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Introduction
Human cells express more than ∼10,000 different proteins at 
any given time (Kulak et al., 2017), the majority of which must 
fold (and often assemble) to well-defined, three-dimensional 
structures to allow a myriad of cellular functions. Although the 
native conformation of a given protein is encoded by its amino 
acid sequence (Anfinsen, 1973), in the cell many proteins re-
quire assistance by molecular chaperones and other factors to 
fold efficiently and at a biologically relevant time scale (Balchin 
et al., 2016). Moreover, proteins often need to retain structural 
flexibility or contain significant unstructured regions to func-
tion, leaving them at risk of misfolding and aggregation (Chiti 
and Dobson, 2017). Even otherwise stably folded proteins may 
unfold and possibly aggregate under stress conditions, such 
as elevated temperatures. Finally, as proteins become termi-
nally misfolded, or are no longer functionally required, they 
must be degraded to avoid damaging effects of their continued 
presence. Maintaining an intact proteome (proteostasis) thus 
requires not only strict control of the initial production and 
folding of a protein but also its conformational maintenance, 

control of abundance and subcellular localization, and finally, 
disposal by degradation.

A complex proteostasis network (PN) acts at each of these 
steps to maintain a balanced proteome linked by molecular 
chaperones of different classes as central players. These factors 
ensure de novo folding in a crowded cellular environment and 
maintain proteins in a soluble, nonaggregated state. Moreover, 
in conditions that disfavor folding or solubility, certain chaper-
ones act to target misfolded proteins for degradation or spatial 
sequestration, thus protecting the rest of the proteome from ab-
errant interactions (Balchin et al., 2016; Sontag et al., 2017).

Here, we describe the major pathways of cellular pro-
teostasis and outline the challenges they face during aging and 
disease. We exemplify these processes using mainly the proteo-
stasis pathways operating in the cytosol, where most cellular 
proteins are produced. The major exceptions are the proteins as-
sociated with the endomembrane system and secretory proteins. 
These polypeptides generally fold and assemble in the ER. Al-
though the environment of the ER is oxidizing and differs in 
several aspects from the reducing cytosol, the core principles 
governing overall proteostatic balance apply (Skach, 2009; 
Gidalevitz et al., 2013). Rather than focusing on specific dis-
ease states, we discuss common themes that have been shown 
to be relevant across multiple systems, suggesting a conserved 
and intimate linkage of proteostasis with the aging process and 
associated pathologies.

Organization of the PN
Because of the astronomically large number of possible con-
formations a polypeptide chain can adopt, the folding process 
is inherently error prone (Dobson et al., 1998; Bartlett and 
Radford, 2009). Production of misfolded proteins is further in-
creased by stochastic errors of protein biogenesis occurring at 
the level of transcription and mRNA maturation and translation 
(Sachidanandam et al., 2001; Ng and Henikoff, 2006; Drum-
mond and Wilke, 2008). Such failed protein products must be 
recognized and degraded to avoid aberrant interactions, mak-
ing it a challenge to maintain a healthy proteome even under 
normal conditions. This challenge is exacerbated in the case of 
disease-associated mutations, environmental stress, and aging 
and if left unresolved can lead to the formation of toxic ag-
gregate species. Thus, to maintain proteostasis, cells have 
evolved a wide variety of molecular chaperones and protein 
quality-control factors that are functionally linked with protein 
degradation machineries. This system is referred to as the PN 
(Balch et al., 2008; Fig. 1 A).

Ensuring cellular protein homeostasis, or proteostasis, re-
quires precise control of protein synthesis, folding, confor-
mational maintenance, and degradation. A complex and 
adaptive proteostasis network coordinates these processes 
with molecular chaperones of different classes and their 
regulators functioning as major players. This network 
serves to ensure that cells have the proteins they need 
while minimizing misfolding or aggregation events that 
are hallmarks of age-associated proteinopathies, includ-
ing neurodegenerative disorders such as Alzheimer’s and 
Parkinson’s diseases. It is now clear that the capacity of 
cells to maintain proteostasis undergoes a decline during 
aging, rendering the organism susceptible to these pa-
thologies. Here we discuss the major proteostasis path-
ways in light of recent research suggesting that their 
age-dependent failure can both contribute to and result 
from disease. We consider different strategies to modu-
late proteostasis capacity, which may help develop ur-
gently needed therapies for neurodegeneration and other 
age-dependent pathologies.
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Defining the exact composition of the PN has proved dif-
ficult given the complexity of the human proteome. The PN has 
previously been proposed to consist of ∼1,000–1,400 compo-
nents on the basis of our initial understanding of its organiza-
tion (Balch et al., 2008; Powers et al., 2009; Kim et al., 2013; 
Hipp et al., 2014). Based on current annotations in databases 
and several large-scale genomic studies, we estimate that the 
PN comprises ∼2,000 factors that act in concert to maintain 
cellular proteostasis (Fig. 1 B). With increasing availability of 
functional annotations for the biological pathways in the human 
genome, these numbers will be further refined.

Operationally, the PN can be divided into three branches 
composed of factors belonging to major processes: (1) pro-
tein synthesis, (2) folding and conformational maintenance 
(often coupled to transport and/or assembly), and (3) pro-
tein degradation (the ubiquitin–proteasome system [UPS] 
and autophagy–lysosome system; Fig.  1). Molecular chap-
erones and their regulatory cofactors act as liaisons connect-
ing all these processes.

A set of ∼280 components participate directly in nascent 
polypeptide chain synthesis (Wolff et al., 2014; Rouillard et al., 
2016; Fig. 1 B). Apart from the core constituents of the trans-
lational machinery, several chaperones act on the ribosome to 
prevent premature misfolding of the nascent chain and assist 
in cotranslational folding. Quality-control factors of the UPS 
interface with protein synthesis to remove defective and stalled 
nascent chains as part of ribosomal quality-control pathways 
(Brandman and Hegde, 2016).

