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Abstract

Background: Functionally relevant artificial or natural mutations are difficult to assess or predict if no structure-
function information is available for a protein. This is especially important to correctly identify functionally
significant non-synonymous single nucleotide polymorphisms (nsSNPs) or to design a site-directed mutagenesis
strategy for a target protein. A new and powerful methodology is proposed to guide these two decision strategies,
based only on conservation rules of physicochemical properties of amino acids extracted from a multiple
alignment of a protein family where the target protein belongs, with no need of explicit structure-function
relationships.

Results: A statistical analysis is performed over each amino acid position in the multiple protein alignment, based
on different amino acid physical or chemical characteristics, including hydrophobicity, side-chain volume, charge
and protein conformational parameters. The variances of each of these properties at each position are combined
to obtain a global statistical indicator of the conservation degree of each property. Different types of
physicochemical conservation are defined to characterize relevant and irrelevant positions. The differences between
statistical variances are taken together as the basis of hypothesis tests at each position to search for functionally
significant mutable sites and to identify specific mutagenesis targets. The outcome is used to statistically predict
physicochemical consensus sequences based on different properties and to calculate the amino acid propensities
at each position in a given protein. Hence, amino acid positions are identified that are putatively responsible for
function, specificity, stability or binding interactions in a family of proteins. Once these key functional positions are
identified, position-specific statistical distributions are applied to divide the 20 common protein amino acids in
each position of the protein’s primary sequence into a group of functionally non-disruptive amino acids and a
second group of functionally deleterious amino acids.

Conclusions: With this approach, not only conserved amino acid positions in a protein family can be labeled as
functionally relevant, but also non-conserved amino acid positions can be identified to have a physicochemically
meaningful functional effect. These results become a discriminative tool in the selection and elaboration of rational
mutagenesis strategies for the protein. They can also be used to predict if a given nsSNP, identified, for instance, in
a genomic-scale analysis, can have a functional implication for a particular protein and which nsSNPs are most
likely to be functionally silent for a protein. This analytical tool could be used to rapidly and automatically discard
any irrelevant nsSNP and guide the research focus toward functionally significant mutations. Based on preliminary
results and applications, this technique shows promising performance as a valuable bioinformatics tool to aid in
the development of new protein variants and in the understanding of function-structure relationships in proteins.
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Background
Site-directed mutagenesis is a tool used in rational pro-
tein design strategies to modify the structure or function
of a protein to adapt it to particular performance
requirements. Moreover, mutagenesis is a fundamental
tool to study the relationship between protein structure
and function, making possible the substitution of one
amino acid by another, thus isolating the contribution
of the original amino acid or the newly introduced
amino acid to the structure and function of the protein
as a whole [1,2].
However, site-directed mutagenesis-based rational

protein design strategies present a widely recognized
drawback. In order to introduce changes that could con-
fer a desired function or characteristic to a protein, it is
necessary to know, or at least to assume, something
about the protein structure-function relationship. In
other words, it is necessary to know, for each amino
acid of the protein or at least for a select group of them,
what is their particular contribution to the structure and
function of the protein as a whole.
Even for a small protein, and assuming that only a

subset of amino acids contribute to features really deter-
minant for its relevant function, the number of amino
acids to be considered is very large. For a medium-sized
protein and with no additional information regarding
the possible structure-function relationship, an exhaus-
tive search is practically impossible [3].
It is commonly known that there are certain amino

acids in a protein that are necessary and fundamental
for its activity, function or structure, and there are other
amino acids that are readily replaceable by amino acids
sharing a common characteristic, without affecting the
main features of the protein. Therefore, certain amino
acidic positions must conserve some unique properties,
which are communicated to the entire molecule, for a
given protein or protein family. When analyzing a pro-
tein family, many functionally important residues of pro-
teins can be identified because they have been conserved
during evolution. However, residues that vary can also
be critically important if their variation is responsible
for diversity of protein function and improved pheno-
types. This adds an entirely new complexity level to the
analysis [4,5].
The same type of functional variation can be observed in

nature, represented by single nucleotide polymorphisms
(SNPs) in the coding region of a given gene. SNPs can be
synonymous, often called silent mutations, or can substi-
tute a particular amino acid for another in a protein pri-
mary sequence, which is referred as to a non-synonymous
SNP (nsSNP). Prediction of the occurrence of nsSNPs in a
gene could be easily done by comparing nucleotide
sequences and detecting or predicting nucleotide changes

that occur with low-probability incidence. However,
predicting which of these mutations will have an observa-
ble effect on protein function is a much more difficult
task. This is complicated by the fact that there is often no
structure-function knowledge available about the protein.
This variation in protein function can be subtle or lead to
major phenotypic changes in living organisms. For
instance, variations in the DNA sequences of genes can
affect how humans develop diseases and respond to patho-
gens, chemicals, drugs, vaccines, and other agents.
When no structure-function information is available, it

is relevant to determine these features only from the
protein’s amino acid sequence [5]. A number of bioinfor-
matic algorithms have been devised previously to extract
this type of information from the primary sequence of a
protein [4-8]. Some of these methods have been success-
fully used for the prediction of altered protein pheno-
types caused by nsSNPs in protein genes [7-9]. Other
methods have been described to derive this information
from 3D structural data or molecular dynamics results
[10]. A different approach that incorporates machine-
learning techniques has been used to study the results of
directed evolution experiments in order to explore pro-
teins and to derive hidden structural rules [11].
For this large-scale analysis, we propose an alternative,

taking into account the contribution of each amino acid
to the general structure of the protein through their
characteristic physicochemical properties, such as
hydrophobicity, side-chain volume and charge. Each
amino acid contributes with its own physicochemical
characteristics to the entire protein, which adds to the
characteristics of the other amino acids, thus determin-
ing the relevant features of the protein, both global and
site-specific [2].
In this study, we have developed a general algorithm,

named Mutagenesis Objective Search and Selection
Tool (MOSST), which analyzes the target protein as
part of a multiple alignment to determine which are the
positions that could be mutated with or without altering
the common characteristics of the protein family, and
gives mutagenesis estimations related to the possibility
of whether a given amino acid change would have
deleterious effects on the protein. A variant of the same
method can be used to detect phenotypically relevant
nsSNPs in a gene family and separate them from amino
acid substitutions that do not have functional
implications.

Results and Discussion
Algorithm
As a summary of this work, the general algorithmic
procedure is presented in Figure 1. The left end set of
the global algorithm corresponds to the information

Olivera-Nappa et al. BMC Bioinformatics 2011, 12:122
http://www.biomedcentral.com/1471-2105/12/122

Page 2 of 22



delivered to select and design site-directed mutagenesis
strategies, while the right end set represents the key
information used to identify functionally significant
nsSNPs using the tools and statistical procedures pro-
posed in this paper. Both analytic procedures share the
same initial steps, but have subtle differences that are

exploited to get the most appropriate results for each
application.
Background of the algorithm
A general consensus in protein science states that some
amino acid physicochemical properties are conserved at
particular positions in a given protein family and some

PROPROCESSING OF
THE ANALYZED PROTEIN

MULTIPLE ALIGNMENT
USING EXTERNAL ALGORITHM

MOSST ALGORITHM

Sequence of the 
analyzed protein

1. Identify a representative group of similar proteins that 
have interesting common features

4. Calculate the average and variance for each
property at every alignment position

5. Calculate the significance of the variance for
each property in every alignment position

6. Calculate the differences of the variances
between all the property pairs at each position

7. Calculate the partial significance of
each difference at each position

8. Combine the partial significances in a 
single global significance for each position

12. Identify positions with low 
global significance and low 

significance of the variances (IDPs)

