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Abstract
RNA-seq is a new tool to measure RNA transcript counts, using high-throughput sequenc-

ing at an extraordinary accuracy. It provides quantitative means to explore the transcrip-

tome of an organism of interest. However, interpreting this extremely large data into

biological knowledge is a problem, and biologist-friendly tools are lacking. In our lab, we

developed Transcriptator, a web application based on a computational Python pipeline with

a user-friendly Java interface. This pipeline uses the web services available for BLAST

(Basis Local Search Alignment Tool), QuickGO and DAVID (Database for Annotation, Visu-

alization and Integrated Discovery) tools. It offers a report on statistical analysis of functional

and Gene Ontology (GO) annotation’s enrichment. It helps users to identify enriched biolog-

ical themes, particularly GO terms, pathways, domains, gene/proteins features and protein

—protein interactions related informations. It clusters the transcripts based on functional

annotations and generates a tabular report for functional and gene ontology annotations for

each submitted transcript to the web server. The implementation of QuickGo web-services

in our pipeline enable the users to carry out GO-Slim analysis, whereas the integration of

PORTRAIT (Prediction of transcriptomic non coding RNA (ncRNA) by ab initio methods)

helps to identify the non coding RNAs and their regulatory role in transcriptome. In sum-

mary, Transcriptator is a useful software for both NGS and array data. It helps the users to

characterize the de-novo assembled reads, obtained from NGS experiments for non-refer-

enced organisms, while it also performs the functional enrichment analysis of differentially

expressed transcripts/genes for both RNA-seq and micro-array experiments. It generates

easy to read tables and interactive charts for better understanding of the data. The pipeline

is modular in nature, and provides an opportunity to add new plugins in the future. Web

application is freely available at: http://www-labgtp.na.icar.cnr.it/Transcriptator
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Introduction
The advent of new technologies in transcriptome studies, such as RNA-seq and micro-array,
changes the face of traditional biological research approaches. Instead of studying one or more
genes at a time, researchers are now able to measure simultaneously the genome wide changes
and the regulation of genes under any given experimental condition. There are two major tasks
are involved, first is to annotate even tens of thousands of assembled transcripts, produced by
RNA-seq experiments for an organism which does not have reference transcriptome available.
The second task, requires to analyze the significant functional behavior of up to few thousands of
differentially expressed genes. Furthermore, with the arrival of new generation sequencing tech-
nologies and its usage, it is now possible to determine the transcription of non coding RNAs.

There is a wide array of methodologies to computationally reconstruct the transcript struc-
ture and quantify it from reads [1]. However, interpreting this extremely large data into biolog-
ical knowledge is still a challenging and daunting task. For this reason, a large number of
functional annotation pipelines and databases, such as DAVID [2], QuickGO [3], ESTExplorer
[4], FastAnnotator [5] and other methods [6], were independently developed to address the
challenge of functional annotation of the large gene list coming out from RNA-seq experi-
ments. Both DAVID and QuickGO are very comprehensive databases and provide putative
functional and gene ontological term annotations for a given set of transcripts, based on
sequence similarity to known genes. These are useful tools for understanding the biological
inference of transcriptional response, as well as newly explored sequences. Despite their com-
plex and well documented functionalities, both DAVID and QuickGO usually require many
manual steps that are often not easy to implement for biologists who are unfamiliar with com-
mand line procedures. Researchers also developed web tools such as FASTAnnotator and
ESTExplorer. While the first performs the GO term, enzyme and domain annotations on tran-
scripts, the second pipeline is specifically designed for EST analysis that includes the cleaning,
assembly, clustering and functional annotation of ESTs. These analyses are not comprehensive,
as they do not include annotations for pathways, protein-protein interactions and other func-
tional information. Furthermore, they do not provide enrichment analysis for the functional
annotation terms. Such large plethora of annotation tools and pipelines makes it difficult for
the end users to decide the most suitable enrichment tool to analyze their dataset [7]. There-
fore, there is a need of a computational pipeline, with a user friendly interface, which effectively
translates transcriptomics data from RNA-seq or micro-array experiments into biological
interpretations. To achieve this purpose, we have developed Transcriptator. There are three
built-in applications in Transcriptator pipeline, the first application allows the user to function-
ally annotate the assembled reads dataset obtained from RNA-seq experiment in a fasta format.
It uses comparative genomics approach to determine closest protein hits for the differentially
expressed transcripts. Later, it carries out the functional and GO enrichment as well as cluster-
ing analysis of the expression profiles. This mode is helpful in determining the functionalities
associated to differentially expressed transcripts from non model organisms, which lacks the
referenced genome, and for which reads are de-novo assembled. In the second application, the
pipeline only requires the id’s dataset such as Uniprot Accession, Ensembl Gene, Affymetrix
3Prime IVT, Entrez Gene and Agilent to carry out the functional annotation, enrichment and
clustering analysis of the differentially expressed genes. It is useful for micro-array data and ref-
erence model organisms. The third application of Transcriptator carries out non coding RNA
prediction within the given transcript’s dataset provided in a fasta formatted file. This helps the
users to identify the non coding transcripts within the transcriptomics data under different
experimental conditions and helps in inferring their most possible role in gene regulation. Our
pipeline carries out automated BLAST (Basic Local Alignment Search Tool) [8] run on the
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Swiss-Prot and UniProt-TrEMBL databases [9] to find the most similar genes/proteins for the
assembled transcripts. Then, functional and gene ontology annotations are carried out by
QuickGo [10] (only in case of UNIPROT ACCESSION id’s) and DAVID [11] web-services.
PORTRAIT [12], a Support Vector Machine (SVM) [13] based software is integrated in the
pipeline to detect non-coding RNA in a transcriptomic data.