Newly synthesized proteins may fold cotranslationally or 
may rapidly complete their folding on release from the ribo-
some. Folding, and in some cases assembly to oligomeric com-
plexes, is mediated by molecular chaperones, often involving 

sequential interactions with members of different chaperone 
classes (Langer et al., 1992; Frydman et al., 1994; Balchin et al., 
2016). The repertoire of human chaperones (the “chaperome”) 
contains ∼330 members of several functionally distinct gene 
families, which cater to diverse substrate clients (Brehme et al., 
2014; Sala et al., 2017; Fig. 1 B).

Misfolded and aggregated proteins must be removed from 
the system by proteolytic degradation to prevent the accumu-
lation of toxic species. Eukaryotic cells invest extensively in 
protein degradation machineries, with the two major pathways 
of the UPS and autophagy comprising ∼850 and ∼500 different 
components, respectively (Nijman et al., 2005; Li et al., 2008; 
Sowa et al., 2009; Varshavsky, 2012; García-Prat et al., 2016; 
Fig. 1 B). The UPS mainly serves to target individual proteins 
to the proteasome, whereas the autophagy system clears larger 
aggregates or membrane-associated proteins (Menzies et al., 
2015; Ciechanover and Kwon, 2017).

These branches of the PN are functionally coordinated by 
various signaling cascades, which sense and respond to imbal-
ances in proteostasis (Fig.  1  A). In this way, cells constantly 
monitor and adjust their proteome status in response to inter-
nal and external changes. The PN not only enables this adjust-
ment, but is itself adaptive to the needs of specific cell types. In 
“simpler” organisms such as yeast, the basic organization of the 
PN may be rather constant, only tuning itself to fluctuations in 
environmental conditions. However, in metazoans (Guisbert et 
al., 2013), especially in complex mammalian systems (Uhlén et 
al., 2015), tissue-specific proteomes and regulatory programs 
imply that there must be a marked heterogeneity in aspects of 
proteostasis across diverse cell types, suggesting the existence 
of tissue-specific PNs (Sala et al., 2017) with differing contribu-
tions of the three branches.

Figure 1.  The PN. (A) The flux of proteins through the PN relies on chaperones at many stages. PN capacity is sufficient to fold, often via intermediates, 
most newly synthesized polypeptides as they exit the ribosome. When a protein is no longer needed, it can be efficiently targeted for degradation either 
in the cytosol or nucleus via the UPS. Proteins that cannot be folded are also targeted for degradation via the UPS. During stress, the cell can increase PN 
capacity by activating a stress response. In aged or diseased cells, there is an increase in overall protein misfolding and aggregation, owing to increases 
in mutations and an overall decrease in PN capacity. These misfolded species may aggregate and/or be sequestered into large structures (aggresomes). 
A subset of misfolded species may form amyloid fibers that can further interfere with cellular processes. Chaperone factors that enhance particular steps 
are shown in green. Adapted from Hipp et al. (2014) and Kim et al. (2013). (B) Numbers for the major branches of the human PN, including synthesis, 
folding, and maintenance, and degradation branches, are shown. Datasets for generating these values were collected from the sources shown. The data 
were then arranged into nonoverlapping groups to represent the major PN branches. BAG, Bcl-2–associated athanogene; NAC, nascent chain-associated 
complex; RAC, ribosome-associated complex; RQC, ribosome quality control.
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Many diseases, including type II diabetes and the major 
neurodegenerative pathologies, are associated with a reduced 
function of the PN, which may be caused by mutations in PN 
components (Kakkar et al., 2014) or by interference of toxic 
aggregate species with PN function (Hipp et al., 2014). Impor-
tantly, as shown in model organisms, aging is also associated 
with a general decrease in PN capacity and a corresponding in-
crease in protein aggregation, which manifests as a functional 
decline in many cellular pathways (Taylor and Dillin, 2011; 
Labbadia and Morimoto, 2015a). In the following sections, we 
discuss the roles of the major pathways within the PN.

Protein synthesis.� Although the production of indi-
vidual proteins is regulated by specific factors and pathways, 
the levels of bulk protein synthesis must be adjusted to the pro-
tein folding capacity of the cell to avoid the accumulation of 
misfolded proteins. Indeed, in key lifespan extension pathways 
such as caloric restriction, increased proteostasis capacity is 
conferred, at least in part, by a general decrease in protein trans-
lation (Hansen et al., 2007; Taylor and Dillin, 2011). Transla-
tion attenuation is also critical in relieving PN overload in 
conditions of conformational stress. This is typically mediated 
by inhibition of translation initiation factor 2α (eIF2α). For ex-
ample, on activation of the unfolded protein response (UPR) to 
the accumulation of misfolded proteins in the ER, protein ki-
nase RNA-like ER kinase (PERK) in the ER membrane phos-
phorylates eIF2α, thereby attenuating its function in translation 
(Harding et al., 2001).

Protein folding and aggregation.� Polypeptide 
chains fold by sequestering hydrophobic residues and forming 
stabilizing intramolecular interactions to achieve a low free- 
energy state (Fig. 2). Rather than sampling all potential folding 
states, a process that would take an insurmountable amount of 
time, polypeptides proceed toward their native conformation by 
increasingly forming local and long-range contacts between 
amino acid residues, thereby limiting the conformational space 
that must be explored (Dinner et al., 2000; Bartlett and Radford, 
2009). In this way, many small proteins can achieve their proper 
fold quickly and efficiently in vitro. However, once placed in 
the highly crowded cellular environment, proteins often face 

significant challenges during folding, because partially folded 
states with exposed hydrophobic amino acids residues are in 
danger of misfolding and aggregating. Aberrant folding may 
occur during de novo synthesis or in conditions of conforma-
tional stress, where preexisting proteins may fail to maintain 
their folded states. Destabilizing mutations or the presence of 
intrinsically unstructured regions can also predispose polypep-
tides to misfolding (Dunker et al., 2008; Gershenson et al., 2014).