9. Estimate a critical value for the 
rejection region and the assignment
of categories to global significances

11. Calculate the sample probabilities 
of the presence of each amino acid

at each position

VDPs and functionally
significant mutagenesis 

targets

10. Determine the significant 
and very significant positions in 

the alignment

VDPs, IDPs and 
functionally

significant nsSNPs

Functionally non-disruptive
and functionally

deleterious mutations

3. Remove redundancy from
the multiple alignment

2. Perform a multiple
alignment of proteins

MOSST RESULTS
FOR IDENTIFICATION 
OF nsSNPs

Functionally non-disruptive
and functionally

deleterious mutations

MOSST RESULTS 
FOR DESIGN OF 

MUTAGENESIS STRATEGIES

Figure 1 Flow diagram of the whole MOSST algorithm. The algorithm can be alternatively used for the development of rational protein
design strategies or for the identification of functionally significant nsSNPs.
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others are not. This explains the possible variation that
can be found in any protein family to achieve the same
function and it also shows that, despite the possibility of
variation, there are particular characteristics that must
be retained in order for the protein to conserve its own
distinctive features.
Each macroscopic property of a protein is controlled

by different amino acids in its sequence with a higher or
lower degree of influence. Hence, both within the frame-
work of site-directed mutagenesis experiments and in
the detection and prediction of phenotypic effects of
nsSNPs, it is interesting to identify amino acid residues
that are relevant for a protein’s function, specificity, sta-
bility or binding interactions.
The proposed algorithm has been designed to analyze

the general conservation of each relevant physicochem-
ical characteristic at each amino acid position in a pro-
tein family (e.g. hydrophobicity, charge, volume and
shape). In this context, a protein family is predefined by
selecting relevant proteins according to arbitrary criteria
(e.g. a certain function in the case of an enzyme family,
or the conservation of a certain structure in the case of
a conserved protein fold). A protein family can also be
subdivided into subfamilies, in order to study the contri-
bution of particular amino acids to differences between
subfamilies.
Preprocessing of the target sequence
To compare the proteins belonging to a family, a multi-
ple alignment of the amino acid sequences is carried
out. The most used algorithm for these multiple align-
ments is ClustalW, developed by Thompson et al. [12]
In a multiple alignment, the algorithm tends to retain
and conserve the amino acids in each position, using a
weight matrix (for example, Blosum matrices [13] and
the Gonnet matrix [14]). An optimal alignment is
obtained using these general matrices, which guarantee
that the properties as a whole are maximally conserved
at each amino acid position of the alignment.
The preprocessing of the target protein sequence is

represented by steps 1 and 2 in Figure 1. The MOSST
algorithm subsequently analyzes this multiple alignment
to determine and quantify the statistical significance of
the conservation of different physicochemical properties
in particular positions of the protein family alignment.
To perform this analysis, the conservation of each prop-
erty is independently studied and patterns are identified
by comparing the conservation of different properties at
each amino acid position. Typical conservation cases are
defined based on these conservation patterns, which are
then used to statistically classify the amino acids as
relevant or irrelevant with respect to the conservation
of any physicochemical property in the protein and the
predicted amino acid mutability in the protein
family. Then the statistical parameters (probabilities)

determined for the conservation of each amino acid
position are used as predictors to classify possible muta-
tions in the protein family as functionally impairing or
functionally silent. Hence, these results can then be
interpreted and sorted to design mutagenesis strategies
or to identify nsSNPs.
Control of the quality of the multiple alignment
The proposed method allows identification of function-
ally relevant positions in a particular protein when the
protein is placed within a comparative reference group
in a multiple alignment. The classification procedure
gives unique results for each particular alignment, but
the statistical result for each position will strongly
depend on the quality of the alignment and nothing
prevents a priori this significance level varying between
one alignment and another.
This variation must be controlled so that the compari-

son gives coherent and reproducible results when con-
fronted to minor changes in the comparison alignment.
The proposed control of this variation, represented by
step 3 in Figure 1, is done in two ways:
Alignment quality control The quality of a multiple
alignment specifically depends on the substitution
matrices used and the negative weight contributions of
gap creation and extension. In the test performed to
check the proposed algorithm, the alignments obtained
using default ClustalW parameters gave satisfactory
results.
Control of the representativity and the redundancy of
the alignment In the proposed analysis algorithm, the
group of proteins in the alignment is supposed to be
representative of a wider protein group. If the protein
group does not include representatives of some
subgroup that has some special feature, then such fea-
ture evidently cannot be included in the analysis. This
sub-representation is impossible to detect by purely
mathematical methods, but can be solved by judiciously
choosing the proteins to be represented and analyzed,
which is a task that has to be done by a suitable expert.
On the other hand, if a subgroup of proteins is over-
represented in the analyzed group, then the protein
sample will be biased towards the characteristics of the
most represented subgroup, ignoring the characteristics
of the other subgroups. The over-representation of a
subgroup in the sample is readily detectable, as it is
possible to assess the percentage of similarity between
all the proteins in a group. If a particular group shows a
high similarity degree, i.e. high redundancy, then it is
over-represented in the sample, and the number of
proteins in that group could be reduced by eliminating
the most similar proteins.
Once a representative and non-redundant group of

proteins is found, MOSST can be used to detect func-
tionally relevant positions.
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Statistical quantification of the conservation of properties
Amino acids have physical and chemical properties that
can be directly or indirectly measured, e.g. hydrophobi-
city, polarity, charge, molecular shape, conformational
propensity and others. A numerical value is typically
assigned for the measured property to each amino acid,
whether free or associated to others in a polypeptide
chain. As side chains are different for each of the 20
naturally occurring amino acids, these numerical values
are different for each amino acid and provide a quanti-
tative ordering between them with respect to the mea-
sured property. Hence, these property values form a
scale that represents a numerical scoring for each amino
acid. Many of these amino acid properties have been
compiled in multiple non-independent “amino acid
scales” [15-50].
In this way, every amino acid is assigned a numerical

score that quantifies a particular physicochemical prop-
erty Ω (for nomenclature, see Table 1). Hence, any
group of n amino acids will have n associated scores,
XΩ,1...XΩ,n. From these scores, an arithmetical average
μΩ and a sample variance estimator sΩ can be calcu-
lated (Figure 1, step 4) as:

μ� =
1
n

n∑
j=1

X�,j (1)

σ 2
�

=
1

n − 1

n∑
j=1

(
X�,j − μ�

)2
(2)

A multiple alignment of protein amino acid sequences,
such as that obtained by using ClustalW, comprises a
given number of N positions. Each position i contains a
group of ni optimally aligned amino acids, each from a
different protein (Figure 2). As the multiple alignment
at position i can include gaps, ni is not always equal to
the number of proteins in the alignment. For example,
in the ninth position (i = 9) of the alignment in Figure
2, n9 = 6. Hence, for any given amino acid property Ω,
an average μi,Ω,n and a variance si,Ω,n can be calculated
for each position i in a multiple alignment with n
amino acids, using Eq.1 and Eq.2, respectively.
The variance si,Ω,n, as its name suggests, quantifies

the variability of the property Ω in position i. If si,Ω,n is
small, a large variation in the property Ω is not allowed
in position i, and vice versa. Therefore, si,Ω,n can be
used to quantify the conservation of the property Ω at
that position. However, si,Ω,n depends on the scale used
to measure Ω and on the number n of amino acids
compared. Hence, it cannot be used to compare the
conservation of different properties or different quantifi-
cation scales, or to compare the conservation between
positions with different numbers of amino acids.

A different scale-free and position-free standard para-
meter has to be calculated to quantify and compare the
conservation of properties in multiple alignments.
In the general case, there are 20 different amino acids

and therefore for a given number of n amino acids there
are 20n different random amino acid combinations. For
any given property, it is possible to calculate all the 20n

possible combinations of n amino acids and their asso-
ciated averages and variances. If amino acid combina-
tions are random, any particular combination will have
a probability of occurrence equal to 1/20n. Therefore,
both the average and variance associated to each combi-
nation will have a probability of occurrence equal to 1/
20n. Particularly, for a random combination of n amino
acids and any given amino acid property Ω, a discrete
probability mass function (PMFΩ,n) for the variance can
be constructed. The function PMFΩ,n(s = x) gives the
probability that the variance s of the property Ω calcu-
lated for a group of n amino acids is exactly equal to x
[51].
From the PMFΩ,n for the variance of the property Ω,

a cumulative distribution function (CDFΩ,n) can be
obtained [51]. As shown in Figure 3, if the variance sΩ

= x, then CDFΩ,n (sΩ = x) = pΩ is the probability of
the variance of a random combination of n amino acids
being between 0 and x. Thus, if pi,Ω,n in a given posi-
tion i in a multiple alignment is small, then the prob-
ability of said variance having a value equal or less than
x is very small in comparison with the probabilities of
all the possible variances in a random combination of n
amino acids, and vice versa. For example, a value of
pi,Ω,n = 0.05 means that the obtained variance si,Ω,n (or
a lower value) only occurs in a proportion of 1 to 20 (1/
20 = 0.05) in random combinations of n amino acids.
The significance of variances for every position i in

the target multiple protein alignment are calculated in
step 5 of the algorithm (Figure 1). Notably, if pi,Ω,n in a
given position i in a multiple alignment is small, the
variance si,Ω,n of the amino acid property under analysis
in that position is simultaneously small and relatively
uncommon, i.e. the amino acid selection in that position
is not random. Hence, a small pi,Ω,n implies that the
property value must be relatively invariable (i.e. con-
served) at position i, and vice versa. The closer to 0 is
the value of pi,Ω,n, the more significant this variance is
and the less random the amino acid group is at position
i.
The probability pi,Ω,n is an indicator of the degree of

conservation of any property Ω at each position i in a
multiple alignment, contrary to the use of the variance
alone. The advantages of this conservation measure are,
firstly, its independence with regard to the number n of
amino acids in the comparison (including the presence
of gaps) and, secondly, the possibility of performing
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Table 1 Nomenclature and abbreviations