The advantages of our pipeline are as follows: i) it is very easy to use and informative in
nature; ii) it produces functional as well as gene ontological annotation for the given tran-
scripts; iii) it integrates the results from well established DAVID and QuickGO tools through
web services; iv) pipeline also provides a plethora of information about enriched pathways
such as KEGG [14], Panther [15], BioCarta (http://www.biocarta.com), UniProt and SwissProt
features; v) it offers a report on statistical analysis of GO enrichment and enables a biologist to
identify enriched biological themes, particularly GO terms related to biological process, molec-
ular functions and cellular locations; vi) it also provides information about the SMART [16],
Panther [15], Prosite [17], Prodom [18], PFAM [19] and InterPro [20] domains along with
protein interactions such as Mint [21], Bind [22] for the annotated transcripts; vii) it helps the
users to obtain information about the coding as well as non coding RNA in their transcrip-
tomic data and its role in the regulation of transcriptional response, leading to major biological
changes in cellular development and metabolism. [23–28].

Materials and Methods

System Architecture of Transcriptator Pipeline
Trancriptator pipeline consists of three major components: (i) BLAST analysis, (ii) Gene ontol-
ogy and functional annotation, retrieval and statistical analysis of the data, (iii) PORTRAIT
analysis section for non coding RNA prediction. It requires various levels of computational
hardware (Fig 1). This pipeline is embedded in web application written in Java and Python
scripts. The front end user interface of Transcriptator is installed on LAB-GTP server. It helps
the user’s to submit their queries using our web application interface. The core engine of the
pipeline is written in Python, it comprises of the BLAST analysis as well as different web-

Fig 1. System architecture of Transcriptator Pipeline.

doi:10.1371/journal.pone.0140268.g001
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services for functional annotation analysis from publicly available databases such as DAVID
and QuickGO. The core engine is locally installed on a interomics cluster which is connected
to LAB-GTP server. For BLAST analysis, ncbi-blast.2.2.23 stand alone package is installed on
the cluster. SwissProt and UniProt-trEMBL databases (http://www.uniprot.org/) are also
installed for BLAST run. DAVID and Quick-GO web-services are installed on the cluster for
the faster processing of results. The query of FASTA sequence datasets provided through web
application on our web server is directly transferred to our interomics cluster. Local BLAST
analysis is carried out on the local cluster implying BLAST X run on locally installed SwissProt
and UniProt databases. BLAST results are analyzed and top proteins hits id’s are used as input
for DAVID and QUICK-GO web-services to retrieve functional and gene ontological annota-
tions. The retrieved data are processed using statistical analysis section of Transcriptator pipe-
line core engine. We implemented an algorithm called PORTRAIT to predict non coding
RNA’s in transcriptomic sequences obtained from various experiments. The results are pro-
vided in the form of graphs and tabular reports, and transferred to the LAB-GTP web server
again. From the server, user can access to the information by using the job ID0s provided by the
server.

