated folic acid fortification (23). In 
this study, women that previously experienced preg-
nancy affected by NTD received 4 mg of folic acid daily 
from the time they planned their another pregnancy un-
til 12 weeks into it. After their delivery, the NTD re-
currence rate of the group which received folic acid sup-
plementation was 1%, but the recurrence rate of those 
in the non-folic acid group was 3.5% (23). This reduc-
tion of NTD rate by folic acid supplements was con-
firmed in an Asian population (22) and was consistent 
with results observed in other studies utilising peri-
conceptional multivitamin supplements containing folic 
acid (21,47). 

As a result of these early studies, the first govern-
ment-mandated folic acid fortification programme was 
implemented in the United States (US) beginning in 
1998, followed by multiple countries, such as Canada, 
Chile, and Australia, as a population health measure 
(48). Food fortification is the preferable strategy as it 
has low risk, but leads to a large effect on NTD preva-
lence, compared to supplementation for high-risk wom-
en alone (49). The level of fortification differs between 
countries, but in all cases it is designed to reduce the 
prevalence of NTD pregnancy. It is generally agreed that 
folic acid supplementation in the US and Canada was 
successful because population folate status was en-
hanced (50) and this translated into a reduction in NTD 
rates (25,27,51,52), although the result varied depend-
ing on ethnicity (53). 

MANDATORY FOLIC ACID FORTIFICATION 
POLICIES IN SELECTED COUNTRIES

The folic acid fortification level in four countries, includ-
ing the US, Canada, Australia, and Chile are presented 
in Table 1 (54-57). Cereals and flour for baking bread 

are the main vehicles for fortification because bread and 
cereal are commonly consumed by the target population: 
women of child bearing age (16∼44 years) (58). Austra-
lia decided to administer mandatory fortification of flour 
(excluding flour in organic bread) from September, 2009. 
New Zealand deferred the implementation of mandatory 
folic acid fortification for 3 years and decided to keep 
fortification voluntary in August, 2012 (imposing a max-
imum level of 250 g folic acid/100 g flour) (59).

IMPROVED BLOOD FOLATE LEVEL AND 
DECREASED OCCURRENCE OF NEURAL 
TUBE DEFECTS

The mean concentration of serum and erythrocyte folate 
levels in pre- and post-folic acid fortification periods and 
the NTD reduction rates in four countries are shown in 
Table 2. From the US data (NHANES), compared to the 
pre-fortification (1988∼1994) period (60), serum and 
erythrocyte folate concentrations in post-fortification 
(1999∼2010) periods have increased dramatically, re-
sulting in a 31% reduction in the occurrence of NTD. 
This remarkable increase of serum and erythrocyte folate 
level and decreased prevalence of NTD were also de-
tected in Canada (50,52) and Chile (24,26), providing 
clear evidence that mandatory fortification was an effec-
tive process in preventing the occurrence of NTD. No 
post-mandatory fortification NTD occurrence data is 
available as yet in Australia. However, since voluntary 
folic acid fortification of food was introduced in 1995, 
the total dietary intake in the population has been aug-
mented (pre-fortification: 102 g/day, post-fortification: 
261 g/day) (61), and as a consequence, the prevalence 
of NTD has been reduced by approximately 30%, except 
in the indigenous population (62,63). 

THE CONTROVERSY OF POTENTIAL ADVERSE 
EFFECTS OF EXCESS FOLIC ACID 

Since the adoption of mandatory folic acid fortification 
by many countries, the main goal of reducing the preva-
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Table 2. Mean concentrations of serum and erythrocyte folate for two periods in four selected countries

Folate concentration (nM) Pre-fortification Post-fortification NTD reduction

US1) (60)

Canada2) (64)

Chile3) (24)

Australia4) (65)

serum
erythrocyte
serum
erythrocyte
serum
erythrocyte
serum
erythrocyte

16.7±0.5
747±10 

18.5 (18.1∼18.9)
 680.3 (668.9∼691.9)

 9.7±4.3
 290±102

17.7
881

  41.0±0.3
1120±7

27.1 (26.8∼27.5)
 851.6 (841.2∼862.0)

37.2±9.5
 707±179

23.1
1071

19% (25)
31% (51)
46% (52)

51% (26)

N/A

1)Mean±standard error (SE).
2)Mean±95% confidence interval (CI).
3)Mean±standard deviation (SD).
4)No SE, CI, or SD available.

lence of NTD has been achieved. Other additional im-
provements in homocysteine (Hcy) level and neuro-
psychiatric symptoms had been reported/expected. 
However, since virtually all members in society are now 
exposed to plentiful folate, unexpected adverse phenom-
ena are increasingly being reported (66,67). The precise 
mechanisms for these adverse effects are not always 
clear, but it raises questions that need to be addressed 
so as to plot the future direction of folic acid 
fortification.