Variable name Description

CDFXi,�,n+1 Posterior cumulative distribution function for the values of the property Ω at position i, given the previously known group of n
amino acids present in the multiple alignment at such position

CDF(Ω1,Ω2),n Cumulative distribution function of the absolute difference between the variances of any two properties Ω1 and Ω2 for a
random combination of n amino acids

CDFΩ,n Cumulative distribution function for a random combination of n amino acids and a given property Ω

H0 Null hypothesis in the hypothesis test for differences

H1 Alternative hypothesis in the hypothesis test for differences

i Position number in the multiple alignment

IDP Invariable determinant position

j or k Amino acid numbering sub-index

L Total number of physicochemical properties considered in the MOSST analysis

M Number of possible pairwise combinations (subsets having two elements) of properties
=

(
L

2

)

n Number of amino acids in a multiple alignment position (without taking gaps into account)

N Total number of positions in the multiple alignment

N(μ,s) Normal distribution function with unknown parameters μ(mean) and s (variance)

ni Number of amino acids in position i of the multiple alignment (without taking gaps into account)

nsSNP Non-synonymous single nucleotide polymorphism

p’i,(Ω1,Ω2),n = 1 - pi,(Ω1,Ω2),n
Level of significance of the null hypothesis H0 for the difference of the variances of the properties Ω1 and Ω2 at position i of a
multiple alignment containing n amino acids

p’i,(Ωr,Ωs),n = 1 - pi,(Ωr,Ωs),n
Level of significance of the null hypothesis H0 for the difference of the variances of the properties Ωr and Ωs at position i of a
multiple alignment containing n amino acids

p’m Value of the mth level of significance, obtained from the set of M levels of significance of the differences between variances for
all the possible pairwise combinations of properties, sorted in ascending order, for a given position i of a multiple alignment

p(Ω1,Ω2) Probability of getting a certain value or less for the absolute difference Δs(Ω1,Ω2) between the variances of any two properties
Ω1 and Ω2

PDFXi,�,n+1 Posterior probability distribution function for the values of the property Ω at position i, given the previously known group of n
amino acids present in the multiple alignment at such position

Pi Global probability of the null hypothesis being true considering all the properties together at position i, i.e. probability of all the
variances being equal at position i of a multiple alignment

pi,(Ω1,Ω2),n Probability of getting a certain value or less for the absolute difference Δs(Ω1,Ω2) between the variances of any two properties
Ω1 and Ω2 at position i of a multiple alignment containing n amino acids

pi,(Ωr,Ωs),n Probability of getting a certain value or less for the absolute difference Δs(Ωr,Ωs) between the variances of any two properties
Ωr and Ωs at position i of a multiple alignment containing n amino acids

pi,Ω,n Cumulative probability of getting a certain value or less for the variance (si,Ω,n) for a given property Ω in position i of a multiple
alignment containing n amino acids

PMFΩ,n Discrete probability mass function for a random combination of n amino acids and any given property Ω

pΩ Cumulative probability of getting a certain value or less for the variance for a given property Ω

Qj,i Global probability for the occurrence of the amino acid j considering all properties together at position i in the multiple
alignment, i.e. probability of the amino acid j satisfying all the physicochemical requirements at position i

qj,i,Ω,n+1 or
qj,i,�r,n+1

Probability of the amino acid j (any of the 20 natural amino acids) to be present at position i (containing n amino acids in the
multiple alignment analyzed) in a new protein not included in the multiple alignment, according to property Ω or Ωr

r or s Property numbering sub-index

VDP Variable determinant position

VIP Variable irrelevant position

x Unknown quantity or variable

Xi,Ω,j or Xi,�r,j Measure, value or score of the physicochemical property Ω or Ωr for the amino acid j at position i of a multiple alignment

XΩ,j Measure, value or score of the physicochemical property Ω for the amino acid j

Δs(Ω1,Ω2) Absolute difference between the variances of any two properties Ω1 and Ω2

Δsi,(Ω1,Ω2),n Absolute difference between the variances of any two properties Ω1 and Ω2 at position i of a multiple alignment containing n
amino acids

Δsi,(Ωr,Ωs),n Absolute difference between the variances of any two properties Ωr and Ωs at position i of a multiple alignment containing n
amino acids

μ Mean (of a normal distribution)
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scale-free and position-free comparisons between con-
servations at different positions and using different
scales or properties. Interestingly, the probability value
pi,Ω,n could also be used as a significance value in
hypothesis tests for the obtained variance si,Ω,n.
Determination of mutationally relevant positions
Ideally, each property Ω is unique and mutually inde-
pendent, and its contribution to the global structure and
function of a protein is relatively important. For an
amino acid position i in a multiple alignment, and given
a cumulative probability pi,Ω,n for each amino acid
property, we define three possible cases into which the
relationships between the different probabilities pi,Ω,n

for each amino acid property at a position i could be
classified a priori. In Figure 4, these three possible cases
are shown with reference to three different amino acid
scales. These three cases, which are defined in the fol-
lowing paragraphs, can be used as a basis to determine
good mutagenesis objectives.

Invariable determinant position (IDP) The first case is
defined by obtaining a high significance level, i.e. a very
low pi,Ω,n value, for every amino acid property in a posi-
tion i. This implies a relevant conservation of all the
properties at that position. These positions are usually
identified in multiple alignments as those positions that
stringently accept only one or sometimes two different
specific amino acids and are thus readily identifiable and
visible using simple methods. The change of one amino
acid for another in the analyzed position would probably
imply a drastic change in the value of one or more
properties and therefore alter the conserved necessity
for invariability at that position, causing a partial or
total loss of some of the characteristic properties of the
protein family. If it is desired to conserve such proper-
ties, e.g. conservation of catalytic function or interaction

Table 1 Nomenclature and abbreviations (Continued)

μi,Ω,n Arithmetical average of the physicochemical property Ω in position i of the multiple alignment containing a number of n
amino acids

μΩ Arithmetical average of the physicochemical property Ω

s Variance (of a normal distribution)

si,Ω,n Sample variance estimator (standard deviation) of the physicochemical property Ω in position i of the multiple alignment
containing a number of n amino acids

sΩ Sample variance estimator (standard deviation) of the physicochemical property Ω

τi,Ω,n+1 Test statistic for the (n+1)th amino acid at position i of a multiple alignment containing n amino acids

Ω Generic physicochemical property

Ω1, Ω2, Ω3 Physicochemical properties 1, 2 and 3

Ωr, Ωs or Ωr, Ωs Physicochemical properties r and s

Figure 2 Example multiple alignment of seven protein amino
acid sequences. Each example protein has 16, 15, 15, 14, 15, 12
and 13 amino acids, respectively. The multiple alignment has a
length of 18 positions, which means that every sequence has at
least 2 gaps. The calculation of the mean and variance of the
property Ω is shown in detail for position 9 of the alignment (i = 9),
with 6 amino acids and one gap (n = 6: 1 histidine, 3 threonines
and 2 serines).

Figure 3 Typical plots of the cumulative distribution functions
(CDF) of sample variances. In these plots, sΩ is a calculated
sample variance for any combination of n amino acids and pΩ is
the associated probability of obtaining such sample variance value
for the property Ω just randomly choosing n amino acids, and CDF
profiles vary depending on the number of amino acids selected.
Continuing with the example of Figure 2, the sample variance s9,Ω,6
has an associated probability p9,Ω,6 that can be found using the
corresponding CDFΩ,n.
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sites, as would be the general case in conservative site-
directed mutagenesis studies, then these positions
should not be considered as possible mutagenesis objec-
tives. A mutation in this type of position is usually dele-
terious for the protein function in nsSNPs.
Variable irrelevant position (VIP) The second typical
case is when all the probabilities pi,Ω,n associated to var-
iances for all the amino acid properties at position i are
very high. Here, the significance of conservation of
those properties at that position is very low, i.e. conser-
vation is irrelevant. The replacement of one amino acid
by another in any of these positions should not be
determinant for the protein family, as the conservation
of any particular characteristic is not required. In other
words, the amino acids present at these positions do not
contribute fundamentally to any relevant characteristic
of the protein family. Therefore, it is expected that
mutagenesis at a variable irrelevant position should not
have a large effect on the characteristics of a protein
family. A nsSNP with these characteristics is probably
silent and does not affect protein function.
Variable determinant position (VDP) The third case
corresponds to the case where, at the analyzed position
i, there is a high conservation, i.e. a high pi,Ω,n signifi-
cance, in one property and a very low significance or
conservation in the remaining properties. Then, for this
position there is a very high tendency to conserve one
of the independent amino acid properties, which are
necessarily privileged, and a simultaneous tendency to
variability in the other groups of rather irrelevant