Pipeline implementation
The Transcriptator pipeline (Fig 2) is written in Python, bash and R scripts. It implements the
web services available for DAVID and QuickGO tools. For DAVID web-services, it utilizes the
available Python client source code. The Python client use the light-weight soap client suds-0.4
module for DAVID web-services [https://pypi.python.org /pypi/suds]. For QuickGO web-ser-
vices, BioServices Python package is used in the pipeline. It provides access to QuickGO and a
framework to easily implement web service wrappers (based on WSDL/SOAP or REST

Fig 2. Transcriptator pipeline: the lower panel boxes respectively show the input/output of the web interface, whereas the upper panel represents
the steps of the Transcriptator engine.

doi:10.1371/journal.pone.0140268.g002
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protocols). In this pipeline, the annotation process for transcripts sequences comprises of four
main parts: (i) finding the best hit in locally installed SwissProt and UniProt-Trembl database;
(ii) assignment of functional annotation and gene ontology terms and their enrichment from
DAVID; (iii) assignment of GO Slim terms and their analysis from QuickGO; (iv) integration
and summarization of retrieved results from DAVID and QuickGO web services. In case of ids
dataset, the BLAST step is skipped and the rest three steps are carried out. Transcriptator runs
the first step of BLAST search on the local cluster, only in case of sequence input data. The sec-
ond and third steps of the pipeline simultaneously runs to accelerate the annotation procedure.
The last step retrieves the results, processes them and generates the statistical reports in the
form of tables and charts. The non coding RNA prediction steps is carried out as separate
application of our pipeline. To add this functionality, we integrates the PORTRAIT, a Support
Vector Machine (SVM) based software our pipeline.

Identification of best hits. BLASTx program is used (with threshold E-value 0.001) to
identify the best hits for query sequences on locally installed SwissProt and UniProt-trEMBL
databases (http://www.uniprot.org/). The main goal of the first step is to find the similar
sequences within SwissProt and UniProt-trEMBL databases for the unannotated query from
the user. The output of BLASTX run is an alignment file in a tsv format. The latter, is trans-
formed into the protein list, as required input file for the DAVID and QuickGO web-services.

Assignment of Functional and Gene ontology annotation from DAVID. DAVID client
application, retrieves the functional and gene ontology annotation for every single transcript in
a query dataset. These python scripts take the protein’s list from the previous step and utilize
DAVID database to obtain information in the form of ChartReport, ClusterReport, TableRe-
port and SummaryReport. For a given query dataset, Python source code implemented within
the Transcriptator pipeline runs with default parameters to obtain the enrichment statistics for
each functional and GO term from DAVID database. ChartReport is an annotation-term-
focused view, which lists annotation terms and their associated genes under study. It also pro-
vides the Fischer exact statistics calculated for each annotation term and information about the
statistically enriched annotation terms in the query dataset. The ClusterReport displays the
grouping of similar annotation terms along with their associated genes. The grouping algo-
rithm is based on the hypothesis that alike annotations should have similar gene members.
Trancriptator carries out functional annotation analysis in two separate modes with respect to
the input data provided by the users. In case of fasta sequences, for the de-novo assembled
transcripts for which no gene-related information is available, it carries out a comparative
genomics approach, using BLASTX run for the given transcripts to obtain the closest protein
hits from the UNIPROT/SWISSPROT database. The functional enrichment analysis is carried
out for these protein hits, and by default, the specie which provides the maximum hits for
BLASTX run is taken as background population. On the other hand, if the user submits known
protein or gene ids from a reference organism to the Transcriptator pipeline, the DAVID built-
in web service is default set to select the reference organism as back ground population to per-
form the enrichment analysis. The Transcriptator also provides an additional functionality to
the users to provide their own list of proteins or gene ids, which could be used as background
population to carry out the enrichment analysis for the given list of proteins. In this scenario,
the user has to provide two distinct lists of protein ids. The functionality is currently provided
only in those cases, where id’s datasets are used as input data for annotation purpose in
Transcriptator.