Changed cellular folate distribution by folic acid for-
tification; the presence of unmetabolized PteGlu in blood
Interestingly, changed blood folyl vitamer distribution 
has been observed as a consequence of fortification in 
the US. A study by Kelly et al. (68) that was carried out 
before fortification indicated that no PteGlu occurred in 
fasting blood. However Troen’s study conducted after 
implementation of mandatory folic acid fortification re-
ported that unmetabolized PteGlu was detected in 78% 
of subjects (69). Kalmbach and colleagues examined the 
concentration of blood PteGlu before and after folic acid 
fortification within the Framingham Offspring Cohort 
(70). The results showed that prior to PteGlu for-
tification, the proportion of subjects with detectable 
PteGlu stood at 55% in non-B vitamin supplement 
users, but after PteGlu fortification this increased to 
74.4%. In B-vitamin supplement users, the ratio for sub-
jects with detectable PteGlu also increased from 72.5% 
to 80.7%. Additionally a study by Obeid et al. (71) 
found that unmetabolized PteGlu was detected in cord 
blood from infants independent of maternal periconcep-
tional folic acid supplement intake. 

The folate absorption and biotransformation process 
in humans can be saturated by approximately 400 
g/day of folate (72). Doses of PteGlu at or above this 
level are transported into the blood in a manner that is 
directly proportional to the dose taken, without con-
version into biologically active 5-CH3H4PteGlu (68,72). 
Therefore, the habitual intake of a moderately high dose 

of PteGlu (mainly from folic acid supplements or for-
tified food) could result in the chronic appearance of un-
metabolized PteGlu in the circulation (68,72,73). In ad-
dition, as a blanket intervention, folic acid fortification 
does not consider each individual’s characteristics such 
as the vitamin requirement and unique permutation of 
folate-related genetic variants. The excess intake of 
PteGlu beyond an individual’s actual vitamin require-
ment, and the level of DHFR expression, if low, may 
lead to the presence of unmetabolized PteGlu in the 
plasma (35). 

It is possible to hypothesize that the presence of un-
metabolized PteGlu in blood interferes with folate me-
tabolism, and, further, may be relevant to other adverse 
effects due to an elevated level of blood folate (74). For 
example, PteGlu inhibits H2PteGlu reduction by DHFR 
and hence may act as a competitive inhibitor of this en-
zyme (75). Therefore, a high level of PteGlu possibly im-
pairs folate related intracellular metabolism (74). Other 
experimental studies have shown that supplemented 
PteGlu dysregulates the expression of folate transporters 
in intestinal and renal epithelial tissues (76) and many 
other genes in lymphoblast cells (77). However, little 
clear research evidence exists, and the potential con-
sequences of excess PteGlu remain to be proven.

Folate, the central nervous system and potential adverse 
phenomena relevant to vitamin B12

Since folate is an essential cofactor in the central nerv-
ous system (CNS), inappropriate folate nutrition has 
been associated with many neuropsychiatric disorders 
(78,79). Various effects have been reported, depending 
on age. For instance, maternal low folate nutritional sta-
tus results in the impairment of nervous cell develop-
ment and proliferation in the foetus. It is also linked to 
mental retardation, autism spectrum disorder (ASD) 
and mood disorders (80). Indeed, folate deficiency and 
hyperhomocysteinemia are commonly observed in psy-
chogeriatric patients. In fact, evidence exists to suggest 
dementia/AD may occur with homocysteine (Hcy)-related 
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cerebrovascular health as a component in the disease 
pathoaetiology in elderly subjects (78). Folate related- 
mechanisms underlying deficiency have been discussed, 
with genetic variants in folate and cobalamin metabo-
lism being involved in exacerbating risk (80). Variants 
of note include MTHFR C677T (81), reduced folate car-
rier (RFC) A80G (82), DHFR 19 bp del (83) and trans-
cobalamin II G776C (82). 
Folate and CNS tissue development and function: Inappro-
priate folate nutrition may result in impaired DNA de-
velopment and repair mechanisms in neurons (84). 
Hippocampus cells cultured in folate deficient medium 
(deficient in methyl donor) showed increased apoptosis 
and cell death. This is thought to result from uracil mis-
incorporation and the consequent impaired repair proc-
ess for amyloid beta peptide (A)-induced oxidative 
modification of DNA bases. A is a highly multifunc-
tional and abundant protein in brain tissue from AD pa-
tients (85). 