properties. Thus, this position is variable in the sense of
admittance of global variability of some characteristics,
but nevertheless is determinant for possession of a con-
served group of characteristics, which have to be present
to communicate common characteristics to the protein
family. This makes this kind of position a main target to
be mutated. A nsSNP in this type of position can affect
protein function in a rather unpredictable but probably
very determinant way.
A conservative mutagenesis strategy that aims to pre-

serve the main functional or interactional properties
that characterize the protein family and to selectively
alter secondary traits should be focused on mutating
only VDPs, while a non-conservative mutagenesis strat-
egy could also include IDPs. If the aim is to identify
nsSNPs, mutations that could alter protein function are
most probably located at IDPs and VDPs. Whichever
the task and the expected result would be, it is evidently
useful to identify VDPs, given their allowed amino acid
variability and the simultaneous relative importance of
conservation of one property in such position in the
entire protein family. However, VDPs are much more
difficult to find than IDPs, which makes VDPs prime
“hidden” functionally relevant positions that cannot be
readily identified by other existing automatic methods.
The following sections will describe the proposed
method to identify these positions.
Identification of Variable Determinant Positions
We described previously that the determination of the
significance values pi,Ω,n for each position i in a

Figure 4 Scheme depicting the three possible conservation cases described in the text. For each different position (i, j, k) of a multiple
alignment, the significance levels p9,Ω,6 corresponding to three amino acid properties of the example in Figure 2 (Ω1, Ω2, Ω3) are plotted, to
determine the differential conservation of the properties.
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multiple alignment is based on the CDFs of the var-
iances of random combinations of n amino acids. After
CDFs are calculated for the variance of each amino acid
property, the significance pi,Ω,n associated to each prop-
erty can be calculated at each position.
With these pi,Ω,n values we can identify in an align-

ment the VDPs described previously as hidden function-
ally determinant positions where one of the properties is
conserved, while others are not. To identify such posi-
tions (Figure 1, step 10), it is necessary to determine
whether significant differences exist between the var-
iances of the different amino acid properties at a given
position i. In fact, differences between the variance of
one property and the variances of every other could be
used as indicators of the presence of conservation of a
single property in position i. However, only significant
(not random) differences will indicate that position i is
indeed a VDP. Hence, in the following section, we
develop a method that uses hypothesis testing to identify
VDPs by quantifying the magnitude of the significance
of such differences and assigning a probability to classify
position i as a VDP.
Hypothesis test for differences
In the same way that probabilities pΩ can be calculated
and cumulative distribution functions can be con-
structed for the variance of any given property Ω, a
probability p(Ω1,Ω2) for all the possible differences Δs
(Ω1,Ω2) between the variances of any two properties Ω1
and Ω2 can be found (Figure 5). The probability value p
(Ω1,Ω2) is equivalent to the probability of the absolute
difference between variances being Δs(Ω1,Ω2) or less.
From these differences and their associated probabilities,
a corresponding CDF(Ω1,Ω2),n can be calculated for a
group of n amino acids, considering all the possible ran-
dom combinations of variances and their differences
(Figure 6).

Therefore, for every position i with n amino acids in a
multiple alignment, a hypothesis test can be devised to
test whether a given difference between the variances of
two given properties Ω1 and Ω2 is not random, i.e. Δsi,

(Ω1,Ω2),n is significant. The null and alternative hypoth-
eses for this test are, respectively:
H0: The variances of both amino acid properties are

equal (i.e. their difference Δsi,(Ω1,Ω2),n is random).
H1: The variances of both amino acid properties are

different (i.e. their difference Δsi,(Ω1,Ω2),n is not
random).
Thus, CDF(Ω1,Ω2),n is the distribution function of the

test statistic Δsi,(Ω1,Ω2),n under the null hypothesis, i.e.
random differences between the variances. Hence, CDF
(Ω1,Ω2),n (Δsi,(Ω1,Ω2),n = x) = pi,(Ω1,Ω2),n is the probabil-
ity of the difference between the variances of two prop-
erties Ω1 and Ω2 in a random combination of n amino
acids being less than x (see the example in Figure 6).
Therefore, p’i,(Ω1,Ω2),n = 1 - pi,(Ω1,Ω2),n is the probability
(or level of significance) of the null hypothesis for the
properties Ω1 and Ω2 (Figure 6). For very low values,
under certain arbitrary limits, the null hypothesis is not
significant and could be rejected in favor of the alterna-
tive hypothesis.
The partial significance of the differences between

each pair of properties is calculated in step 7 of the
algorithm. However, as there are many different proper-
ties Ω, for each position i in a multiple alignment, each

Figure 5 Scheme depicting the calculation of differences Δsi,

(Ωr,Ωs),n between pairs of sample variances for a VDP. Large
paired differences exist maximally only when one property is strictly
conserved while the others are not. This is exploited to combine
evidence by integrating individual significances from different pairs
of properties.

Figure 6 Typical plots of the cumulative distribution functions
(CDF) of the differences of sample variances. In these plots, ΔsΩ
is a calculated difference between sample variances for any
combination of n amino acids and pΩ is the associated probability
of obtaining such difference of sample variances for the property Ω
just randomly choosing n amino acids, and the CDF profiles vary
depending on the number of amino acids selected. Continuing
with the example of Figure 2, a calculated difference Δs9,(Ω1,Ω2),6 of
the sample variances between the properties Ω1 and Ω2 at position
i = 9 and n = 6, has an associated probability p9,(Ω1,Ω2),6 that can
be found using the corresponding CDF(Ω1,Ω2),n. Therefore, the
significance level of the null hypothesis H0 is p’i,(Ω1,Ω2),n = 1 - pi,
(Ω1,Ω2),n.
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pair of properties will have a corresponding significance
value for the difference between their variances. None of
these differences or their related significance levels
could be seen mathematically as the significance of the
position by itself. The significance of the position must
integrate all the individual significances in a global sig-
nificance value. If the null hypothesis is significantly
rejected for one single property when compared with all
the other properties, position i can most likely be identi-
fied as a VDP. In particular, to identify a VDP the global
significance must be maximal when all differences
except one are significant.
Integration of the individual significances
For a given position i in the alignment comprising a
group of n amino acids, every possible pair of properties
Ωr and Ωs will have a difference Δsi,(Ωr,Ωs),n between
their respective variances, and a significance level p’i,
(Ωr,Ωs),n associated to this difference. Each comparison
between any pair of properties gives information to
prove or disprove that the variances of the properties
are different. Therefore, every p’i,(Ωr,Ωs),n can be consid-
ered as the significance level of a single experiment or
sampling test to reject the null hypothesis at position i.
However, the level of significance of the global null
hypothesis must take into account the level of signifi-
cance of all the differences between every pair of prop-
erty variances. Therefore, none of the p’i,(Ωr,Ωs),n alone
is able to represent the significance of the position i on
its own.
Statistically, the significance levels obtained from dif-

ferent experiments to demonstrate the same hypothesis
could be combined in order to get a composite level of
significance, as if a single experiment would be done
with the combined evidence of all those partial experi-
ments. This combination could be done using different
procedures according to the features of the particular
cases (e.g. the Fisher procedure [52,53], procedures
based on the Bonferroni inequality [54,55] and the
improved Simes procedure [55,56]). In our case, the dif-
ferences of variances between each possible pair of
properties are not independent, since the difference
between the last pair of properties is a linear function of
the others, so the Fisher procedure cannot be used.
From the other two methods, the Simes procedure gives
the best results, as its rejection region contains the
rejection region of the Bonferroni methods and it is
always more powerful than those, specially in the case
of highly dependent test statistics [56], which is sus-
pected to be our case.
We propose the use of the Simes method to combine

the significance values of the differences of variances
between all the properties, in order to obtain a global
significance value for the differences at position i (Figure
1, step 8). The Simes method can be applied in a simple

way: if p’m = p’1, p’2,... p’M is the value of the level of
significance of each difference of variances between all
the pairwise combinations of properties, in ascending
order, the value of the global significance that considers
all the individual partial significances for position i is:

Pi = min
(

M
m

p′
m

)
(3)