Unlike in vitro folding studies (Anfinsen, 1973; Bartlett 
and Radford, 2009), which start from complete proteins, in the 
cell proteins are synthesized vectorially on the ribosome, which 
means that the structural information necessary for folding be-
comes available gradually and not all at once. Translation is 
slow relative to rates of folding, allowing for the possibility of 
partial structure formation, both native or misfolded, before the 
completion of protein synthesis. Cotranslational folding limits 
the amount of time nascent chains populate potentially vulner-
able, nonnative states (Balchin et al., 2016). Some very small 
proteins (∼50 amino acids in length) even fold to completion 
within the widening exit portal of the ribosome (Holtkamp et 
al., 2015; Marino et al., 2016). However, the major part of the 
ribosomal exit channel is too narrow to allow structure for-
mation (Wilson and Beckmann, 2011), and thus the nascent 
chains of larger proteins must first emerge from the ribosome 
before they can fold, which puts them at risk of misfolding 
and aberrant interactions. The ribosomal surface may influence 
the folding process (Kaiser et al., 2011; Cabrita et al., 2016). 
Moreover, the topology of ribosomes in the context of poly-
somes, where translating ribosomes may approach each other 
closely, is optimized to reduce the risk of interactions between 
nascent chains. The ribosomes adopt a staggered “pseudohe-
lical” arrangement, in which their polypeptide exit sites are 
at maximal distance from each other (Brandt et al., 2009). 
Multidomain proteins often fold their domains sequentially 
during translation, thereby avoiding nonnative interactions 
between concomitantly folding domains (Netzer and Hartl, 
1997; Frydman et al., 1999).

Average proteome and protein sizes have increased dra-
matically during evolution from bacteria to eukarya (Balchin et 

Figure 2.  Protein folding and aggregation. 
Nascent polypeptides fold by sampling vari-
ous conformations and sequestering hydro-
phobic amino acid residues. Partially folded 
intermediates, both on- and off-pathway, can 
become trapped in localized energy minima. 
These species are at risk of aggregation by 
forming aberrant intermolecular contacts, 
which can lead to the formation of oligo-
mers, amorphous aggregates, and amyloid 
fibrils. Molecular chaperones promote the 
formation of the native species by lowering 
free-energy barriers between kinetically stable 
intermediates, smoothing the protein folding 
landscape (green arrows), and preventing ab-
errant intermolecular interactions (red arrow). 
Adapted from Balchin et al. (2016), Hartl et 
al. (2011), and Kim et al. (2013).
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al., 2016; Fig. 3 A). Proteins of more than ∼100 amino acids in 
length constitute the vast majority of proteins in all domains of 
life and typically fold via intermediate states with incompletely 
buried hydrophobic residues (Dinner et al., 2000; Brockwell 
and Radford, 2007; Fig. 2). Such intermediates may be kinet-
ically stable and may be highly aggregation prone (Gershen-
son et al., 2014), particularly in the crowded environment of 
the cell (∼300  g of protein per liter), where macromolecular 
interactions are enhanced compared with dilute solution (Ellis 
and Minton, 2006). Although the majority of resulting aggre-
gates are amorphous (i.e., lacking long-range structural order), 
a subset of mostly smaller proteins, often containing unstruc-
tured regions (Dunker et al., 2008), can form ordered fibrillar 
aggregates, referred to as amyloid or amyloid-like, and which 
are characterized by β-strands running perpendicular to the fi-
bril axis (cross-β-structure; Chiti and Dobson, 2017; Fig.  2). 
Such amyloid aggregates form insoluble deposits and are the 
hallmark of several age-dependent proteinopathies, including 
Alzheimer’s, Parkinson’s, and Huntington’s diseases (Ross and 
Poirier, 2004). More proteins transition to an insoluble, aggre-
gated state when they exceed their normal cellular abundance 
or when imbalances occur between subunits of oligomeric com-
plexes (Vendruscolo et al., 2011; Ciryam et al., 2013; Chiti and 
Dobson, 2017), a phenomenon that becomes more prevalent 

during aging, as shown in the nematode Caenorhabditis elegans 
(Walther et al., 2015).

Molecular chaperones—central organizers of 
the PN.� To overcome the challenges to protein folding and 
solubility, cells have evolved molecular chaperones (Fig. 3 A). 
We define a molecular chaperone as a protein that assists in the 
folding, assembly, conformational maintenance, or regulation 
of another protein without becoming part of its final structure 
(Hartl, 1996). The chaperones that participate broadly in de 
novo folding recognize generic structural features of nonnative 
proteins, primarily exposed hydrophobic amino acid residues, 
and promote folding by kinetic partitioning of nonnative states 
(Kim et al., 2013; Fig. 2). Many chaperones are induced under 
conditions of stress, such as heat shock, and in addition to their 
functions in de novo folding are also involved in protein refold-
ing, disaggregation, oligomeric assembly, trafficking, and deg-
radation (Balchin et al., 2016; Fig.  1  A). Although the core 
chaperone machineries (heat-shock protein [Hsp] 70s, Hsp90s, 
chaperonins, and small Hsps [sHsps]) are already present in 
prokaryotes, a strong expansion in the number of their regula-
tory cofactors (Hsp40s, tetratricopeptide repeat proteins) is no-
table as eukaryotic proteomes increase in complexity (Genevaux 
et al., 2007; Vos et al., 2008; Brehme et al., 2014; Rizzolo 
et al., 2017; Fig. 3 B).