Assignment and analysis of GO slim terms from QuickGO. Transcriptator employs Bio-
Services module from Python package, which provides access to many bioinformatics web ser-
vices and a framework to easily implement web service wrappers (based on WSDL/SOAP or
REST protocol). BioServices (bioservices.quickgo.QuickGO) are used to investigate the
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GO-Slim in the query dataset. GO-Slim terms are the list of GO terms that have been selected
from the full set of terms available from the gene ontology projects.

Processing of retrieved annotation. Both DAVID and QuickGO web services can pro-
duce large amount of results for the given query dataset. For the integration and summariza-
tion of retrieved results from web-services, Python and R codes in Transcriptator are
implemented to parse the results in simpler format. Transcriptator produces easy to read tables
for enrichment analysis of GO and Functional terms, clustering analysis on transcripts and
annotation assignment for every single transcript. R scripts are specifically implemented in the
pipeline, to generate an interactive chart for the distribution of functional and GO terms such
as biological process, molecular function and cellular components associated with the query
dataset of transcripts.

ncRNA prediction methodology. Transcriptomics analysis of an organisms not only pro-
vides the gene expression profiles, but also addresses the structural genomic informations for
the organisms which does not have well annotated genomes. Previous research works have
shown the differential expression of ncRNA in developmental and tissue specific condition and
also their abnormal transcriptional rewiring in various diseases, including cancer [29–31]. At
present, biologists are using high throughput sequencing of transcripts (RNA-seq) to detect the
ncRNA. RNA-seq has been experimented on a number of model genomes and it has contrib-
uted to the identification of novel ncRNAs in these species. Somehow, in case of de-novo
assembled transcriptome of non-model organism, for which well annotated reference genomes
is not available, it is difficult to predict and annotate the ncRNAs. It is possible to determine
non-coding RNAs which are differentially expressed and may or may not be part of substantial
remodeling of transcriptional response. Non-coding RNAs, unlike messenger RNAs, do not
code for protein products but instead perform unique functions by folding into higher order of
structural conformations and have regulatory effects on gene expression at both pre and post
trancriptional stage. To detect these ncRNAs, there are several methodologies and softwares,
improvising evolutionary, statistical, machine learning methods were developed [12, 32–36].
We implemented an alternative pipeline to predict non coding RNAs. Using the code, the cod-
ing potential of each transcript is evaluated by a Support Vector Machine (SVM). The predic-
tion of non-coding transcripts does not require homology information, it is generally
supported by two ab initio models such as protein dependent SVM and protein independent
SVMmodel [12, 35] for protein coding and non-coding transcripts respectively. This section
of our pipeline takes input data as fasta sequences of unknown transcripts. It carries out the
ncRNA prediction using built-in SVMmodel and generates several output files. The prediction
results for the ncRNA, for a given input multi fasta sequence dataset is provided in the form of
probability rather than p-value on hypothesis test. High probability for non coding prediction
suggests a higher reliability of results. The results for the ncRNA prediction are generated in a
tabular format, as well as dynamical graphs, for which the code is implemented in JAVA.

Web Interface
Trancriptator web application is designed using ZK framework (http://www.zkoss.org/
download/zk) and J2EE (Java 2 Platform Enterprise Edition, www.oracle.com/technetwork/
java/javaee) technologies. The modular and distributed J2EE platform is employed to integrate
technologies for the exchange of information between different applications, such as XML and
Web Services. The implementation of the Graphical User Interface (GUI) is obtained using ZK
framework, Ajax web application open-source, with XUL/XHTML (XML User Interface Lan-
guage/Extensible HyperText Markup Language) built-in based components. JFASTA library v.
2.1.2 (http://jfasta.sourceforge.net/) is used to handle FASTA format files (.fa). BIOJAVA3-ws
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module (http://www.biojava.org/docs/api/org/biojava3/ws) of BIOJAVA v. 3.0.7 API is used to
provide analytical and statistical routines, sequences manipulation such as BLAST alignment.
Lastly, the Jython interpreter v. 2.5.3. (http://www.jython.org/) is used to integrate Python0s
pipeline (Fig 3) code on Java0s platform.