The global probability Pi represents the probability of
the null hypothesis being true, given the values obtained
for the differences of variances between different prop-
erties. In our case, Pi is the probability of all the var-
iances being equal. The lower this probability, the
higher the accuracy with which the null hypothesis
could be rejected, i.e. it is more probable that the var-
iances of the different properties at position i in the
analyzed multiple alignment could be different. Hence,
low Pi values could be used to directly identify VDPs in
a multiple alignment (step 10, Figure 1).
Determination of the rejection regions for the null
hypothesis
Statistical practice classifies the levels of significance of a
hypothesis test in different categorical levels, usually
“not significant”, “significant” and sometimes “very sig-
nificant”. This categorization is performed using a criter-
ium that imposes an arbitrary limit between one
significance level and another. Usually, a value of 0.05 is
the limit between “non significant” and “significant”
levels. However, multiple experimental implementations
of the proposed algorithm indicate that this limit is not
stringent enough to correctly classify VDPs apart from
IDPs and VIPs. Preliminary evidence shows that posi-
tions in a multiple alignment could be roughly classified
into one of the following categories according to their
significance levels: not significant (Pi > 0.01), significant
(0.0005 <Pi ≤ 0.01) or very significant (Pi ≤ 0.0005).
With this classification, critical values for the rejection

region of the null hypothesis are determined (Figure 1,
step 9) and VDPs in the target protein are those posi-
tions identified as significant or very significant (Figure
1, step 10). Accordingly, the other positions are classi-
fied as IDPs, which cannot be mutated without radically
altering the characteristics of the analyzed protein
family, and VIPs, which are not good mutagenesis tar-
gets because they are “filling” amino acids or amino
acids that contribute with indiscernible and different
characteristics to each particular protein.
Identification of Invariable Determinant Positions
The identification of IDPs can be done much more easily
than the identification of VDPs. Normally, IDPs can be
directly identified by visual inspection and looking for
complete or almost complete amino acid conservations
at any given position. However, the identification of IDPs
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can be readily implemented as a part of the MOSST algo-
rithm, using the same tools previously developed to iden-
tify VDPs. In fact, according to Figure 4, IDPs have two
characteristic features: the variances of all the amino acid
properties must have very low values (i.e. must be highly
significant) and the differences between those variances
must also be very small (i.e. differences are insignificant).
Therefore, any position i for which the global probability
Pi is classified as not significant and the probability pi,Ω,n

for every Ω is classified as significant, must be an IDP
(Figure 1, step 12).
Determination of the possibilities of mutation for each
position
Once the amino acid positions in a protein whose
mutation could be functionally significant have been
identified, the possible effects of amino acid substitu-
tions at such positions are determined in a further
step of the MOSST algorithm. A distribution analysis
of the different amino acid properties at said position
is done in order to identify a priori possible function-
ally relevant or functionally silent amino acid changes
in the protein, either to guide a rational mutagenesis
strategy or to identify non-evident nsSNPs (Figure 1,
step 11).
The proposed method determines the probability of

an amino acid being present at a determined position
using a statistical method based on the Student t-test.
This procedure starts with the previously calculated
average (μ i,Ω,n) and variance estimator (si,Ω,n) at a
position i of the multiple alignment. For each position,
each amino acid property is assumed to have a normal
distribution N(μ,s), with unknown parameters μ and
s. This assumption is reasonable, because it is
assumed that at each position the average of each
scale would represent the ideal characteristic to be ful-
filled at that position and the standard deviation
would represent the accuracy level of conservation of
the characteristic.
For a sample of n values Xi,Ω,1...Xi,Ω,n obtained for an

amino acid property Ω at a given position i, assuming a
normal distribution, it is possible to predict the distribu-
tion of a new value Xi,Ω,n+1. Mathematically, if we have
a normally-distributed variable X sample mean value
μi,Ω,n and a sample variance si,Ω,n for a position i, then
the test statistic:

τi,�,n+1 =
Xi,�,n+1 − μi,�,n

σi,�,n

√
1 +

1
n

for n � 2
(4)

has a Student’s t-distribution with n-1 degrees of
freedom [57]. As the probability distribution of τi,Ω,n+1

is known, it is possible to calculate the distribution of
Xi,Ω,n+1 as:

CDFXi,�,n+1 = P
(
Xi,�,n+1 � x

)
= P

(
τi,�,n+1σi,�,n

√
1 +

1
n

+ μi,�,n � x

)

= P

⎛
⎜⎜⎝τi,�,n+1 � x − μi,�,n

σi,�,n

√
1 +

1
n

⎞
⎟⎟⎠

(5)

CDFXi,�,n+1 is the posterior cumulative distribution
function for the values of the property Ω at position i,
given the previously known group of n amino acids pre-
sent in the multiple alignment at such position. From
this CDFXi,�,n+1, a probability density function PDFXi,�,n+1

can be derived. Since each amino acid naturally has one
particular value of property Ω, PDFXi,�,n+1 allows the
assignment of a probability qj,i,Ω,n+1 to each amino acid
j (any of the 20 natural amino acids) to be present at
position i in a new protein not included in the multiple
alignment (see example in Figure 7). This probability is
directly associated with the property Ω and its distribu-
tion PDFXi,�,n+1.
As each amino acid can have many different proper-

ties Ω1, Ω2... ΩL:, and each property will have a differ-
ent PDF Xi,�r ,n+1, then each amino acid will have L
associated individual probabilities to be present at posi-
tion i, which we will call qj,i,�r,n+1 for each amino acid j.

Figure 7 Scheme depicting the posterior probability density
function (PDF) of the values of a property Ω. Continuing with
the example of Figure 2, given the previously known group of n
amino acids present in the multiple alignment at position i for a
given amino acid aa having a value XΩ,aa assigned for the property
Ω, and the average for Ω at position i being μ9,Ω,6, then the
shadowed area represents the probability qaal,i,�,n+1 that the
amino acid aa could be present at the position i, according to the
property Ω.
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The combined global probability Qj,i for the occurrence
of each amino acid j at position i is calculated as:

Qj,i =

L∏
r=1

qj,i,�r ,n+1

20∑
j=1

(
L∏

r=1
qj,i,�r ,n+1

) (6)

This combined global probability represents the prob-
ability of every particular amino acid satisfying the
requirements of all properties at position i, and there-
fore is an indicator of the functional suitability of each
amino acid in such position.
Quantification of the functional suitability of the amino
acids
The former multi-property consensus method allows
calculation of the global probability of occurrence of
each amino acid at each position in a multiple align-
ment. The probability value can also be used as an indi-
cator of the functional impairment introduced by each
amino acid at every analyzed position i. If the require-
ments of the functional properties that have to be ful-
filled in position i lead to a high probability for an
amino acid to be in that position, it means that the
amino acid does not impair the function of the protein.
Inversely, if the probability is low, such amino acid can
be functionally deleterious.
For this last step of the analysis, a method based on

the sorting of these probabilities of occurrence in des-
cending order and the construction of a scree plot with
the ordered values can be used. An example of this pro-
cedure is shown in Figure 8. The scree plot at each
position i could help in getting the preference level or

reliance with which the analyzed position could be
occupied by each of the amino acids, based on the
required physicochemical properties at such position in
the protein. An analysis of the scree plot and its curva-
ture can serve to identify a cut point (as indicated in
Figure 8) in the curve. This point can be determined by
using a “fall contrast” or “scree” criterium [58], where
the highest probability factors are chosen up to a point
where the curve becomes approximately horizontal. A
second criterium can also be used, where the highest
probability factors are chosen to explain together at
least a predefined high probability (usually 95%) or until
the last factor has a non-significant probability (usually
less than 5%). Any criterium will define two sections in
the scree plot: on the left a curve section including an
amino acid group with the highest probabilities and on
the right a section with those having the lowest prob-
abilities. This classification allows separation of a high-
probability group comprising functionally non-disruptive
amino acids from a low-probability group of functionally
deleterious amino acids. Hence, Qj,i can be used as a
basis to identify non-evident nsSNPs and to design
rational site-directed mutagenesis strategies for each
position i in a protein.

