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Introduction
Type 2 diabetes is a disease that is 
preventable but not curable and more 
than 280 million people worldwide suffer 
from this disease. Insulin resistance is the 
most important disorder and a precursor 
state of type 2 diabetes mellitus that 
occurs even before the improvement 
of hyperglycemia.[1,2] Hyperglycemia 
and high intramuscular glucose levels 
play a major role in the onset of insulin 
resistance.[3] The major causes of 
insulin resistance are owing to defects in 
insulin signaling, changes in insulin target 
genes, metabolic problems, and contrast 
in other hormones.[4‑6] Changes in gene 
expression and transportation of GLUT4 
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Abstract
Background: The aim of present study was to compare the effects of negative energy balance 
with food restriction and/or aerobic exercise on the glucose, insulin, and GLUT4 levels in diabetic 
male rats. Methods: Fifty‑six 10‑week old male Wistar rats were randomly assigned to seven 
groups: a non‑diabetic (ND) group and six diabetic groups. After an infusion of type 2 diabetes, 
the diabetic groups were given labels as well, namely diabetic control (DC) group, exercise (Ex) 
group, food restriction with standard diet (FRSD) group, food restriction with low‑carbohydrate 
diet (FRLCD) group, food restriction with standard diet combination in exercise (FRSDE) 
group, and food restriction with low‑carbohydrate diet combination in exercise (FRLCDE) 
group. Further, to induce caloric restriction (CR), food intake was reduced by 20% and given 
to food restriction consists of both of (FRSD and FRLCD).  Hundred percent food consumption 
for the Ex group was fixed, but instead, 20% of their energy intake in exercise was calculated, 
and time of daily exercise was determined. Finally, a combination of reduced food intake (10%) 
and exercise (10%) was applied in each group FRSDE and FRLCDE for 8 weeks. Results: The 
results showed that type 2 diabetes inductions had reduced glucose, insulin, and GLUT4 gene 
expression compared to the ND group (P = 0.001). However, there were significant differences 
in GLUT4 gene expression between groups after 8 weeks of intervention (P = 0.001). A post hoc 
least significant difference test show that compared to DC group, GLUT4 gene expression level 
of Ex, FRSDE, and FRLCDE groups was significantly increased 47% (P = 0.004), 60% (P = 
0.001), and 65% (P = 0.001), respectively after 8 week of intervention, but it was not significant 
or with any other diabetic groups (P > 0.05). Moreover, glucose levels were significantly higher 
in the FRLCDE, FRLCD, FRSD, FRSDE, Ex groups compared with the DC group in the same 
period (P = 0.0.01). Conclusions: It was concluded that FRSD and FRLCD combination in 
regular exercise was elevated of GLUT4 gene expression in type 2 diabetes. These results may 
help to develop new methods for the treatment of obesity and type 2 diabetes mellitus.
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are directly related to insulin resistance, 
especially in skeletal muscle.[7] Most 
studies report that type 2 diabetes reduces 
gene expression and transportation of 
GLUT4 in skeletal muscle cells.[8] Studies 
have shown that the reduction of calorie 
intake and low‑carbohydrate diet are the 
common methods to reduce exogenous 
carbohydrate availability (glycemia) and 
the prevention and/or improvement of 
type 2 diabetes.[9] There is some evidence 
that low‑carbohydrate diets reduce fasting 
plasma insulin and glucose concentrations 
in overweight and obese individuals with 
insulin resistance and in patients with type 
2 diabetes mellitus.[10] Exercise and diet are 
two certain ways to reduce calorie intake 
as well as improve insulin resistance and 
glucose homeostasis in patients with type 2 
diabetes.[11]
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It has been suggested that calorie restriction (CR) 
for 6 weeks reduces 53% of insulin resistance in rats 
that were fed a high‑fat diet.[12] Similarly, aerobic 
exercise reduces insulin resistance by the improvement 
of gene expression and transportation of GLUT4 in 
skeletal muscle cells.[13] Shicheng Cao et al. (2012) 
showed that long‑term exercise training increases the 
phosphorylation and GLUT4 gene expression in rats 
with type 2 diabetes.[14] In addition, Sung‑Tae Park 
et al. (2011) have shown that streptozotocin (STZ) 
injection reduces the amount of GLUT4 gene expression 
in the skeletal muscles of healthy rats, but exercise 
can improve GLUT4 gene expression in diabetic 
rats.[15] The diet includes decreasing total energy 
intake or decreasing one or more components of food 
(especially macronutrients).[16] A low‑fat diet (LFD) with 
high carbohydrates, combined with regular exercise, 
is traditionally recommended for type 2 diabetics. 
However, such a lifestyle is not suitable for patients 
with type 2 diabetes because high level of carbohydrates 
in the diet increases plasma glucose and insulin 
secretion, thereby increasing the risk of cardiovascular 
disease, hypertension, dyslipidemia, and diabetes.[17] 
Recent studies have created a change in our insight of 
the low‑carbohydrate diet and its interaction with type 
2 diabetes.[17] In this context, studies have shown an 
extreme correlation between low‑carbohydrate diets and 
improvement of insulin sensitivity in type 2 diabetes.[18] 
Studies have also shown that low‑carbohydrate diets 
reduce hyperglycemia in patients with type 2 
diabetes.[19,20] However, few studies have examined 
the effect of low‑carbohydrate diets on GLUT4 in the 
skeletal muscles of type 2 diabetic rats. To prevent 
or improve the health condition of type 2 diabetes, 
promoting the quality of life, reducing economic 
costs, and mortality in patients, so the mechanism of 
a low‑carbohydrate diet alone and in combination with 
aerobic exercise on GLUT4 in the muscle of patients 
with type 2 diabetes, are vital. In fact, finding ways to 
reduce the risk for obesity‑related disorders, including 
type 2 diabetes is important. Such approaches can 
include lifestyle interventions by diet and exercise. The 
aim of this study was, therefore, to test whether the 
addition of aerobic exercise to a food restriction (FR) 
and food restriction with low‑carbohydrate (FRLC) diets 
leads to greater improvements in glucose, insulin, and 
GLUT4 gene expression levels compared to FRLC diet 
alone in diabetic male rats. In light of recent evidence, 
we hypothesize that the novel combination of a FRS and 
FRLC diets and aerobic exercise represents a promising 
lifestyle strategy for the treatment of type 2 diabetes.