Additionally, an inappropriate folate level decreases 
the provision of one-carbon units for methylation (S-ad-
enosylmethionine; SAM). Altered methylation depend-
ant pathways in the CNS, thus may lead to neurological 
deficiency disorders (80). Methylation of various com-
pounds such as protein, DNA and phosphatidylethanol-
amine (PE) is critical in functioning of the CNS. 
Carboxymethylation is significant in functioning of 
phosphatase 2A protein linked to key CNS proteins in 
AD pathogenesis (86). Hypermethylation of CpG sites 
in the brain-derived neurotrophic factor (BDNF) gene 
causes overexpression of BDNF (87) and it results in 
short-term memory impairment and learning deficits in 
a mouse model (88). Methylation of PE generates phos-
phatidylcholine (PC) which is the endogenous source of 
the cholinergic neurotransmitter acetylcholine. In a ro-
dent model fed on a folate-deficient diet, PC concen-
tration in brain tissue was significantly lowered and the 
animal showed impaired memory and learning (89).

Folate is also relevant to neurotransmitter synthesis 
(84). 5-CH3H4PteGlu is involved in the reduction of tet-
rahydrobiopterin (THB), an essential cofactor for syn-
thesis of monoamine neurotransmitters (dopamine, se-
rotonin and norepinephrine) (90). 5-CH3H4PteGlu also 
supplies methyl groups directly for monoamine trans-
mitters. Insufficient supply of folate or altered folate me-
tabolism by genetic variants may cause dysfunction in 
these metabolic processes (84,91). 

Finally, inappropriate folate nutrition may be a risk 
factor in cerebrovascular disease, possibly via Hcy-in-
duced cerebro-endothelial dysfunction. Increased Hcy in 
the brain and cerebrospinal fluid has been found in pa-
tients with neurological disorders (92). An elevated syn-
thesis of asymmetric dimethylarginine, an endogenous 
nitric oxide synthase inhibitor (nitric oxide induces vas-

odilatation) (93), is suggested to be a significant media-
tor of Hcy-induced endothelial dysfunction (94). Addi-
tionally, Hcy may induce enhanced vascular inflamma-
tion, atherogenesis and vulnerability within established 
atherosclerotic plaques (95), and, have a pro- oxidant ef-
fect which leads to oxidative damage to endothelial cells 
(96,97). 

For these reasons, there have been trials carried out to 
investigate the application of folic acid supplements to 
improve neuropsychiatric symptoms, although outcomes 
are not consistent. Daily administration of a large 5 mg 
folic acid supplement for 4 weeks was not effective in 
enhancing psychomotor performance in healthy elderly 
subjects with a normal folate level (98). However, in 
psychiatric disorder patient with a low blood folate level, 
15 mg of daily folic acid intake for 2∼3 months im-
proved memory and attention efficiency (99) and recov-
ery from depression or schizophrenia (100) in two in-
dependent studies. In line with this, it is possible to 
speculate that long-term and increased consumption of 
folate from mandatory folic acid fortification leads to a 
positive influence on the occurrence of neuropsychiatric 
disorders with folate deficiency as part of the aetiology. 
One experimental trial provided evidence supporting rel-
atively low dose (200 g/day) folic acid supplements as 
effective in reducing affective morbidity concomitant 
with lithium therapy (101).
Folate fortification and epilepsy: As described above, folate 
is generally considered to have a protective effect against 
neuropsychiatric disorders (102), however, in epilepsy, 
high dose folate potentially presents significant ex-
citatory effects if the blood-brain barrier mechanism for 
folate is circumvented (79). Although it is only a puta-
tive mechanism, the excitatory properties of the vitamin 
are mediated by blocking or reversing GABA mediated 
inhibition (102). The epileptogenic reactions resulting 
from high levels of folate were observed in animal mod-
els (103,104), therefore an increase of folic acid intake 
via mandatory fortification is an emerging issue in the 
context epilepsy. In apparent contrast, certain types of 
anticonvulsants reduce blood folate level (105,106), 
which is a critical concern for women of childbearing age 
with epilepsy, with links to birth defects having been re-
ported (107). Further studies with respect to the effects 
of mandatory fortification on epilepsy, particularly in 
women of childbearing age are required (107). 
Elevated folate level and vitamin B12: How increased folate 
level influences neurological disorders related to vitamin 
B12 deficiency is a potential issue in relation to man-
datory folic acid fortification. Vitamin B12 is a critical 
coenzyme for methionine synthase (MS), and is related 
to folate metabolism via the action of methionine 
biosynthesis. Therefore, insufficiency may interrupt the 
conversion of 5-CH3H4PteGlu to H4PteGlu (folate-trap) 
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(108). Furthermore, in CNS tissue, MS dependant Hcy- 
methylation is the sole pathway for methionine pro-
duction (no betaine is involved in the pathway in this 
tissue) (109). 