Implementation of the algorithm
Three main issues were solved to implement the algo-
rithm. These aspects will not be analyzed in detail in
this paper, because they are not directly related to the
algorithm theory and design, although they must be
solved to get a good implementation thereof.
The first aspect is the selection of suitable property

vectors that could be successfully used in order to get
the most accurate information from the MOSST algo-
rithm and to exploit the classification abilities of the
algorithm in an optimal way. Though the general algo-
rithm has been presented as being able to use any group
of property vectors to perform the proposed analysis, we
selected a minimal number of three normalized vectors
that are mathematically orthogonal to each other to
optimize the statistical potency of the results.
The second issue is the calculation of the probability

distributions of the averages and variances of the
selected optimal vectors, which are necessary for the
implementation of the algorithm as set forth in the pre-
sent paper. We have assessed that the Law of Large
Numbers is not accurately applicable for combinations
of less than 30 amino acids given the optimal vectors
previously obtained. Even though the probabilities of the
different amino acid combinations could be calculated
in a direct way, it is computationally difficult and time-
consuming for combinations of more than 5 or 6 amino
acids. We developed a direct calculation method to get
an approximate distribution for combinations from 2 to

Figure 8 Scree plot of the probabilities Qj,i of each amino acid
being present at position i. The probabilities are sorted from
highest (left) to lowest (right). A fall contrast or scree criterium is
applied to this plot to identify a cut point in the curve (dashed
line), where the highest probability factors are chosen up to a point
where the curve becomes approximately horizontal.
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30 amino acids, which analysis and explanation is out of
the scope of this work.
The last aspect is the determination of the right signif-

icance levels that should be taken into account to clas-
sify each position as “non significant”, “significant” and
“very significant” when determining the rejection regions
for the null hypothesis of equality of variances. As we
mentioned earlier, values of 0.01 and 0.005 could be
preliminary used to select between these classifications,
which are more stringent than those values usually used
in statistical testing. However, our experience imple-
menting the algorithm has shown that the most interest-
ing positions in a protein alignment (which we called
“primary positions”) have to be determined case by case,
based on characteristics of each different multiple
alignment. In our experience, the implementation of the
algorithm included this data analysis in order to get the
most out of the results of the general algorithm.
The MOSST algorithm has been implemented with the

details mentioned above as a Graphical User Interface
(GUI) in MATLAB (see Additional File 1, Additional File
2 and Additional File 3). Given the nature of MOSST
results, it is easier to display them in a graphical interface
in order to allow the user to have an integral vision over
them and to modify the parameters of the algorithm on-
the-run to obtain the best possible results for each given
analysis. One of the major advantages we devised from the
use of an interactive GUI is the definition of “primary
positions”. We defined primary positions as those “very
significant” positions that have exceptionally high mutabil-
ity scores as defined by the statistic theory behind the
algorithm. By using MOSST GUI, the user can select both
manually or semi-automatically the threshold significance
value above which a “very significant” position becomes a
“primary position” and thus a primary mutagenesis
objective.
The semi-automatic method advantage over the man-

ual method is that it helps the user to select a suitable
threshold by presenting a differential scree plot where
the user can interactively select the threshold by com-
paring the differences (step sizes) between similar
ordered significance values. The optimum threshold will
be a “very significant” significance value having the lar-
gest possible difference with immediately higher (adja-
cent) significance values. If two or more significance
values fulfill these criteria, the largest one is most appro-
priately selected. This empirical rule is applied by the
user with his/her own judgment to select a proper
threshold value.
The empirical selection of “primary positions” proved

to be an additional tool to narrow the search for muta-
ble positions in a protein family. An example of the
relevance of determining primary positions is shown in
the study of glycosyl hydrolases belonging to family 16.

Testing: mutagenesis analysis of endoglucanases
belonging to family 16 of the glycosyl hydrolases
Selection of representative proteins
MOSST was used for the analysis of representative
endoglucanases classified as glycosyl hydrolases belong-
ing to family 16. They have several appropriate charac-
teristics: (1) a very close structural and folding similarity
despite them not having a very high degree of sequence
similarity, (2) well characterized residues that participate
in the interaction with the substrates at the active site
and define the substrate specificity of the family, (3) well
characterized active residues that are indispensable for
catalysis, (4) two well defined and populated enzyme
families with distinct substrate specificities and no
known structure-function correlations, namely liche-
nases (endo-1,3-1,4-b-D-glucanases, EC 3.2.1.73) and
laminarinases (endo-1,3-b-D-glucanases, EC 3.2.1.39,
endo-1,3(4)-b-D-glucanases, EC 3.2.1.6), and (5) large
availability of experimental data, including mutagenic
studies. These characteristics were considered ideal to
test the ability of MOSST to determine functionally
relevant amino acid positions against experimentally
tested results, since this allows the analysis of amino
acid mutations purely by the effect of their side groups,
while leaving other factors (molecular structure, catalytic
properties, loop variations) outside of the analysis.
Among these enzymes, we selected Cellulosimicro-

bium cellulans’s BglII as our reference enzyme. Proteins
included in the analysis were selected by their similarity
with BglII and both the conservation of folding pattern
and enzymatic activity. Table 2 shows the representative
set of proteins selected and included in this study.
Obtention of a multiple alignment
Following the flow diagram of the MOSST algorithm,
these proteins were aligned using ClustalW (http://www.
ebi.ac.uk/clustalw/, [12]). Preliminary tests using differ-
ent substitution matrices and different gap opening and
extension penalties were performed. The combination
that exhibited best results was obtained using an identity
matrix as substitution matrix and minimal values for
gap creation and extension. This combination empiri-
cally gives more importance to conserved sectors, which
in our case correspond to secondary structure and fold-
ing sectors that are conserved in the family. This strat-
egy is concordant with the fact that the studied group of
proteins is a very structurally conserved enzyme family,
even when conservation is lower at the sequence level
due to the difference in activities of the proteins.
Redundancy analysis
For this objective, a protein clustering dendrogram and
an agglomeration plot were constructed according to
the similarity percentage between the proteins in the
multiple alignment (Figure 9). An optimal separation
between sub-families is obtained using a similarity
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percentage cutoff of 86%. Three groups of similar
enzymes were represented by only one of them: (i) syn-
thetic hybrid lichenases 17 and 18 from Bacillus macer-
ans / Bacillus amyloliquefaciens (enzyme numbers are
given with reference to the order numbering in Table
2), (ii) Bacillus amyloliquefaciens (12) and Bacillus subti-
lis (13 and 14) lichenases, and (iii) two enzymes from
Rhodothermus marinus, one of them classified as a lami-
narinase (6) and the other classified as a lichenase (7).

The remaining proteins, even those belonging to the
same species, are considered different enough to be
included in the analysis with no added redundancy.
It can be observed in the dendrogram a subdivision of

the proteins in the alignment in two large sub-families
corresponding mainly to the division between lichenases
(left-hand sub-family in the dendrogram) and laminari-
nases (right-hand sub-family). This observation indicates
that the information contained in the multiple

Table 2 Analyzed endoglucanases belonging to glycosyl hydrolases family 16

# Swiss Prot
code

EMBL or GenBank
code

Description Organism Enzymatic
classification

1 O68641 AF052745 b-1,3-glucanase II (BglII) Cellulosimicrobium cellulans Laminarinase

2 Q51333 U56935 b-1,3-glucanase IIa (BglIIa) C. cellulans Laminarinase

3 Q60039 Z47974 Laminarinase Thermotoga neapolitana Laminarinase
(EC 3.2.1.39)

4 Q9WXN1 AE001690 Laminarinase Thermotoga maritima Laminarinase

5 O73951 AF013169 endo-b-1,3-glucanase (precursor) Pyrococcus furiosus Putative laminarinase

6 O52754 AF047003 Laminarinase Rhodothermus marinus Laminarinase

7 P45798 U04836 b-glucanase (precursor) R. marinus Lichenase
(EC 3.2.1.73)

8 Q45095 JN0772 b-1,3-glucanase bglH (precursor) Bacillus circulans Putative lichenase

9 P23903 M34503 Glucan endo-1,3-b-glucosidase A1 (precursor) B. circulans Laminarinase
(EC 3.2.1.39)

10 Q9Z3Q2 AJ225896 endo-1,3-1,4-b-glucanase eglC Rhizobium meliloti Putative lichenase
(EC 3.2.1.-)

11 O33680 U89164 endo-1,3-1,4-b-glucanase exsH R. meliloti Putative lichenase
(EC 3.2.1.-)

12 P07980 M15674 b-glucanase (precursor) Bacillus amyloliquefaciens Lichenase
(EC 3.2.1.73)

13 Q45691 U60830 endo-b-1,3-1,4-glucanase Bacillus subtilis Putative lichenase

14 P04957 X00754 b-glucanase (precursor) B. subtilis Lichenase
(EC 3.2.1.73)

15 - CAA81096 (Z25877) hybrid endo-1,3-1,4-b-glucanase (synthetic
construct)

Bacillus macerans / B.
amyloliquefaciens

Putative lichenase

16 P27051 X57279 b-glucanase (precursor) Bacillus licheniformis Lichenase
(EC 3.2.1.73)

17 - CAA81092 (Z25873) hybrid endo-1,3-1,4-b-glucanase (synthetic
construct)

B. macerans / B. amyloliquefaciens Putative lichenase

18 - CAA81094 (Z25875) hybrid endo-1,3-1,4-b-glucanase (synthetic
construct)