Figure 3.  Proteome complexity increases from 
prokaryotes to eukaryotes. (A) The average 
protein length (in number of amino acids) and 
total number of chaperones in the proteomes 
of bacteria (Escherichia coli), yeast (Saccharo-
myces cerevisiae), and humans (Homo sapiens) 
are shown. The increase in proteome com-
plexity with increasing organismal complex-
ity, from prokaryotes to eukaryotes, and from 
single-cell to multicellular organisms is accom-
panied by an increase in chaperone number. 
Comparative chaperomes were generated by 
UniProtKB queries by using identical keyword 
searches for chaperones for each organism. 
Differences between the total human chaper-
ome number and previously reported numbers 
(Brehme et al., 2014; Fig. 1 B) arise from a 
more-stringent definition here to ensure appro-
priate comparisons between organisms. (B) 
The numbers of members of each of the major 
chaperone classes are shown for different or-
ganisms with selective cochaperones shown 
for comparison (Genevaux et al., 2007; Vos 
et al., 2008; Brehme et al., 2014; Rizzolo et 
al., 2017). Protein folding in the bacterial (C) 
and eukaryotic (D) cytosol. Most proteins use 
folding assistance on exit from the ribosome. 
Ribosome-associated factors include Trigger 
factor in bacteria and the nascent chain-associ-
ated complex (NAC) and ribosome-associated 
complex (RAC) in eukaryotes. Downstream 
Hsp70s (DnaK in bacteria) work with their 
cofactors Hsp40 (DnaJ in bacteria) and nucle-
otide exchange factors (NEFs; GrpE in bacte-
ria) in protein folding. Some proteins must be 
transferred to the chaperonin class of chaper-
ones for further folding (GroEL/ES in bacteria 
and TRiC in eukaryotes). In eukaryotes, pre-
foldin can transfer some substrates directly to 
TRiC. Cofactors such as Hop (Hsp70-Hsp90 
organizing protein) can mediate interactions 
with Hsp90 (HtpG in bacteria), which also 
acts downstream of Hsp70 in the folding of 
a subset of proteins mainly engaged in cell 
signaling. Adapted from Balchin et al. (2016).
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A first tier of chaperones interacts directly with the ri-
bosome close to the polypeptide exit site. These components 
are typically not stress-inducible (Albanèse et al., 2006) and 
include Trigger factor in bacteria and specialized chaperone 
complexes, such as nascent chain-associated complex and ribo-
some-associated complex, in eukaryotes (Fig. 3, C and D). They 
interact with exposed hydrophobic sequences of the emerg-
ing nascent chain and act to prevent premature (mis)folding, 
maintaining the polypeptide in a nonaggregated, folding com-
petent state until sufficient structural elements for productive 
folding are available (Agashe et al., 2004; Kaiser et al., 2006; 
Preissler and Deuerling, 2012; Nilsson et al., 2016). Although 
most proteins may only require these chaperones to achieve 
their native fold, proteins with complex domain topologies and 
multidomain proteins need assistance by additional chaperone 
classes that act downstream.

Such proteins may next interact cotranslationally or post-
translationally with a member of the Hsp70 chaperone family 
(DnaK in prokaryotes; Fig. 3, C and D), a ubiquitous class of 
ATP-dependent chaperones of ∼70 kD with a hub position in 
the PN. The Hsp70 C-terminal domain binds short hydrophobic 
peptide sequences of about seven residues that are exposed by 
nascent and nonnative protein substrates (Rüdiger et al., 1997; 
Mayer et al., 2000; Clerico et al., 2015). The affinity of the 
C-terminal domain for protein substrate is allosterically regu-
lated by ATP binding and hydrolysis in the N-terminal ATPase 
domain. Hsp70s rely on regulatory chaperone cofactors of the 
Hsp40 class (also known as J-proteins), which typically bind 
first to exposed hydrophobic patches on nonnative proteins and 
recruit Hsp70 (Kampinga and Craig, 2010; Nillegoda et al., 
2017). These factors then stimulate the hydrolysis of Hsp70-
bound ATP, thereby catalyzing the closing of the Hsp70 pep-
tide binding cleft (Clerico et al., 2015). There are ∼50 different 
Hsp40 proteins in human cells (Fig. 3 B), which fall into three 
structural subtypes and have different subcellular localizations 
(Kampinga and Craig, 2010). They confer broad functionality 
to the Hsp70 system, allowing these chaperones not only to 
participate in the initial folding of nascent chains but also in 
conformational maintenance (Mashaghi et al., 2016), disaggre-
gation (Diamant et al., 2000; Ben-Zvi et al., 2004; Rampelt et 
al., 2012), and the targeting of terminally misfolded proteins 
for degradation (Kettern et al., 2010). Nucleotide exchange fac-
tors are necessary to allow Hsp70 to perform cycles of substrate 
binding and release (Laufen et al., 1999; Mayer and Bukau, 
2005; Winkler et al., 2012).