The symptoms of vitamin B12 deficiency are similar to 
those of folate. In an early study by Wills et al. (110), 
two types of anaemia (tropical and pernicious anaemia) 
responded to crude liver extract containing folate, al-
though pernicious anaemia relapsed during treatment 
(111). Theoretically, H4PteGlu could be metabolized 
during purine and pyrimidine synthesis even with im-
paired MS, and folate therapy may seem to be effective 
in improving the symptoms of vitamin B12 deficiency, 
while neurological lesions progress (112). For these rea-
sons, elevated intake of folate (PteGlu) may potentially 
mask vitamin B12 deficiency and prevent early diagnosis 
of symptoms (megaloblastic anaemia), leading to a late 
diagnosis when neurologic sequelae have already oc-
curred. This condition -pernicious anaemia- involves de-
myelinations and is irreversible (111). 

A decline in cognition in the elderly is another poten-
tial issue of vitamin B12 related to mandatory folic acid 
fortification (113). Morris et al. (114) suggested that 
participants with a high intake of folate combined with 
low blood vitamin B12 showed faster cognitive decline, 
compared to a group with high folate intake and high to-
tal vitamin B12 intake. A report containing three Austra-
lian cohorts also suggested impaired cognitive perform-
ance in the elderly group with combined low serum vita-
min B12 and high red cell folate (115). 

10 to 15% of the elderly population (over 60 years) are 
not taking sufficient vitamin B12 (116), and the low level 
of blood vitamin possibly stems from many reasons in-
cluding, lack of intrinsic factor, atrophic gastritis and 
other gastrointestinal issues (Crohn's and celiac dis-
ease) as well as drug and alcohol consumption (102). 
The prevalence of low serum vitamin B12 in the absence 
of anaemia and macrocytosis has not changed since the 
implementation of mandatory folic acid fortification in 
the US (117). However, in a Canadian study, the preva-
lence of people who have supraphysiological serum fo-
late levels (45 nmol/L) with vitamin B12 deficiency in-
creased from 0.09% (pre-) to 0.61% (post-fortification) 
(118). As a result, in the US, the Food and Nutrition 
Board of the Institute of Medicine established a tolerable 
upper intake level for folate (UL) of ＜1000 g per day 
(111). Continuous monitoring of vitamin B12 levels and 
the balance between this B-vitamin and folate is re-
quired.

Increase of colorectal cancer risk
Colorectal cancer (CRC) is the best studied disease for 
which folate is considered to be an aetiological factor 
(119). A number of large studies indicated that folate is 

clearly related to CRC with high folate intake reducing 
CRC risk by about 40% when compared to low folate in-
take (3,119-122). The Nurses’ Health Study conducted 
in the US also showed that there was a 75% reduction in 
CRC risk in women using multivitamin supplements 
containing 400 g of PteGlu (2). It concluded that high 
dose folic acid supplements could reduce CRC risk 
(123), and that high serum and erythrocyte folate might 
have a protective effect against CRC (124,125). 

Concerns have been raised that increased CRC occur-
rence has been observed in countries where mandatory 
folic acid fortification has been implemented, although 
meta-analyses do not suggest clear trend towards 
(126,127). Hirsch et al. (128) examined the rates of hos-
pital discharges of patients with colon cancer in Chile. 
The results suggested, since folic acid fortification was 
implemented (2001∼2004), CRC has increased by 
162% in the 45∼64 year group and by 192% in the 
65∼79 year group, compared to the pre-fortification pe-
riod (1992∼1996). An increased CRC incidence after 
folic acid fortification in Canada and the US was also re-
ported by Mason et al. (129). The absolute occurrence 
rate of CRC peaked in 1998 (US) and 2000 (Canada), 
which is independent of an increased rate for colorectal 
endoscopy. 