Results and Discussions
Transcriptator web application provides a user friendly interface to input differentially
expressed unannotated transcripts or de-novo assembled reads from RNA-seq experiments in
multi fasta file format as well as protein/gene ids from the reference organisms. To show the
usefulness of our pipeline with respect to the other existing tools, we carried out a comparative
functionality assessment, as shown in Fig 3. The built-in flexibity to input different data for-
mats, the integrated functional annotation, and the non coding RNA prediction make Tran-
scriptator pipeline a valuable software tool for bioinformatics analysis.

Since DAVID web service limits the analysis to three thousand id’s at a given time, our web
server also allows the user to input up to three thousand transcripts sequences or id’s for anno-
tation. To test the pipeline, we carried out functional annotation analysis of five hundred and
fourty four transcripts as well as id’s dataset of more than four hundred genes. Both the tests
run successfully and generated all the results through our pipeline (for the details see case
study section). After a successful submission, a unique job ID is generated and provided as an
identifier to start the annotation. All annotation results from DAVID and QuickGO are
obtained through our server and the user can download them using the associated job ID. The
results for single job id comprise of several tables and graphs. The results for functional annota-
tion are divided into three sections. The first section contains a table with the list of the best hit
proteins with e-value from the databases for the corresponding transcript. The second section
comprises of a tables generated from the DAVID annotation analysis, such as: chartReport (for
enrichment analysis); clusterReport (for clustering analysis); tableReport for functional and
GO annotations for every single transcripts in the dataset; summaryReport with the summary
of total annotations for the given query dataset. The third section comprises of the table enlist-
ing the assignment of GO slim terms on the transcripts. The pipeline also produces charts
related to the distribution of GO terms specifically related to three categories of biological

Fig 3. Transcriptator-pipeline-assessment.

doi:10.1371/journal.pone.0140268.g003
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processes, molecular function and cellular components, respectively, for the input query data-
set. For each finished job, the related annotation results will be retained for one week on the
Transcriptator server. User can access to this information by using the job id’s provided by the
server. To test the computational efficiency of the different sections of Transcriptator pipeline,
we carried out test runs for the different kind of analysis, for distinct input data of various
sizes. The tabular results in Fig 4 show the execution time to generate the results for these tests.

Case study 1
To demonstrate the utility of Transcriptator in biological studies, we have selected a sample
dataset (five hundred and forty four unannotated transcripts) ofHydra vulgaris transcriptome,
downloaded from European Nucleotide Archieve (ENA) database (http://www.ebi.ac.uk/ena/)
which has recently been deposited at the ENA under the project number PRJEB445 and with
accession numbers from HAAC01000001–HAAC01045269 [37]. These transcripts are specifi-
cally differentially expressed in response to cadmium treatment (unpublished data of specific
differentially expressed transcripts for cadmium treatment). Cadmium is a toxic element. It
accumulates in the organisms body and produces pathogenic changes. To study the harmful
effects of cadmium accumulation in the body, previously researchers have studied the toxicity
and chemical stress due to cadmium concentration in non model organism Hydra [38]. They
have shown morphological, developmental and physical damage inHydra due to the presence
of high concentration of cadmium in the organism body. To undermine the molecular mecha-
nism of cadmium poisoning inHydra, we have investigated these cadmium specific differen-
tially expressed transcripts through our pipeline Transcriptator. We obtained number of
results for the given transcripts dataset. The results are divided into number of sections for the
easy inference and analysis of the data.