Methods
Fifty‑six 10‑week old male Wistar rats (body weight 
229 ± 19.5 g) were kept in separate polycarbonate cages 

(groups of four) at room temperature (23 ± 2°C) with 12 
light/12 dark cycles. The animals were randomly separated 
to seven groups: a non‑diabetic group (ND; n = 8) and 
six diabetic groups. Following an infusion of type 2 
diabetes, type 2 diabetic groups were accidently separated 
into six groups. These are the diabetic control group 
(DC; n = 8), exercise group (Ex; n = 8), food restriction 
with standard diet group (FRSD; n = 8), food restriction 
with low‑carbohydrate diet group (FRLCD; n = 8), food 
restriction with standard diet combination in exercise group 
(FRSDE; n = 8), and food restriction with low‑carbohydrate 
diet combination in exercise (FRLCDE; n = 8).

Infusion type 2 diabetes

Type 2 diabetes was infused in Wistar male rats that have 
fasted overnight, by injecting 60 mg/kg STZ (Sigma Aldrich, 
USA) 15 min after an injection of 110 mg/kg of nicotinamide 
(Sigma Aldrich, USA).[19] STZ and nicotinamide were 
dissolved in citrate buffer (pH 4.5) and saline.[21,22] The ND 
control group was injected with citrate buffer.[20] After 1 
week, blood was taken from the rats’ tail veins for diagnosis 
of diabetes. Levels of fasting plasma glucose above 
126 mg/dl were considered as evidence of type 2 diabetes.[23]