These contrasting results could form the basis for a 
number of hypotheses: Firstly, folyl vitamers may have 
different roles in cellular metabolism. Researchers have 
already observed differential effects of vitamins due to 
their source or chemical from (synthetic or natural) in 
protecting against cancer occurrence (130). In a study of 
oesophageal cancer cases, intake of methyl folate from 
food was associated with a reduced risk for oesophageal 
adenocarcinoma, while a high level of PteGlu from sup-
plements was associated with an elevated risk of pre-
cancerous lesions (131). In line with this, natural dietary 
folate may have protective effects with respect to CRC 
risk, whereas PteGlu from supplements and fortification 
may augment disease risk (132). 

Another hypothesis is that increased folic acid intake 
may promote the proliferation of pre-existing neoplasms. 
As neoplastic cells have much higher rates of prolifera-
tion compared to normal tissue (133), supplementary 
folic acid intake could be a growth factor for neoplastic 
cells (129). In the Aspirin/Folate Polyp Prevention 
Study, participants in the group treated with folic acid 
were administered 1000 g of PteGlu per day for 5 
years. This administration did not decrease the risk of 
adenoma in the large intestine, and it is possible that the 
folic acid supplementation may have contributed to the 
recurrence of colorectal adenomas (134).

Additionally, DNA synthesis, methylation and repair 
processes may be affected by elevated folic acid intake. It 
has been suggested that excess vitamin may initiate the 
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carcinogenic mechanism in normal colonic tissue (29). 
As a major one-carbon supplier, excess folic acid via 
mandatory fortification may affect metabolic pathways 
related to oncogenes or tumour suppressor genes, and 
consequently promote the development and progression 
of CRC. An altered DNA repair and methylation pattern 
is a potential concern, since the effect of such damage is 
tissue-, site-, and gene-specific (66,135) with such effect 
possibly remaining dormant (136). Since nation-wide 
folic acid fortification only began in the late 1990s, there 
may still be insufficient epidemiological information 
available for long term effects to be fully verified. 

Efficacy of antifolate medication 
Antifolate drugs are used in chemotherapy. Due to the 
similarity in chemical structure between antifolate drugs 
and folate vitamers, antifolates inhibit target folate 
enzymes. For instance, methotrexate (MTX), an anti-
folate, is a widely used drug that can be curative for pa-
tients with solid tumours and autoimmune diseases 
(137). It is metabolized by DHFR and depletes the intra-
cellular activated folate pool (138). It therefore leads to 
the interruption of purine and thymidylate synthesis, 
and impedes DNA replication and tissue proliferation, 
resulting in cell death. For this reason, there has been 
concern whether elevated blood folate levels due to 
PteGlu fortification may interfere with the mechanism 
and efficacy of antifolates chemotherapy.

Arabelovic and his colleagues computed MTX doses 
per patient per year (139). They compared the overall 
mean MTX doses before and after 1998 (when man-
datory folic acid fortification was instituted) for thir-
ty-six rheumatoid arthritis subjects in the US. Although 
the study involved a small number of subjects and re-
ported only preliminary data, it determined that the 
mean annual MTX dose was higher after folic acid 
fortification. 

No precise mechanism between increased dose of 
MTX and folic acid fortification has been hypothesized 
as yet. However, one in vitro study may provide ex-
perimental evidence to support this notion. Intestinal 
and renal tissues cultured in media containing a high 
level of PteGlu presented significant down-regulated fo-
late uptake, showing decreased expression of RFC, fo-
late receptor and proton-coupled folate transporter/heme 
carrier protein 1. This may suggest that chronic ex-
posure to a high level of folate leads to increased folate 
consumption required to meet the elevated metabolic 
demand (76).

Little research has been carried out on this issue, 
therefore careful monitoring of this phenomena related 
to MTX dose is needed, and should be extended to other 
antifolates and antimetabolites such as pemetrexed and 
Fluorouracil (5-FU) as resistance is a critical issue in 

therapy using antifolates (140). 