Proteins that are unable to fold through such Hsp70 cy-
cles may be transferred to the chaperonin class of chaperones 
(Hsp60s), which includes GroEL/GroES in bacteria, Hsp60 in 
mitochondria, and TRiC/CCT in the eukaryotic cytosol (Fig. 3, 
C and D). These chaperonin proteins form multimeric, cylin-
drical complexes that function by transiently encapsulating 
individual nonnative proteins so they can fold, unimpaired by 
aggregation (Lopez et al., 2015; Hayer-Hartl et al., 2016). The 
opening and closing of the folding chamber is regulated by the 
ATPase of the chaperonin, either in conjunction with a separate 
lid-like cofactor of the GroES-type (for GroEL and mitochon-
drial Hsp60) or lid-structure built into the chaperonin complex 
(for TRiC/CCT). Although only ∼10% of the proteome requires 
a chaperonin to fold, substrates include essential and highly 
abundant proteins, such as actin and tubulin. Accordingly, de-
letion or mutation of TRiC is toxic and has been implicated in 
disease. Neurodegenerative disorders affecting myelination, 

spastic paraplegia, and leukodystrophy are caused by autosom-
ally inherited mutations in mitochondrial Hsp60 (Hansen et al., 
2002; Magen et al., 2008).

The highly conserved Hsp90 chaperone system also func-
tions downstream of Hsp70 in maintaining a variety of signaling 
pathways via the folding and conformational regulation of their 
signal-transduction molecules (Sharma et al., 2012; Taipale et 
al., 2012). Hsp90 is active as a homodimer and mediates protein 
folding via ATP-dependent structural changes in cooperation 
with a multitude of cofactors (Wandinger et al., 2008). Hsp90 
can bind substrates that are near native, thereby stabilizing 
metastable clients, such as kinases and steroid receptor mole-
cules, in a conformation poised for activation by ligand binding 
(Fig. 1 A and Fig. 3, B and C). Because of its role in the fold-
ing of many disease-relevant proteins, pharmacologic inhibition 
of Hsp90 is being considered as a strategy in the treatment of 
many diseases from cancer to viruses (Whitesell et al., 1994; 
Balch et al., 2008; Geller et al., 2013; Mbofung et al., 2017).

Maintaining the metastable proteome.� After ini-
tial folding, many proteins continue to require chaperone sur-
veillance to maintain their functional form. Proteins are often 
active under conditions just at the cusp of stability, and their 
functional conformational states may be challenged under stress 
conditions. Additionally, many proteins contain intrinsically 
unstructured regions or sequences of low amino acid complex-
ity important for their function, including up to 75% of signal-
ing molecules in mammalian cells (Dunker et al., 2008). These 
proteins may acquire a stable structure only on binding to a li-
gand or other macromolecular surface. It has become clear in 
recent years that a hallmark of cellular aging is a gradual loss of 
proteome balance and accumulation of protein aggregates. This 
is thought to be due to at least in part an increase in the accumu-
lation of errors in translation, splicing, or molecular misreading 
and to an increased production of oxidized and carbonylated 
proteins (Aguilaniu et al., 2003; López-Otín et al., 2013). The 
proteins of the PN are not exempt from such modifications. In-
deed, studies in C. elegans and other model systems have shown 
that aged organisms have a markedly reduced ability to main-
tain metastable proteins in their soluble states (Morley et al., 
2002; David et al., 2010; Gupta et al., 2011; Walther et al., 
2015). In worms, this decline in PN capacity is tied to develop-
ment, suggestive of a regulated program of aging (Ben-Zvi et 
al., 2009; Labbadia and Morimoto, 2015b).

A healthy chaperone network is thus required to main-
tain the metastable proteome and to prevent the accumulation 
of toxic aggregate species. The Hsp70 system and the so-called 
sHsps, the latter functioning as multidisperse chaperone oligo-
mers (Haslbeck et al., 2005), are particularly important in this 
regard. Upon acute stress, such as heat exposure, 10–30% of 
cytosolic proteins are potential clients of sHsps, indicating an 
important role in the maintenance of proteome stability (Hasl-
beck et al., 2004; Mymrikov et al., 2017). When the system is 
overburdened, however, misfolded species will form and may 
aggregate. In these cases the association of sHsps with the ag-
gregates themselves has been shown to aid in their resolution 
by the cell during recovery from conformational stress. Asso-
ciation of sHsps and chaperone cofactors with aggregates en-
ables downstream processing (Ben-Zvi et al., 2004; Malinovska 
et al., 2012; Rampelt et al., 2012; Żwirowski et al., 2017) and 
eventual disaggregation by Hsp70/Hsp40/Hsp110 machiner-
ies (Mogk et al., 2003; Nillegoda and Bukau, 2015). In yeast, 
the disaggregation capacity of cells is further enhanced by a 
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specialized AAA+ ATPase called Hsp104, which along with its 
Hsp70/Hsp40 cofactors has been shown to disaggregate many 
amyloid aggregates (Parsell et al., 1994; Glover and Lindquist, 
1998; Wegrzyn et al., 2001).

Disposal by degradation.� Proteins that are unable to 
fold or refold, despite intervention by chaperones, must be dis-
posed of to prevent the accumulation of potentially toxic aggre-
gate species. Such terminally misfolded proteins undergo 
proteolytic degradation mainly by the UPS (Varshavsky, 2012; 
Ciechanover and Kwon, 2017) or by chaperone-mediated lyso-
somal degradation (Kettern et al., 2010; Cuervo and Wong, 
2014). The Hsp70 and Hsp90 chaperone systems are intimately 
involved in these processes, because the E3 ubiquitin ligase 
Chip binds the C terminus of these chaperones and ubiquityl-
ates misfolded chaperone-bound proteins (Esser et al., 2004; 
Fig. 1 A). As shown recently, surplus proteins that fail to assem-
ble with their partner molecules are recognized by a specific E3 
ligase (UBE20; Yanagitani et al., 2017).