Animals and diets

According to the Association of Official Analytical Chemists 
(AOAC) and AIN‑93G formulas for the growth of rats,[24] 
rat chow diets were mixed. Two kinds of diets, namely the 
standard diet (SD) and the low‑carbohydrate diet (LCD) were 
used in this study. Where the LCD was concerned, the amount 
of starch was decreased to 24% of the original formula. 
Meanwhile, the amounts of other nutrients were chosen similar 
to the SD to ensure that there are sufficient nutrients for the 
rats to grow normally, [Table 1].[25] Food consumption by each 
group was measured for 1 week, and daily consumption of 
food was determined for all groups. Further, to induce CR, 20% 
of food was reduced consists of both of (FRSD and FRLCD). 
Hundred percent of food consumption for the Ex group was 
fixed, but instead, 20% of their energy intake in exercise was 

Table 1: Composition of rat chow diet (diet divided into 
standard and low‑carbohydrate food and given to rats 

for total protocol)
Components Standard diet Low carbohydrate 

diet
g/kg Diet % Energy g/kg Diet % Energy

Casein 200 20.2 333.3 33.8
Vitamin mix 10 ‑ 16.6 ‑
Mineral mix 35 ‑ 58.3 ‑
Sucrose 50 5 83.3 8.4
Corn starch 585 58.9 308.3 31.2
Fiber 50 ‑ 83.3 ‑
Lipid 70 15.9 116.6 26.6
Total amount (g) 1000 100 1000 100
Total calorie/kg 
diet (Kcal)

3970 3950
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calculated, and the time of daily exercise was determined.[26] 
The intensity of exercise was fixed (28 m/min),[25] but the time 
of exercise was variable to control exact negative energy 
balance (similar to 20% of their energy intake). Finally, a 
combination of reduced food intake (10%) and exercise (10%) 
was applied in two groups, namely FRSDE and FRLCDE. 
The time duration of daily exercise of the rats was determined 
according to their energy expenditure in exercise. Exercise 
training involved daily running in 2 different sessions with 15 
min’ rest between each session, for 8 weeks.[26]

Exercise training program

To adapt the rats at first week, Ex, FRSDE, and FRLCDE 
groups were exercised on a rat motor‑driven treadmill at 
speed of 10 m/min for 15 min and gradually increased up 
to 28 m/min for 60–70 min during the adaptation stage. 
The exercise started between 7 A.M and 11 A.M in an 
almost dark place.[26] To shorten adaptation phase, it was 
tried to choose runner rats. A slight electric shock was 
used for encouragements of rats. After adaptation, the rats 
ran at treadmill speed of 28 m/min (70–75% VO2 max 
~7.78 ml. 100 g. min‑1)[27] and duration of (Ex, 71 min), 
(FRSDE, 46 min), and (FRLCDE, 39 min). The duration 
was equal to 20% of Ex group and 10% of FRSDE and 
FRLCDE groups baseline energy requirements. The 
FRSDE and FRLCDE groups remained in the cage without 
exercise.

Exercise calorie expenditure

Resting oxygen consumption during exercise was assessed 
through Shepherd and Gollnick equations from running 
time, intensity, and total body weight listed in Table 2.[27] 
Resting oxygen uptake was calculated by multiplying body 
weight times 2.42 ml O2/100 g per min. Calorie expenditure 
was achieved by subtracting resting O2 consumption from 
exercise O2 uptake and multiplying by 4.86 Kcal/l O2 
(assuming an respiratory quotient (RQ) of 0.85).[27]

Exercise calorie expenditure = Exercise oxygen 
(7.77 ml O2/100 g per min – Resting oxygen 
(2.42 ml O2/100 g per min) × 4.86 Kcal/l O2 
(assuming an RQ of 0.85).[27]

Therefore, in accordance with the cited equation, exercise 
sessions designed corresponding 20% or 10% of daily 
calorie intake (DCI) through equations demonstrated 
below:

VO2 = % of DCI/4.86

Exercise duration (min) = VO2/(exercise O2 uptake ml 
O2/100 g per min ‑ resting O2 uptake ml O2/100 g per min) 
× body weight.[27]

Measurement of serum parameters

At the end of the experimental protocol, blood samples 
from the rats, which have fasted overnight, were gathered 
from their hearts. Glucose was measured by Accu‑Chek 
Active (from Iran), and Serum insulin was measured with 
an insulin ELISA kit (Kristal De Biotik from China).