Reduction in cytotoxicity of natural killer cells 
As alluded to earlier, Troen et al. (69) reported that un-
metabolized PteGlu found in the blood circulation after 
mandatory folic acid fortification was implemented, was 
associated with decreased natural killer (NK) cell cyto-
toxicity. The association with PteGlu was also independ-
ent of circulating 5-CH3H4PteGlu and total folate. How-
ever, one in vitro experiment suggested that supple-
mented PteGlu and 5-CH3H4PteGlu did not lead to any 
changes in the NK cell cytotoxicity (141). The influence 
of PteGlu on NK cell function remains to be proven, fur-
ther studies to verify this are required. 

Photolytic conversion of PteGlu into a potential genotoxic 
product
The presence of unmetabolized PteGlu resulting from 
mandatory folate fortification may be an issue of rele-
vance given the potential for in vivo photolysis of PteGlu. 
PteGlu is photostable under anaerobic conditions (142), 
while, in the presence of oxygen and UV radiation, 
PteGlu is converted into the photolytic-degradation 
products PCA and 6-FP which can cause the cellular oxi-
dation of 2'-deoxyguanosine 5'-monophosphate (143), 
and, further, sequence-specific DNA cleavage (G resi-
due) (144,145). Altered DNA stability due to this oxida-
tion of precursor DNA monomer may be a major risk in 
carcinogenic mechanisms (145). Over supplementation 
caused by folic acid fortification in high doses may result 
in more unmetabolized circulating PteGlu in the blood 
which has the potential to accelerate DNA break-down if 
vitamin photolysis occurs. There have in fact been stud-
ies looking at the application of this photolytic product 
(6-FP) in anti-cancer photodynamic therapy (146-148), 
however any genotoxicity associated with dietary intake 
level or any disease-specific and metabolic character-
istics have not yet been clearly elucidated. Additionally, 
photo-degradation of PteGlu is accelerated by other pho-
tosensitizers such as other unconjugated pterin moieties 
(142) and riboflavin (149), and the interaction with oth-
er nutrients is still unknown. It is, therefore, a putative 
concern in skin and other cancers in the post-fortifica-
tion era (31,145).

Increased twin births
A randomized-cohort study in Hungarian and Swedish 
women showed an approximately 40% increase in twin 
births in women who took multivitamins, compared 
with women who took just trace elements (150-152). 
Increasing incidence of twin births has also been re-
ported in Chile (153) and the US (154-157). Recently it 
has been suggested that folate fortification might in-
crease the success rate of in vitro fertilization (IVF). 
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Haggarty and colleagues (158) reported that high plas-
ma and erythrocyte folate contribute to increased IVF 
success. However, it is a complex issue, since twin or 
multiple pregnancies are a risk factor for maternal and 
infant morbidity and mortality (159).

Elevated maternal folate may influence fat mass and in-
sulin resistance of offspring 
In a six year follow-up study of pregnant Indian women, 
higher maternal erythrocyte folate levels predicted high-
er offspring adiposity and higher homeostatic model as-
sessment of insulin resistance. Furthermore, high in-
sulin resistance was observed in the offspring born to 
mothers with a combination of high folate and low vita-
min B12 levels. It is hypothesised that folate trapped as 
5-CH3H4PteGlu (by vitamin B12 deficiency) and in-
creased methylmalonyl-CoA could confer elevated lipo-
genesis (160). Interestingly, a report relating high 
PteGlu intake and concentration of the vitamin in breast 
milk has been published: According to Houghton, preg-
nant women who were administrated a PteGlu supple-
ment during their pregnancy showed the presence of un-
metabolized PteGlu in their milk and low milk folate 
binding protein synthesis (161). 

Excess periconceptional folate may buffer negative effects 
of deleterious genotypes, and hence lead to gene selection 
Although still controversial, infants born in Spain fol-
lowing the recommendation for folate supplement use 
showed an increase in the frequency of mutant alleles in 
MTHFR C677T and A1298C (162). Enhanced maternal 
blood folate may increase neonatal carriage of these mu-
tant alleles which might otherwise (in a folate deplete 
environment) lead to embryo loss (162). This raises po-
tential public health issues in that these genetic variants 
have been known to be associated with multiple dis-
orders such as CRC, AD, and cardiovascular disease. In 
other words, this phenomenon might potentially influ-
ence both long term morbidity and mortality. Further-
more, survival of embryos with these MTHFR genotypes 
may lead to an increased number of women of child-
bearing aged who possess these genetic variants which 
have been known to act as risk factors for pregnancy 
complications including congenital disorders (158,162- 
164).