A subset of proteins that misfolds in the cytosol undergoes 
chaperone-mediated transport into the nucleus to be degraded 
by nuclear proteasomes (Heck et al., 2010; Prasad et al., 2010; 
Park et al., 2013; Shibata and Morimoto, 2014; Fig. 1 A). Most 
of the proteins known to use this pathway are ectopically ex-
pressed secretory proteins. The extent to which endogenous, 
misfolded proteins are degraded in the nucleus remains to be 
established. Given that an abundance of proteasomes is found in 
the nucleus (Russell et al., 1999; von Mikecz, 2006), it is tempt-
ing to speculate that compartmentalizing synthesis/folding and 
degradation provides an evolutionary advantage by preventing 
premature degradation. The same principle would apply to the 
process of ER-mediated degradation, wherein misfolded pro-
teins are retrotranslocated from the ER to the cytosol for dis-
posal by the proteasome (Vembar and Brodsky, 2008).

Aggregates may be resolved by the Hsp70/Hsp40/Hsp110 
machinery before transfer into the proteasome (Hjerpe et al., 
2016). Certain aggregate species resistant to disaggregation 
may be cleared directly by selective autophagy and lysosomal 
degradation (Lamark and Johansen, 2012), processes that also 
target a variety of additional substrates including membrane 
bound organelles (Mizushima, 2007).

Many cell types show a decline in UPS activity and auto-
phagy during aging (Rubinsztein et al., 2011; Cuervo and Wong, 
2014), contributing to the widespread protein aggregation that is 
observed in postmitotic cells, such as muscle and neurons, and 
predisposing the latter for certain neurodegenerative diseases 
(David et al., 2010; Hamer et al., 2010; Walther et al., 2015). Be-
cause disease-associated proteins tend to be metastable, a slight 
increase in their abundance as clearance systems decline can 
have dramatic effects on their aggregation propensity (Ciryam 
et al., 2013; Kundra et al., 2017). Aging cells are also less able 
to cope with and dispose of amyloid-like aggregates (Morley 
et al., 2002), as exemplified by the fact that cellular aggregate 
deposits persist although they are typically associated with ubiq-
uitin (Lowe et al., 1988; Bence et al., 2001; Waelter et al., 2001). 
These aggregates often sequester important components of the 
PN, which leads to further proteostatic impairment with buildup 
of damaged protein species and increased risk of aggregation 
(Bennett et al., 2005; Hipp et al., 2014; Itakura et al., 2016).

Compartmentalization of damaged proteins.� If 
attempts to prevent, refold, or degrade aberrant protein species 
fail, a final line of defense against their interference with cellu-
lar processes is their controlled sequestration into more benign 

aggregate deposits or inclusion bodies (Sontag et al., 2017). De-
pending on the properties of the misfolded proteins and their 
ability for eventual resolubilization, such deposits can be di-
rected to several different localizations within the cytosol or 
nucleus and are referred to as an IPOD (for insoluble protein 
deposit), JUNQ (for juxtanuclear quality-control compartment), 
or INQ (for intranuclear quality-control compartment) in yeast 
and as an aggresome in mammalian cells (Johnston et al., 1998; 
Kaganovich et al., 2008; Miller et al., 2015; Fig. 1 A). Their 
formation is itself dependent on several quality-control compo-
nents including chaperones (Malinovska et al., 2012; Escu-
sa-Toret et al., 2013; Wolfe et al., 2013). In addition to providing 
an environment in which aggregates may be shielded and thus 
prevented from engaging in potentially toxic interactions, in di-
viding cells the inclusions also serve as a way to minimize the 
amount of aberrant proteins that are passed on to daughter cells 
(Hill et al., 2017). Like other proteostasis pathways, the ability 
of a cell to maintain spatial quality control also declines with 
age (Escusa-Toret et al., 2013), and cells that lack this ability 
show accelerated aging (Erjavec et al., 2007).

Toxicity caused by aggregation
Proteins have an intrinsic capacity to convert from their na-
tive state to intractable fibrillar aggregates, but under normal 
physiological conditions this tendency is resisted by cellular 
proteostasis mechanisms (Chiti and Dobson, 2017). However, 
the propensity to form amyloid-like aggregates is more pro-
nounced for certain metastable proteins, including those as-
sociated with disease, especially when exceeding the cellular 
concentrations at which they are soluble (Ciryam et al., 2013). 
Dysregulation of protein abundance and protein stoichiom-
etries may occur in an age-dependent manner, as observed in 
nematodes and other model organisms (Walther et al., 2015). 
Indeed, recent research shows that the formation of insoluble 
protein deposits in neurodegenerative syndromes such as Alz-
heimer’s disease occurs concomitantly with the aggregation of 
a large set of highly expressed and aggregation-prone proteins 
that constitute a metastable subproteome (Kundra et al., 2017). 
The metastable subproteome includes many RNA-binding pro-
teins that contain unstructured or low-complexity sequences. As 
shown recently, such proteins often have the ability to undergo 
liquid–liquid phase transitions (Feric et al., 2016), forming dy-
namic droplet-like compartments in the nucleus and cytosol 
that participate in RNA metabolism, ribosome biogenesis, cell 
signaling, and other processes (Banani et al., 2017). However, 
the normally dynamic behavior of these condensates is highly 
sensitive to changes in the physicochemical environment of 
cells, and aberrant phase transition behavior, leading to fibril 
formation, has been linked with aging and diseases such as 
amyotrophic lateral sclerosis (Alberti and Hyman, 2016). These 
recent observations help explain how the age-dependent de-
cline in protein homeostasis favors the stochastic manifestation 
of neurodegenerative aggregation. Importantly, even in domi-
nantly inherited neurodegenerative disorders, such as those 
caused by expanded polyglutamine sequences (Scherzinger et 
al., 1999; Gusella and MacDonald, 2006), manifestation is age 
dependent and triggered by PN decline (Morley et al., 2002; 
Gidalevitz et al., 2006).