Enrichment analysis. We first calculated the enrichment of functional annotation terms.
The statistical p-value is further corrected by benjamini and bonferroni multiple testing meth-
ods and the cutoff is taken as ⩽ 0.05. We obtained the various categories of functional annota-
tion terms which are enriched within the list of five hundred and forty four transcripts. In Fig
5, we are showing the top enriched terms with the best p-values. These terms are related to
Uniprot sequence feature, SMART and INTERPRO domains and KEGG pathway. It is obvious
from the enrichment results, UP-SEQ FEATURE:MyTH4 domain is highly enriched with a
fold change around 170. The other significant functional annotation terms are SP-PIR key-
word: metal binding (fold enrichment 1.94), Hedgehog signaling pathway (fold enrichment
18.75) and INTERPRO domains such as unconventional myosin domain (fold enrichment
80.56) and major facilitator superfamily MFS1 domain (fold enrichment 12.22).

Fig 4. Performance of Transcriptator pipeline: it summarizes the computational efficiency of our pipeline, with respect to time, to generate the
results for different analysis, for the input data of various sizes.

doi:10.1371/journal.pone.0140268.g004
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The MyTH4 domain is present inmicrotubule-based kinesin motors and actin-based myosin
motors proteins, which generate movements required for intracellular trafficking, cell division,
and muscle contraction. There is an evidence that the MyTH4 domain of Myosin-X (Myo10)
binds to microtubules and thus could provide a link between an actin-based motor protein and
the microtubule cytoskeleton [39]. The microtubule cytoskeleton is responsible for the structure
of cell and we observed the differential regulation in these proteins during the morphological,
developmental and physical damage inHydra in response to cadmium poisoning. The role of
myosin protein is also implicated in the elongation of filopodia, which function as tentacles that
explore and interact with cell surroundings to determine the direction of cell movement and to
establish cell adhesion [40]. It also plays an important role in regeneration process ofHydra and
its embryogenesis [41]. It was found that heavy metals such as copper, cadmium and zinc were
accumulated in the tissues ofHydra during direct exposure to the metals in water and also indi-
rectly through feeding on contaminated prey [42]. With the previous understanding of heavy
metal accumulation in the Hydra tissue, we also obtained “metal binding” terms as enriched.
We also retrieved the Hedgehog signaling pathway as enriched KEGG pathway in our tran-
scripts dataset. It is a signaling pathway that transmits information to embryonic cells required
for proper development. The Hedgehog signaling pathway is one of the key regulators of animal
development and is present in all bilaterians. Recent studies, define the role of Hedgehog signal-
ing in regulating adult stem cells, involved in maintenance and regeneration of adult tissues
[43]. Hedgehog (Hh) family of secreted signaling proteins plays a crucial role in development
and morphogenesis of a variety of tissues and organs inHydra vulgaris.

Clustering analysis. We determine the common functionalities within the deregulated
genes, in response to cadmium treatment inHydra vulgaris. These results help users, to under-
stand the over all behavior of transcriptomic regulation. It helps in the classification of the dif-
ferentially regulated genes, on the basis of common functional repertoire. For example in Fig 6,
we have shown top two clusters, representing two broader categories of functionalities such as
protein signal transduction and membrane transport as significant. These functional terms are
enriched within the common set of genes. The cut off value for clustering is taken as enrich-
ment score greater than 0.70. This analysis put a picture of transcriptomic regulation under a
given experimental condition on a broader spectrum.

Annotation reports. Transcriptator does not only provide an annotation details for the
Gene Ontology (GO) terms, but also try to cover several other realms of functionalities such as
pathways, domains and also GO-Slim terms. All these informations help users to make their
biological understanding much better. For example, in case of the given query dataset, the GO

Fig 5. Enrichments analysis of functional annotation terms which are significantly distributed among
the test data set ofHydra vulgaris transcripts.

doi:10.1371/journal.pone.0140268.g005

Transcriptator

PLOS ONE | DOI:10.1371/journal.pone.0140268 November 18, 2015 9 / 17



terms annotation table (see S1 Table) shows all the gene ontology terms belonging to biological
processes, molecular functions and cellular components, specifically associated to each tran-
script represented by their most closest homologous protein. In our results, we also provide
parsed blast result to the users, so they can easily identify the closest homologous protein for
each given transcript. In pathway annotation table (see S3 Table), KEGG and Panther annota-
tions information are provided to the user. Similarly, domain (see S2 Table) report shows the
annotations details for the INTERPRO, SMART, PIR domains with respect to each closest pro-
tein associated to the transcript. Trancriptator pipeline also provide another table for GO-Slim
terms (see S4 Table), whereas specific GO terms are merged into broader categories to remove
the redundant information.