Folic acid fortification and autism spectrum disorder 
Periconceptional folic acid supplements have generally 
been considered protective for ASD, although precise 
causality is ambiguous (165,166). The level of plasma 
Hcy, adenosine and SAM were significantly elevated in 
mothers with ASD children (82). Studies in Norway 
(165) and the US (166) support this finding, providing 
evidence that maternal use of folic acid supplements de-

creased risk of ASD 49% and 48% in their offspring, 
respectively. 

However, recent studies also suggested that ASD oc-
currence is increasing with time, and increased intake of 
maternal folic acid supplements might be partially re-
sponsible for it (167,168). Beard et al. (167) suggested 
that increased prescribed vitamin use containing 1 mg of 
folic acid supplement was associated with increased 
ASD occurrence between 1976∼1997. Another study in 
the US analyzed data from the Center for Disease 
Control for 1994∼1999 and also generated information 
that the use of maternal folic acid supplements in-
creased the risk for ASD by approximately 2.5 times 
(168). 

Many possible theories have been given for the associ-
ation between increased ASD occurrence and folic acid 
supplements. Leeming and Lucock (169) have examined 
some of these in a recent review. Rogers speculated that 
a high intake of PteGlu increased the number of infants 
with the MTHFR C677T mutant allele. However, after 
birth, the high level of folate experienced in utero could 
not be maintained. As a result of this, methylation pat-
tern and Hcy level may be changed, and thus lead to in-
creased occurrence of ASD (170). Advanced studies pro-
posed underpinning molecular mechanisms. Elevated 
PteGlu level may dysregulate the expression of multiple 
genes related with early brain development (fragile X 
mental retardation 1, G protein-coupled receptor 37 like 
1 and testis-specific serine kinase 3) (77). Additionally, 
elevated PteGlu intake may be relevant to increased ex-
pression of GABA (type A) beta 1 receptor, and disrupt 
inhibitory synaptic transmission of neuron development 
in the embryo (171). As not much evidence exists to de-
bate the genotoxicity of folic acid supplements in the in-
creased occurrence of ASD, any information and ideas 
should be interpreted with caution. 

Inequality in folate nutrition based on ethnicity/race and 
economic status
An individual's socioeconomic background has an effect 
on their health status (172), therefore the elimination of 
health disparities across different groups within a pop-
ulation is a major concern when formulating public 
health policies (173). Research evidence suggests that 
the efficacy of folic acid fortification may be influenced 
by socioeconomic status and race/ethnicity, and the rela-
tive risk is concentrated in disadvantaged groups (174). 
The absolute risk of low erythrocyte folate was sig-
nificantly decreased via mandatory fortification pro-
grammes, however the relative ratio of low folate status 
was increased in low income groups and whites (174). 
In another study, the ratio of low daily folate intake in 
non-Hispanic white women was significantly lower than 
other non-Hispanic black and Hispanic women (175). In 
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addition, in Australia, the decreased NTD occurrence by 
voluntary fortification was only observed in non-in-
digenous offspring (62,63). The commencement of man-
datory folic acid fortification resulted in an increase of 
folate nutritional status in all socioeconomic and ethnic 
groups, however the relative risks between groups 
remains. This may be worthy of note, because any re-
maining risks may be arising across groups on a relative 
scale, even though it only accounts for a very small num-
ber of case in the population (176). It is therefore im-
portant to be mindful of the optimisation of intervention 
for targeting high risk groups to reduce the existing dis-
parities (174,177). 

CONCLUSION

The potential adverse effects that might arise from folic 
acid fortification are complex and could lead to a “fear of 
folate” if not dealt with carefully (178). However, de-
spite this, folic acid fortification has achieved its main 
goal: the reduction of NTDs along with other health 
benefits such as decreased mortality rates after stroke 
(179). In the context of the benefits to public health, the 
implementation of folate fortification should be eval-
uated taking account of nutritional condition and genet-
ic background. In particular, in countries which have al-
ready commenced fortification, monitoring the dietary 
intake and blood folate levels to determine the effective 
and safe level of folic acid fortification, along with fur-
ther studies to understand the molecular mechanisms 
underpinning adverse effects, will help to resolve and 
more clearly elucidate the concerns dealt with in this pa-
per (28). 
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