B. macerans / B. amyloliquefaciens Putative lichenase

19 P45797 X57094 b-glucanase (precursor) Paenibacillus polymyxa Lichenase
(EC 3.2.1.73)

20 P29716 X58392 b-glucanase (precursor) Clostridium thermocellum Lichenase
(EC 3.2.1.73)

21 P29716 X63355 (JS0611) b-glucanase (precursor) C. thermocellum Lichenase
(EC 3.2.1.73)

22 O14412 U63813 b-glucanase (precursor) Orpinomyces sp. PC-2 Lichenase
(EC 3.2.1.73)

23 P37073 M84339 (A48378) b-glucanase (precursor) Bacillus brevis Lichenase
(EC 3.2.1.73)

24 Q59328 X89732 Endo-1,3(4)-b-glucanase C. thermocellum Laminarinase
(EC 3.2.1.6)

25 Q26660 U49711 b-1,3-glucanase Strongylocentrotus purpuratus Putative laminarinase

26 - U42580 (AAC96462) b-1,3-glucanase Paramecium bursaria
chlorella virus (PBCV-1)

Putative laminarinase

Descriptor codes in the multiple alignment are highlighted in bold characters.
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alignment is also able to discriminate between func-
tional aspects of the enzymes.
Calculation of the statistic values and significances
For each of the positions of the non-redundant multiple
alignment, the associated variance in each of the three
principal components and the differences between the
three components were calculated. The values of said
differences were used to calculate the global significance
of each position and to classify said significance accord-
ing to the criteria exposed in the previous paper of this
series. This allowed the classification of positions in the
alignment as “non-significant”, “significant” and “very
significant”. In addition, a new category of “primary
position” was defined when the global significance of
the position is included in the higher percentile of the
values in the distribution of global variances as

described in the practical implementation of MOSST
analysis.
Figure 10 shows the graphical results obtained for var-

iance probabilities for each component and each posi-
tion, and the results obtained for global significances at
each position. In these plots, many positions can be
identified as “primary” mutagenesis targets as defined
before and also many “very significant” positions, all of
them scattered along the catalytic domain of endogluca-
nases belonging to glycosyl hydrolases family 16. How-
ever, the distribution of primary mutagenesis targets is
not uniform, but said targets are concentrated in more
or less defined sectors in the amino acid sequence of
the protein, which gives a hint about the existence of
determinant and non-determinant regions for this
enzyme family.

Figure 9 Auxiliary plots for redundancy removal in the analyzed protein family. The top dendrogram shows the clustering of proteins
according to the distance (similarity percentage) between them. The bottom plot is an agglomeration distance plot of the top dendrogram. In
both plots a horizontal line representing a similarity percentage of 86% that was taken as the limit over which two proteins were considered as
identical. This value is the minimal value within the most pronounced step in the agglomeration distance plot. The numbers of the different
proteins are the order numbers assigned in Table 2.
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Structural mapping of primary positions
The determined primary positions can be mapped over
a model of the tridimensional structure of BglII. In this
structural mapping a spatial distribution pattern of sec-
tors in which variable determinant positions are concen-
trated can be observed, i.e. the most promising
mutagenesis targets for this protein family (Figure 11).
The active site of the protein family is comprised widely
by amino acids in positions 45-49 (Asn26-Gln30), 167-
179 (Ile89-Ser99), 187-196 (Ser107-Asn116), 205-210
(His125-Gly130), 214-222 (Gly132-Ile139), 307-311
(Phe191-Phe195) and 315-319 (Leu199-Val203) in the
multiple alignment. A detailed analysis of active site
amino acids according to the algorithm implemented in
this work is shown in Figure 12. Inside the active site,
variable determinant positions were identified as the fol-
lowing amino acids using BglII numbering (and their
position in the multiple alignment indicated between
brackets): Leu29 (48), Trp90 (168), Phe93 (171), Met95
(173), Leu96 (174), Gly109 (189), Met114 (194), Gly126
(206), Val128 (208), His129 (209), Gly130 (210), Phe191
(307), Phe195 (311), Leu199 (315) and Ala202 (318).

Predictive value of the algorithm: comparative analysis of
laminarinases
The MOSST algorithm can be applied only to an
enzyme sub-family. In our case, these sub-families can
be determined from the redundancy removal dendro-
gram and are associated with enzyme function differ-
ences, as mentioned earlier. It is interesting to apply this
analysis procedure to laminarinases and compare these
results with the variable determinant positions obtained
for the entire family. Therefore, variable determinant
positions were determined for laminarinases using a
similar procedure to that used for the total protein
family, and these positions were compared with those
obtained for all family 16 glucanases. The active site
structure of BglII is represented in Figure 13 with differ-
entiated variable determinant amino acids for family 16
glucanases and variable determinant positions for the
laminarinase sub-family. Logically, if a position in the
active site is variable for laminarinases as a family then
said position cannot be significant to determine sub-
strate specificity of these enzymes. Instead, if a position
is variable determinant for family 16 glucanases but not

Figure 10 Result plots for the global significance of the positions (top) and the significances of variances in each component
(bottom). NLSDV: negative of the base-10 logarithm of the significance of the difference of variances; NLSV: negative of the base-10 logarithm
of the significance of variances.
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for laminarinases, then it is logical to assume that said
position could be relevant in the determination of lami-
narinase specificity when compared with the other
enzymes of the same family.
Under this assumption, the comparative analysis using

the MOSST algorithm shows that the following active
site amino acids (having either exposed or buried side
chains) can have a determinant function over laminari-
nase specificity: Leu29, Trp90, Gly109, Gly130, Phe191,
Phe195 and Ala202. It is interesting to asses that some
of these amino acids have been identified in the analysis
of the molecular model of BglII and other family 16 glu-
canases as amino acids that participate in substrate
binding and/or interactions [59,60]. This observation
corroborates the ability of the MOSST algorithm to
identify relevant positions in a protein.
Predictive value of the algorithm: analysis of histidine 129
Position 209 (Figure 12), which corresponds to histidine
129 in BglII, is very remarkable. This position has been
identified in the structural analysis of BglII as an amino
acid that could be implied in the chemical reactions cat-
alyzed by this enzyme [61].
The MOSST algorithm marks position 209, i.e. histi-

dine 129, in BglII as a primary mutagenesis objective
and therefore this fact can be exploited to obtain inter-
esting variants of the enzyme, possibly having different
catalytic properties due to the position occupied by said
amino acid in the active site. It should be noted that
this histidine is classified as a primary amino acid both
for the global family of proteins under study and for
laminarinases, and so a possible substrate interaction
function should be discarded, at least in a first approach.

MOSST algorithm suggests for said position the pre-
sence of a histidine residue (with a 93.5% of probability)
and the alternative presence of a phenylalanine residue
(2.4% probability) or a glutamine residue (1.5% probabil-
ity). The remaining amino acid have probabilities of less
than 1% each and their combined probabilities only
adds to 2.6%, so their presence is not considered rele-
vant in said position. The real nature and contribution
of each proposed alternative could be analyzed using
other predictive techniques, in advance to mutagenic
experiments, in order to decide which of said variants
would be the most favorable one to obtain the desired
effects in the protein. It is also possible to analyze all
the proposed alternatives, producing in the laboratory
the corresponding mutant enzymes and analyzing their
new properties.
The contribution of this amino acid and the possible

mutations performed on it to the enzymatic catalysis
could be assessed by means of an additional analysis, for
example, a kinetic analysis of a catalytic model. In a for-
mer work [61], using structural and mechanistic knowl-
edge about glycosyl hydrolases from families 7, 10, and
16, we have formulated a mathematical model that can
include ionizable residues in the active site and incor-
porating electrostatic influences via acid dissociation
equilibrium constants and chemical relationships such
as hydrogen bonds. The results of the simulations indi-
cated a clear shift in the pH dependence of activity for
the enzymes only when a close interrelation (hydrogen
bond) between a catalytic glutamate and histidine 129 is
taken into account, which is concordant with experi-
mental evidence with BglII (manuscript in preparation).

Figure 11 3D mapping of the amino acids onto the 3D structure of BglII. Mutagenically interesting positions (light grey) are mapped over
the molecular structure of the catalytic domain of BglII, selected as a representative structure of family 16 glycosyl hydrolases (order number 1
in Table 2). This figure is a cross-eyed stereogram.
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Moreover, we demonstrated that the presence of the
kind of chemical interaction proposed could provide sta-
bilization of the activity in the presence of environmen-
tal, structural, pH and electrostatic variations. The
results suggested a new way to modify, via site-directed
mutagenesis, the acid dissociation of one of the catalytic
residues in the active site independently of the other,
which could have clear advantages over the purely elec-
trostatic modifications that usually affect both residues
simultaneously.
Under the light of this previous work, MOSST analysis

results were very striking in their ability to identify this
residue as relevant even without any previous knowledge
or suspicion about its relevance or function in this
enzyme family. In our opinion, this clearly demonstrates
the usefulness of MOSST as a general tool for the
design of new site-directed mutagenesis strategies in
protein families.