Distribution Plots. Along with the tabular reports, Transcriptator pipeline produces a
series of dynamic distribution plots. Our pipeline collects the annotation data from web-ser-
vices, parses it and visualizes the distribution of GO terms, protein domains, Pathways, and
other functionalities within the given set of transcripts. The Biological Process (BP) distribution
plot (Fig 7) shows the frequency distribution of prominent biological processes. BP terms such
as: biological regulation (14.2%), cellular process (19.2%), stimulus response activities(5.7%)
and developmental process(6.1%) are enriched within the given set of the transcripts. It is
important to note that immune system (1.2%), growth (0.4%), death (1.9%) and biological adhe-
sion (1.0%) are some other biological processes which are important though not prominently
distributed with in the given cadmium treated differentially expressed transcripts dataset.

Molecular functions distribution plots (Fig 8) suggests 42.6% of sample dataset ofHydra tran-
scripts involved in binding function. It shows transcription regulator activity (4.6%), transporter
activity (6.6%), catalytic activity (16.7%) and molecular transducer activities (11.5%), which are
also enriched in these transcripts dataset ofHydra in response to the cadmium toxicity.

Distribution of cellular components (Fig 9), suggests the role of these transcripts in cellular
composition. It shows the percentage distribution of the cellular components such as synapse,
macromolecular complex region, organelles and membrane enclosed regions. Unfortunately,
these cellular components terms are not enriched in our query dataset.

Annotation results for the Biocarta pathways, Panther pathways, KEGG pathways, proteins
domains like InterPro, PFAM, SMART and SP-PIR-keywords are also obtained. These results
are provided in the form of distribution plots, as well as annotation tables. For example,

Fig 6. Clustering of annotation terms shared by the common set of deregulated genes.

doi:10.1371/journal.pone.0140268.g006
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SP-PIR-keyword distribution plot (Fig 10) shows a large number of keywords, which are asso-
ciated to the query dataset. It includes terms like transcription, transducer, alternative splicing,
differentiation, DNA binding, developmental proteins, g-protein coupled receptor, nucleotide
binding, signal and ion transport etc. All these terms, associated to the differentially expressed
transcripts in the dataset, indicates the possible role of cadmium toxicity on differentiation,
reproduction, developmental and signal transduction processes in Hydra vulgaris.

Case study 2
To demonstrate the reliability of Transcriptator in carrying out enrichment analysis of GO
terms, we obtain already published dataset (GEO Series accession number GSE7535) of cad-
mium-responsive up-regulated genes from Caenorhabditis elegans. These genes have been
mapped to biological processes and molecular functions following 24 hours cadmium expo-
sures [44]. We carried out molecular function enrichment analysis for the given set of gene’s
dataset and obtained electron carrier activity (GO:0009055), heme binding (GO:0020037), cat-
ion binding (GO:0043169) as significant enriched molecular function terms. Our results are in
concordance with the earlier published research. The enrichment analysis table is provided as
supporting evidence (see S5 Table)).

Fig 7. Biological processes distribution for theHydra dataset. It shows the significant biological activities, in which these transcripts are involved. For
example, the biological regulation, cellular process, stimulus response activities and developmental process are enriched within these transcripts.

doi:10.1371/journal.pone.0140268.g007
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Case study 3: ncRNA Prediction
To demonstrate the utility of ncRNA prediction pipeline in Transcriptator, a sample dataset of
de-novo assembled Hydra Transcripts from European Nucleotide Archive (ENA) was selected.
This dataset contains one hundred and one differentially expressed transcripts in response to
cadmium treatment for eight and twenty four hour time period (unpublished experiment). To
predict the coding and non-coding probability of these differentially expressed transcripts, we
carried out ncRNA prediction analysis through our Transcriptator software pipeline. It helps
us in understanding the behavior of transcriptional response of Hydra vulgaris transcripts
under cadmium treatment. For one hundred and one transcripts, transcriptator pipeline for
ncRNA prediction provides result for 93 transcripts (around 93%), while a log file is generated
for the erroneous transcripts. The results from this ncRNA prediction functionality provides
tables for the probability score for ncRNA prediction (see S6 Table), and dynamical graph (Fig
11) showing the probability for coding and non-coding characteristics of the given transcripts.
It also provides separate fasta files for coding and non-coding transcripts for further usage in
the downstream analysis.