Aggregation in disease typically causes gain-of-function 
toxicity, which means that the cytotoxic effects are largely un-
related to the normal function of the disease protein (Ross and 
Poirier, 2004; Chiti and Dobson, 2017). However, the presence 



Proteostasis in aging • Klaips et al. 57

of large fibrillar aggregate deposits does not always correlate 
with disease onset or severity (Kayed et al., 2003; Leitman et 
al., 2013; Chiti and Dobson, 2017). Indeed, work over the past 
years revealed that the most toxic aggregate species may be 
soluble oligomers and small insoluble species with little or no 
fibrillar content (Chiti and Dobson, 2017). Such oligomers ex-
pose hydrophobic residues and unpaired polypeptide backbone 
structures, features that render them highly interactive with 
other proteins, including proteins enriched in low-complexity 
sequences and critical factors of the PN, and with membranes 
(Kayed et al., 2003; Olzscha et al., 2011; Winner et al., 2011; 
Park et al., 2013; Kim et al., 2016b; Woerner et al., 2016).

Although the exact nature of the most-toxic species re-
mains a subject of discussion, in many cases the larger amyloid 
aggregates may exert a relative protective effect by seques-
tering the more-toxic oligomers and by having a reduced sur-
face-to-volume ratio (Saudou et al., 1998; Arrasate et al., 2004; 
Douglas et al., 2008; Kim et al., 2016b). However, key cellular 
factors, including PN components, that interact aberrantly with 
soluble oligomers may also be sequestered in the insoluble de-
posits, contributing to cellular dysfunction (Olzscha et al., 2011; 
Park et al., 2013; Hipp et al., 2014; Ripaud et al., 2014; Yu et 
al., 2014; Woerner et al., 2016). Moreover, large intracellular 
aggregate deposits sterically displace membrane structures and 
may cause their fragmentation, as recently shown for inclusions 
of polyglutamine expansion proteins by cryo-electron tomogra-
phy (Bäuerlein et al., 2017). In many model systems, exogenous 
expression of individual chaperone components, such as Hsp70, 
or up-regulation of multiple chaperones by pharmacologic in-
duction of the stress response has been shown to either prevent 
toxic aggregation or to direct the formation of less-toxic but still 
aggregated species (Muchowski et al., 2000; Sittler et al., 2001; 
Holmes et al., 2014; Nagy et al., 2016).

Stress response pathways
Although the protein quality-control networks ensure proteo-
stasis under basal conditions, on conformational stress, such 
as increases in temperature or exposure to oxidative agents, 
many additional proteins become prone to misfolding, with 
proteins comprising the metastable subproteome being partic-
ularly vulnerable. Cells adapt to such conditions by activating 
stress-response pathways to increase PN components, decrease 
substrate load, and resolve misfolded or aggregated species 
(Fig. 4). In metazoans the stress-response pathways addition-
ally underlie cell nonautonomous regulation, allowing coor-
dination within and between tissues and organs (Taylor et al., 
2014; Sala et al., 2017).

The cytosolic stress response is regulated primarily by heat-
shock transcription factor 1 (Hsf1), which is maintained in an in-
active state by association with chaperones including Hsp90 (Zou 
et al., 1998) and Hsp70 (Zheng et al., 2016). The current model 
suggests that on heat stress, these chaperones are titrated away 
from Hsf1 by binding to denatured proteins. Hsf1 is then free to 
induce the transcription of a wide range of proteostasis compo-
nents (Zou et al., 1998; Zheng et al., 2016), although general pro-
tein translation is decreased, reducing the load on the chaperone 
machinery. Concurrently, expression of chaperones and other 
quality-control elements, such as proteasomal components, is 
increased to prevent and resolve misfolded proteins and aggre-
gation. Finally, once the stressor is removed, a negative-feedback 
loop on Hsf1 activity ensures a return to stasis within the system 
(Akerfelt et al., 2010; Gomez-Pastor et al., 2017).

Similar stress-response pathways include the UPR in the 
ER and mitochondria (Walter and Ron, 2011; Jovaisaite et al., 
2014; Schulz and Haynes, 2015; Frakes and Dillin, 2017). The 
UPR of the ER has been studied extensively and is highly con-
served from fungi to mammalian cells. The accumulation of 

Figure 4.  Healthy and aged proteostasis. (Left) The PN ensures that most proteins fold to a stable native state. When these proteins are no longer needed 
or errors in folding occur, they are efficiently targeted for degradation, primarily via the UPS. On transient stress (middle), otherwise healthy cells activate 
a stress response. Chaperone sensors bind to misfolded species and trigger the appropriate transcriptional program leading to a general increase in 
protein-folding capacity, increase in protein turnover, and decrease in the production of additional substrates via attenuation of general protein translation. 
In cases of chronic stress, such as during disease or aging (right), sequestration of key PN components by aggregates can lead to aberrant transcriptional 
programs, a deficit in folding capacity due to a lack of functionally available chaperones, and a buildup of misfolded species due to a decline in protea-
somal capacity. This can lead to a chronic inability to restore PN balance and further accumulation of misfolded species.
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misfolded proteins in the ER is sensed by three transmembrane 
signaling proteins, IRE-1, PERK and ATF6, which constitute 
distinct arms of the UPR and function to activate transcription 
factors for the production of a multiplicity of proteostasis com-
ponents. PERK activation also leads to phosphorylation of eIF2α 
and thus to attenuation of general translation (Walter and Ron, 
2011; Frakes and Dillin, 2017). Concomitantly, proteasome 
biogenesis is up-regulated by a recently discovered signaling 
pathway that adjusts cellular degradation capacity to demand 
(Rousseau and Bertolotti, 2016). Although the exact mode of 
activation of the UPR is distinct from that of the cytosolic heat-
shock response, the overall goals are similar: an up-regulation 
of quality-control components and a decrease in potentially 
misfolded substrates though transient attenuation of translation.