Real‑time polymerase chain reaction

Total RNA was extracted from the rats’ soleus muscles. 
To prepare the total RNA, the muscles were homogenized 
in trizol solution. RNA was then isolated according to 
the manufacturer’s instructions. The extracted RNA was 
dissolved in 500 ml of diethyl pyrocarbonate (DEPC) 
water and stored at –70°C. We used optical density (OD) 
to characterize the quality and density of the extracted 
RNA. The OD was measured at a specified wavelength 
of 260 nm. The amount of 1 mg of isolated RNA from 
each sample was used to make cDNA by M‑MLV inverse 
transcriptase (TAKAR, Japan). For real‑time PCR reaction, 
we used a commercial kit (SYBR® Green PCR Master Mix, 
Applied Biosystems, USA). GLUT4 and GAPDH genes (as 
housekeeping genes) were multiplied by using (SYBR Green 
PCR Master Mix ABI, USA) and ABI step one plus device. 
The intended thermal cycle of reaction includes a step to 
activate polymerase in 95°C in 10 min followed by 40 cycles 
(95°C in 15 s and 60°C in 1 min). After the PCR was done 
and to study the primers, a temperature range from 55 to 99 
was used to derive the melting curve. The following primers 
were used: REV: CAGCGAGGCAAGCTAGA and FOR: 
GGGCTGTGAGTGAGTGCTTTC. The cycle of threshold 
(CT) of the reactions was extracted by real‑time‑PCR 

Table 2: Energy intake and expenditure through exercise and/or caloric restriction per each day
Groups Measured 

required 
food (g)

Type of food Calculated 
required 

energy (kcal)

Food 
intake (g)

Energy 
intake 
(kcal)

Exercise energy 
expenditure 

(kcal)

Negative 
energy (kcal)

% of negative 
energy 

balanced
FRSD 10 Standard 39.70 8 31.76 0 7.94 –20%
FRLCD 10.5 Low carbohydrate 41.47 8.4 33.18 0 8.29 –20%
Ex 8 Standard 31.76 8 25.40 6.352 6.35 –20%
FRSDE 11 Standard 43.67 9.9 39.30 4.367 8.73 –20%
FRLCDE 9.5 Low carbohydrate 37.52 8.55 33.77 3.75 7.50 –20%
ND 10 Standard 39.7 10 39.70 0 0 0
DC 10.5 Standard 41.68 10.5 41.68 0 0 0
FRSD=Food restriction with standard diet, FRLCD=Food restriction with low‑carbohydrate diet, Ex=Exercise, FRSDE=Food 
restriction with standard diet combination in exercise, FRLCDE=Food restriction with low‑carbohydrate diet combination in exercise, 
ND=Non‑diabetic, DC=Diabetic control
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software. We also used the 2‑ΔΔCt method to quantify the 
GLUT4 mRNA expression.

Statistical analyses

All analyses were performed using SPSS for Windows (version 
19.0, SPSS Inc, Chicago, IL, USA). A Shapiro‑Wilk test was 
applied to determine the normality of distribution of measures, 
which were found to be normally distributed. A one‑way 
analysis of variance (ANOVA) was performed to determine 
the differences in a parameter among the groups. Significant 
differences were identified using the least significant difference 
(LSD) post hoc test. All data were expressed as mean ± SD, 
and significance was set at the alpha level P ≤ 0.05.

Results
Glucose level

There were significant differences in glucose levels between 
groups after 8 weeks of intervention (P = 0.002). However, 
type 2 diabetes clearly increased the glucose serum compared 
to the ND group (P = 0.001). The post hoc LSD test analysis 
revealed that compared to DC group, glucose level of FRSD 
group was significantly decreased 14.8% after 8 week 
protocol (P = 0.002); In addition, 15.9% significant decrease 
was observed in FRLCD group in comparison to DC group 
(P = 0.001). Ex, FRSDE, and FRLCD groups fasting glucose 
level showed 13.6%, 16.5%, and 19% decrease comparing to 
DC, respectively (P < 0.01) [Table 3].