In this study, we have developed an integrated web application to carry out functional and
GO annotation analysis for the given coding transcripts but also provided an opportunity to
the biologist to address transcripts which are non coding in nature. It allows users to choose

Fig 8. Molecular function distribution for theHydra dataset. It shows the significant molecular function activities, in which these transcripts are involved.
For example binding, molecular transducer activity, transcription regulator activity and catalytic activities are enriched within these transcripts.

doi:10.1371/journal.pone.0140268.g008
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two distinct types of web services for annotation purposes, as well as different BLAST databases
for BLAST run. In the light of NGS sequencing technologies, when there is a paradigm shift in
the understanding of transcriptional regulation due to the presence of non coding element
expression with in the transcriptomic data. It becomes vital to understand and acknowledge
the importance of non-coding transcripts differential expression. Therefore, we have also intro-
duced a parallel processing of non-coding RNA prediction, by using a well known Support
Vector based Machine learning program PORTRAIT in our existing pipeline. All these options
helps the users, to optimize their results according to their needs. It provides the enrichment
score for the functional terms, and reports each and every annotation present in the given data-
set in the form of tables and interactive charts. It also provides the dynamic chart for coding
and non-coding probabilities for the given transcripts dataset. The results are generated in the
form of fasta formated files, Charts and tabular reports, so that, the resultant files could be used
for down-stream analysis. We propose that our web application does not have only technical
aspects, but it can be very helpful to the researchers, to elaborate and define the biological
meaning of the transcriptomic data. In future, we will work on the addition of more modular

Fig 9. Cellular components distribution for the hydra dataset. It shows, most of the differentially expressed transcripts from the query dataset are
associated with cell organization. A small number of transcripts are also involved with structural composition of synapse, macromolecular complex,
membrane and cellular organelle, but are not statistically significant.

doi:10.1371/journal.pone.0140268.g009
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Fig 10. SwissProt-PIR keywords distribution: Graphical representation of all the SP-PIR keywords.

doi:10.1371/journal.pone.0140268.g010

Fig 11. ncRNA prediction: graphical chart for the prediction of coding and non-coding transcripts. Each transcript is represented by two probability
graphs for coding (blue) and non-coding (black) respectively.

doi:10.1371/journal.pone.0140268.g011
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functionalities and options in the pipeline, for both BLAST searches and annotation analysis
for coding as well as non-coding transcripts.

Supporting Information
S1 Table. Case study 1: GO-terms.xlsx. This table contains the available GO annotations for
each transcript given inHydra vulgaris transcripts dataset.
(XLSX)

S2 Table. Case study 1: Domains.xlsx. This table contains the available domain annotations
for each transcript given in Hydra vulgaris transcripts dataset.
(XLSX)

S3 Table. Case study 1: Pathways.xlsx. This table contains the available pathway annotations
for each transcript given in Hydra vulgaris transcripts dataset.
(XLSX)

S4 Table. Case study 1: GO-SLIM.xlsx. This table contains the available GO-slim annotations
for each transcript given in Hydra vulgaris transcripts dataset.
(XLSX)

S5 Table. Case study 2: MF-enrichment.pdf. This table shows the significant molecular func-
tion associated with Caenorhabditis elegans genes dataset which are up-regulated in response
to 24 hour cadmium exposure.
(PDF)

S6 Table. Case study 3: ncRNA-prediction-scores.pdf. This table contains the probability
score for coding and non-coding characterstics for each transcript given inHydra vulgaris tran-
scripts dataset.
(PDF)
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