Increasing evidence supports the existence of significant 
crosstalk between the various cellular stress-response pathways, 
with protein misfolding in the ER resulting in the aggregation of 
metastable proteins in the cytosol (Hamdan et al., 2017). This 
is consistent with ER stress triggering a partially protective cy-
tosolic stress response when components of the UPR are de-
fective (Liu and Chang, 2008). A link between mitochondrial 
stress and the cytosolic stress-response pathway has also been 
identified that can protect cells from disease associated aggre-
gates (Kim et al., 2016a).

Chronic stress response
Although the up-regulation of protein quality-control compo-
nents allows cells to resolve stress-induced misfolded proteins 
and aggregates that formed as the result of acute environmental 
stress, the amyloid aggregates associated with age-dependent 
diseases appear to be largely resistant to these rescue mecha-
nisms (Klaips et al., 2014; Zaarur et al., 2015). The resulting 
chronic exposure of cells to misfolded species can have det-
rimental effects on the PN. For example, expression of model 
polyglutamine aggregates interferes with ER-associated protein 
degradation and leads to a prolonged activation of the ER stress 
response (Duennwald and Lindquist, 2008; Leitman et al., 2013).

On chronic production of certain misfolded or aggregated 
proteins, as may occur in disease or during aging, the stress 
response becomes activated but unable to clear the offending 
species (Lamech and Haynes, 2015; Fig. 4). This maladaptive 
stress response leaves cells vulnerable not only because the 
aggregates persist but also because the cells become refrac-
tive to additional stressors (Roth et al., 2014), consistent with 
aged cells and organisms being less responsive to stress insults 
(Ben-Zvi et al., 2009). A recent study in nematodes and mam-
malian cells revealed an interesting relationship among aging, 
chronic protein folding stress, and PN capacity (Tawo et al., 
2017). These authors observed that normal turnover of the in-
sulin-like growth factor receptor (Daf2 in C. elegans) involves 
the E3 ubiquitin ligase Chip. Both aging and the accumulation 
of protein aggregates were found to interfere with the degra-
dation of insulin receptor, because Chip becomes increasingly 
engaged by misfolded proteins (Tawo et al., 2017). The resulting 
increase in Daf2 levels inhibits the Daf16 transcription factor 
(FOXO in mammals), causing a down-regulation of PN com-
ponents and reduced lifespan.

Modulation of the PN
The persistence of disease-associated protein aggregates would 
suggest that the cellular PN is generally unable to cope with 
such substrates. However, cells may be able to adequately 

handle aberrant protein species for long periods, sometimes de-
cades, as suggested by the fact that even the inherited forms of 
neurodegenerative disease, such as Huntington’s disease, do not 
present until advanced age.

Indeed, specific modulation of PN components can impact 
both aggregate morphology and lifespan in model systems, pav-
ing the way for therapeutic intervention (Balch et al., 2008; Pow-
ers et al., 2009). Expression of chaperones and cochaperones 
of different classes have consistently resulted in a decrease in 
disease-aggregate toxicity and even increased lifespan (Auluck 
et al., 2002; Hoshino et al., 2011; Chafekar et al., 2012). Analo-
gous to the cellular stress responses, strategies for therapeutic in-
terventions in aggregate-associated neurodegenerative diseases 
have focused on preventing further production of misfolded spe-
cies, stabilization of properly folded species, and clearance of 
existing aggregates (Balch et al., 2008; Calamini et al., 2011). 
Toward these ends, small molecules have been identified that 
prolong translation attenuation on stress (Tsaytler et al., 2011); 
stabilize mutant proteins, such as transthyretin against aggre-
gation; target folding and trafficking defects in specific disease 
associated proteins, such as mutant cystic fibrosis transmem-
brane conductance regulator (Baranczak and Kelly, 2016); and 
increase the clearance of toxic protein species through activation 
of the UPS (Lee et al., 2010) or autophagy (Sarkar et al., 2009). 
Because of the broad range of components sequestered by pro-
tein aggregates, enhancement of the endogenous stress-response 
pathways themselves has been particularly fruitful in extending 
lifespan and proteostatic health (Sittler et al., 2001; Mu et al., 
2008; Akerfelt et al., 2010; Kumsta et al., 2017).

Concluding remarks
Work over the past decades has uncovered a remarkable ability 
of cells to maintain proteostasis under a variety of challenging 
conditions. The importance of this ability is underlined by our 
increasing understanding that many neurodegenerative and ag-
ing-associated diseases are caused by a breakdown in this pro-
cess. In recent years we have gained considerable insight as to 
why PN capacity may decline with age. Although in some cases 
the buildup of stochastic mutations and damage can certainly 
contribute to disease onset, this seems insufficient to explain the 
universal age-dependent decline in PN health observed across 
species. Work in metazoans such as worms suggests that this 
decline may instead be a regulated process. Consistent with 
the basic tenet of the “disposable soma” theory (Kirkwood and 
Holliday, 1979), organisms may sacrifice their own proteostatic 
fitness to divert resources toward reproduction. This is a plausi-
ble explanation, especially for short-lived species such as C. el-
egans, in which proteostasis decline occurs abruptly in early 
adulthood, and the lifespan extension gained by activation of 
stress-response factors comes at the cost of reduced fecundity 
(Ben-Zvi et al., 2009). However, the mechanisms underlying the 
gradual deterioration of proteostasis in long-lived mammals are 
clearly more complex. Hopefully, a better understanding of the 
network connectivity in healthy cells and tissues and its changes 
during aging and disease will allow us to harness aspects of the 
PN to combat aggregation disorders and increase health span.
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