Insulin level

Insulin fasting concentration did not altered significantly in 
any diabetic groups after 8 week intervention (P > 0.05). 
However, the results showed that 2 diabetic male rats had 
a significant decrease in insulin concentration compared to 
ND group (P = 0.001) [Table 3].

GLUT4 gene expression

There were significant differences in GLUT4 gene 
expression between groups after 8 weeks intervention 
(P = 0.001). However, the results showed that type 2 
diabetes inductions had reduced GLUT4 gene expression 
compared to the ND group (P = 0.001). The post hoc LSD 
test analysis revealed that compared to DC group, GLUT4 
gene expression level of Ex group was significantly 
increased 47% after 8 week protocol (P = 0.004); In 
addition, 60% significant increase was observed in FRSDE 
group in comparison to DC (P = 0.001). In FRLCDE 
group, GLUT4 gene expression level showed 65% 

significant increase compared to DC (P = 0.001), but it was 
not significant or with any other diabetic groups [Table 3].

Discussion
Our study examined the effect of negative energy 
balance with food restriction only or combination with 
aerobic exercise on the GLUT4 in diabetic male rats. 
Diet restrictions, SD and LCD, Ex, or a combination of 
exercise and CR caused a significant reduction in glucose 
level compared to the DC group. CR increases glucose 
metabolism in rats.[28] Evidence suggests that this is owing to 
large part to increased muscle glucose utilization.[29] Studies 
have shown increased insulin sensitivity after activation of 5' 
adenosine monophosphate‑activated protein kinase (AMPK) 
in the skeletal muscle of rats during CR.[30] CR activates 
a cellular energy regulator (AMPK), a cellular manager 
that activates energy production when calorie and glucose 
levels are low. AMPK makes cells more energy‑efficient by 
facilitating glucose transport across cell membranes, which 
can reduce glucose levels in rats.[31] Furthermore, the RLCE 
group had the most significant effect on glucose reduction. 
These results are consistent with the result of a study by 
Filaire et al.[32] who reported that a combination of exercise 
and CR considerably reduced the density of blood glucose 
compared to diabetic groups.[33] Evidence from many 
studies, such as the Nurses’ Health Study[34] and Health 
Professional Addition Study[35] has shown that carbohydrate 
intake reduction has a positive correlation with improvement 
in type 2 diabetes. Reducing the intake of high‑carbohydrate 
foods is one of the most important methods of improving 
hyperglycemia in type 2 diabetic patients.[36] Many studies 
have shown that an LCD markedly lowers serum glucose 
and serum insulin levels after meals.[37,38] Samaha et al., 
have shown that there is a major decrease in fasting serum 
glucose levels in LCD diabetic groups compared to the LFD 
groups.[12] Many mechanisms can improve glucose uptake 
during and after exercise, notably those, involving the 
enhancement of muscle blood flow, insulin resistance (IR) 
turnover, insulin binding to its receptor (IR), and glucose 
is transported by stimulating GLUT4 translocation to the 
muscle cell surface.[39,40] Skeletal muscle reduces blood 
glucose during exercise, which is independent of insulin 
signaling pathways in patients with type 2 diabetes.[41] The 
results show that the RLCE group had the most important 
effect on blood glucose reduction that might be attributed 
to the combination of dietary carbohydrate reduction and 
increased glucose utilization by muscles as a result of 