Conclusions
A statistical procedure has been designed and presented
to semi-automatically identify functionally significant
mutable positions in a protein, based on the conserva-
tion of physicochemical properties. Such positions are
identified and classified into three groups, according to
the influence their mutation could have on protein func-
tion. Those in which a mutation does not alter the func-
tion and basic characteristics of the protein, but do
change them slightly, and those in which a mutation is
totally deleterious for the protein are the most relevant
positions to look for nsSNPs, while only the former are
important when trying to develop site-directed muta-
genesis strategies so that variants with improved proper-
ties could be generated.
Amino acid positions are also classified in three

groups: variable irrelevant positions (VIPs), invariable
determinant positions (IDPs) and variable determinant

Figure 12 Result plots for the amino acids that form the active site of BglII. Global significance of positions and significances of variances
for each component, for positions in the multiple alignment corresponding to amino acids that form the active site of BglII (and other family 16
glycosyl hydrolases): (a) positions 20-60; (b) positions 160-200; (c) positions 200-240; and (d) positions 290-330.
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positions (VDPs). The recognition and identification of
VDPs is especially relevant, since these are “hidden”
functionally relevant positions that cannot be easily
identified by other existing automatic methods. This
classification serves as a basis to rationally identify rele-
vant amino acid positions in a protein in the frame of a
rational design strategy or in the identification of
nsSNPs. In this way, a conservative mutagenesis strategy
that aims to preserve the main properties of a protein
family should be focused on mutating only VDPs, while
a non-conservative mutagenesis strategy could also
include IDPs. If the aim is to identify nsSNPs, mutations
that could alter protein function are most probably
located at IDPs and VDPs.
Once these key functional positions are identified, the

statistical distribution of the relevant physicochemical
properties at each protein position is analyzed to get a
list of the 20 common protein amino acids ordered
according to the global probability with which they can
conform to the required property profile of each rele-
vant position. This ordered list is divided into a group
of functionally non-disruptive amino acids and a second
group of functionally deleterious amino acids.
These results become a discriminative tool in the

selection and elaboration of rational mutagenesis strate-
gies for the protein. They can also be used to predict if
a given nsSNP, identified, for instance, in a genomic-
scale analysis, can have a functional implication for a
particular protein and which nsSNPs are most likely to
be functionally silent for a protein. This analytical tool
could be used to rapidly discard any irrelevant nsSNP
and guide the research focus toward functionally

significant mutations. This approach also has the advan-
tage that not only conserved amino acid positions in a
protein family can be labeled as functionally relevant,
but also non-conserved amino acid positions can be
identified having a functional effect.
The MOSST algorithm has been implemented as a

MATLAB GUI and used to analyze endoglucanases
belonging to glycosyl hydrolases family 16, in order to
determine interesting mutagenesis targets on them. The
analysis has indicated amino acids that could be
mutated in b-1,3-endoglucanase BglII of C. cellulans to
obtain critical changes in the enzymatic activity: putative
substrate specificity amino acid determinants for liche-
nase and laminarinase activity and determinants of pH-
activity profiles for these enzyme family, thus confirming
MOSST performance as a predictive tool for the study
of functionally relevant mutations.
The proposed methodology also has limitations, espe-

cially in that it uses only information derived from a
multiple alignment and the statistical result for each
position will strongly depend on the quality of the align-
ment and it does not prevent a priori this significance
level to vary between one alignment and another. In this
sense, the quality of the alignment is determinant and
should be carefully controlled. Moreover, the algorithm
does not give any suggestion about the real nature and
contribution of relevant amino acids to the structure
and function of the protein, but the predictions could
be analyzed using other predictive techniques or tested
by mutagenesis experiments. Another limitation is
related to the fact that MOSST operates on single posi-
tions in a multiple alignment and all statistic parameters

Figure 13 Comparative mapping of primary variable determinant positions. Primary variable determinant positions for all the studied
protein family (lichenases and laminarinases) are shown in white and black. White positions are variable determinant amino acids both for
lichenases and laminarinases, while black positions are primary variable determinant positions specific for laminarinases. This figure is a cross-
eyed stereogram.
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are calculated for each position without taking into con-
sideration the simultaneous occurrence of mutations in
other positions that can compensate for the effect of the
first. This excludes the study of correlated compensatory
mutations using MOSST in its current version.
Although the developed procedure does not give any

indication about the functional implications of the
amino acids positions identified as relevant, an unre-
lated analysis that use another type of information
beyond the statistical inference performed on the multi-
ple alignment by MOSST could shed light on their con-
tribution to the protein function or structure.
Specifically, classical methods to study experimentally
and/or predictively the structure-function relationships
in proteins can provide this kind of external informa-
tion. For example, this type of analysis has been used to
test the functional relevance of the amino acids identi-
fied by MOSST in family 16 glycosyl hydrolases. In the
case of position 209 of the alignment of these proteins,
a mechanistic-electrostatic analysis yielded an explana-
tion of the functional contribution of this amino acid
position to catalysis [61]. The implementation and test-
ing results set forth in this work show a promising per-
formance of this technique as a valuable bioinformatics
tool to aid in the development of new protein variants
and to aid in the understanding of function-structure
relationships in proteins.

Methods
Determination of optimal classification properties for
MOSST
55 properties measured by scales that are used to rate
and sort amino acids were selected from the literature,
including the most frequently used scales of hydropho-
bicity or hydrophilicity and secondary structure confor-
mational scales, as well as many others based on
different chemical and physical properties of amino
acids.
To find the underlying organization in this varied

group of characteristics and remove data redundancy,
property scales were normalized and a clustering analy-
sis was performed on them. The analysis indicated that
it is not necessary to use a larger number of scales to
obtain a more accurate classification of the natural
amino acids. The clustering analyses performed classi-
fied the 55 amino acid scales considered in 7 clusters of
variables, each cluster sharing similar characteristics and
tendencies and representing a defined physicochemical
property.
To obtain a set of independent (orthogonal) variables,

a principal component analysis was performed over the
seven vectors obtained from the cluster analysis. Three
principal component vectors were extracted from the
set of seven vectors that resulted from the cluster

analysis, these three factors representing 94.1% of the
variance within said vectors and normalized. A physical
representation was assigned to each of these factors
using correlation analyses with the original variables. An
amino acid classification test was performed using these
three orthogonal properties, which agrees with the prac-
tical biochemical experience (data not shown).

Variance and average distributions for each orthogonal
property
The cumulative distribution functions (CDFs) of the var-
iances calculated for the population of random combi-
nations of n amino acids were determined for each
extracted property, calculating the average and standard
deviation for all the possible amino acid combinations
of n = 2 ... 30 using a recursive discretization algorithm.
The distributions for combinations of higher numbers
of amino acids was estimated as equal to the combina-
tion of 30 amino acids, following the Law of Large
Numbers. A similar approach was used to calculate the
CDFs and PDFs for combinations of n amino acids. The
probability distribution function of the differences of
variances between any two components was calculated
following the same methodological approach employed
in the calculation of the PDFs for the variances of differ-
ent amino acid combinations.

Practical implementation of MOSST algorithm
MOSST results were implemented in a graphical inter-
face in order to allow the user to have an integral vision
over them and to modify the parameters of the algo-
rithm on-the-run to obtain the best possible results for
each given analysis. In order to achieve this goal, the
MOSST algorithm was implemented using MATLAB
Graphical User Interface (GUI). MATLAB also provided
the mathematical routines to allow a fast and robust
mathematical treatment of the data and results.
The use of this GUI allows manual determination of

“primary positions”, i.e. those “very significant” positions
that have exceptionally high mutability scores as defined
by the statistic theory behind the algorithm. By using
the MOSST graphical interface, the user can select both
manually or semi-automatically the threshold signifi-
cance value above which a “very significant” position
becomes a “primary position” and thus a primary muta-
genesis objective.
Additional File 1 annexed to this manuscript includes

general instructions to install and use the MATLAB
GUI implementation of MOSST, Additional File 2 con-
tains all routines for the MATLAB GUI implementation
of MOSST and exemplary alignment files for family 16
glycosyl hydrolases, and Additional File 3 is a basic user
guide to run and operate the MOSST MATLAB GUI
implementation.
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Additional material

Additional file 1: README FIRST!.pdf (Portable Document Format);
file with general information and user instructions.

Additional file 2: MOSST Essential Files.zip (ZIP format); compressed
file including all routines for the MATLAB GUI implementation of MOSST
and exemplary alignment files for family 16 glycosyl hydrolases.

Additional file 3: Basic User Guide.pdf (Portable Document Format);
user guide with short explanations and instructions to run and operate
the MOSST MATLAB GUI implementation.These additional files and
MOSST latest developments can be found at the website of the
Millennium Institute for Cell Dynamics and Biotechnology (ICDB) http://
www.icdb.cl.
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