Table 3: Effects of 8 weeks negative energy balance on glucose, insulin plasma levels, and GLUT4 gene expression
Group ND DC FRSD FRLCD Ex FRSDE FRLCDE
Glucose (mg/dl) 104±12.26 286±36.70# 240.125±16.96* 236.7±29.07* 244.37±27.5* 235.07±20.06* 227.87±28.27*
Insulin (υU/mL) 2.3±0.29 1.53±0.27# 1.48±0.30 1.35±0.25 1.47±0.31 1.45±0.28 1.287±0.16
GLUT4 (mRNA) 1 0.52±0.13# 0.61±0.12 0.63±0.13 0.71±0.11* 0.76±0.13* 0.8±0.14*
Data have been expressed as mean±SD. #Level of significant difference is P<0.05 compared to ND group. *Post hoc LSD revealed a 
significant difference between the groups compared to DC group (P<0.01)
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exercise. We certainly cannot suggest that this reduction 
in blood glucose is caused by the combined effect of 
exercise and FRLCDE, as identification of this process 
requires a more extensive investigation. Rats with type 2 
diabetes showed a significant decrease in insulin levels 
compared to ND rats. The injection of STZ destroys the 
beta‑cells significantly by reducing the amount of insulin 
production.[42] It is now well established that type 2 diabetes 
mellitus (T2DM) develops when beta‑cells are unable to 
supply the amount of insulin needed to maintain normal 
glucose levels.[43] However, fasting insulin density did not 
change considerably in any of the diabetic groups after the 
8‑week protocol. These results are contrary to the findings 
of a previous study conducted by Khowailed et al.,[44] who 
have reported that CR alone or in combination with exercise 
significantly decreases insulin levels. The results showed 
that reduction of type 2 diabetes induction reduced GLUT4 
gene expression more significantly than the ND group. 
Food restriction alone cannot lead to a major increase in 
GLUT4, although Ex, FRSDE, and FRLCDE groups had 
significantly higher GLUT4 gene expressions than to the DC 
group. FR and exercise stimulate the GLUT4 by different 
signaling pathways, whereby GLUT4 is translocated to the 
cell membranes and transverse tubules, where it mediates 
the transport of glucose into the muscle cells.[45‑47] Exercise 
training markedly increases insulin’s ability to stimulate 
glucose uptake in skeletal muscles and neutralize insulin 
resistance, a generic feature of type 2 diabetes. Although it 
seems that certain dimensions of the molecular relationship 
between exercise and insulin sensitivity improvement 
remain unknown, a large body of literature suggests that 
aerobic exercise improves glucose transport into muscle 
cells. The number of glucose transporters associated with 
the plasma membrane and transverse tubules increase 
sharply directly after exercise[48] with a concomitant increase 
in glucose uptake. As already mentioned, a substantial 
portion of glucose ingested after exercise is taken up by 
skeletal muscles to replenish glycogen stores.[49] Therefore, 
the recently suggested functional association between 
muscle glycogen and GLUT4 is particularly interesting.[50] 
These authors hypothesize that glycogen reduction would 
result in a larger available pool of free GLUT4 vesicles. 
This hypothesis is supported by the observation that rat 
over‑expressing GLUT1, which have dramatically increased 
muscle glycogen levels, are insulin resistant.[51,52] Exercise 
training improves the phosphorylation and expression of 
the protein kinase cascade in the activated protein kinase 
AMPK signaling pathway, which can increase GLUT4 
content, and subsequently increase glucose uptake in 
skeletal muscles. Furthermore, exercise training increases 
GLUT4 gene expression in type 2 diabetic patients.[53,54] 
The results of the present study showed that induction of 
type 2 diabetes decreased GLUT4 gene expression in the 
skeletal muscles.[47] However, exercise training alone or 
with CR could improve GLUT4 gene expressions in type 2 
diabetic patients. El‑Tablawy and Khaleel have shown that 

exercise training increases GLUT4 protein expression in 
insulin deficiency and insulin resistance on the rats’ skeletal 
muscles.[15,55]

Conclusions
Results indicated that adding exercise to the FR programs has 
any effect on the insulin levels than to the DC group, but it 
increased the blood glucose level and GLUT4 gene expression 
of diabetic groups. Exercise may be considered a treatment 
option with positive effects on obesity and metabolic changes 
in type 2 diabetes mellitus. However, the exact mechanism 
in which a combination of exercise with  FRSD and FRLCD 
affects GLUT4 needs further research. The results of our study 
show that a LCD combined with aerobic exercise is a viable 
plan for type 2 diabetes patients. However, these results may 
help to develop new approaches for the treatment of obesity 
and type 2 diabetes mellitus.
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