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Abstract: The concept of the cardiovascular continuum, introduced during the early 1990s, created a holistic view of the chain of 
events connecting cardiovascular-related risk factors with the progressive development of pathological-related tissue remodelling 
and ultimately, heart failure and death. Understanding of the tissue-specific changes, and new technologies developed over the last 
25–30 years, enabled tissue remodelling events to be monitored in vivo and cardiovascular disease to be diagnosed more reliably than 
before. The tangible product of this evolution was the introduction of a number of biochemical markers such as troponin I and T, which 
are now commonly used in clinics to measure myocardial damage. However, biomarkers that can detect specific earlier stages of the 
cardiovascular continuum have yet to be generated and utilised. The majority of the existing markers are useful only in the end stages of 
the disease where few successful intervention options exist. Since a large number of patients experience a transient underlying develop-
ing pathology long before the signs or symptoms of cardiovascular disease become apparent, the requirement for new markers that can 
describe the early tissue-specific, matrix remodelling process which ultimately leads to disease is evident. This review highlights the 
importance of relating cardiac biochemical markers with specific time points along the cardiovascular continuum, especially during the 
early transient phase of pathology progression where none of the existing markers aid diagnosis.
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Cardiovascular Continuum (CVC)  
and Biomarkers
The evidence-based concept of a cardiovascular 
continuum (CVC) introduced in 1991 by Dzau and 
Braunwald ingeniously described the vast number 
of different and diverse tissue remodelling processes 
that gradually lead to cardiovascular-related pathol-
ogy, heart failure and death. Further validation and 
expansion of the CVC model was performed through 
pathophysiology and clinical trial evidence1,2 which 
highlighted the impact of risk factors related to car-
diovascular disease (CVD), such as cigarette smoking 
and diabetes, in the initiation of the CVC vicious cir-
cle which was also extended to include other affected 
organs such as the brain and the kidney. A key remark 
by Dzau et al in recent CVC validation work2 stresses 
the value of biomarkers for risk assessment, early diag-
nosis and prognosis while emphasising that markers 

that may also act as mediators of disease. Undoubtedly, 
a biomarker or a panel of markers which could facili-
tate stratification of patients in the appropriate CVC 
segment could prove invaluable in a clinical setting, 
as it would allow early intervention at the beginning 
of the CVC where prevention may be possible.3–5 
However, existing biomarkers cannot fully realize 
this goal as only a handful of these, mainly troponin, 
have been found to be cardiac specific and even then, 
are only useful in detecting myocardial damage in 
the late stages of CVD, in what has recently been 
described as the vascular aging continuum (VAC).6 
The vast majority of other biomarkers seem to be up- 
or down-regulated in non CVD-related pathologies. 
At this time, the selection of biomarkers that can reli-
ably facilitate prognosis during the early stages of 
CVC is limited (Fig. 1). An overview of frequently 
used CVD biomarkers is presented in this paper to 
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Early biomarkers: None used
in widespread scale or 
specifically described but
ADMA, Myeloperoxidase and
F2 isoprostanes show some
early potential

Biomarkers of disease progression:
None are specifically described or
used in widespread scale, some
general inflammation (CRP) and
recent markers such as ADMA and
Myeloperoxidase which need
further validation

Biomarkers of end stage 
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Lipoprotein A, BNP, Troponins
I and T, Osteopontin
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Figure 1. Existing biomarkers are valuable diagnostic and monitoring tools mainly for the end stages of cardiovascular disease.
Notes: There is currently a lack of biomarkers that can reliably describe the transient, underlying abnormal extracellular matrix remodelling (ECMR) which 
ultimately leads to cardiovascular-related pathology. The illustration of atherosclerosis progression and the lack of early biomarkers of atheromatic formation is 
indicative of this unmet need. The timeline of atheromatic formation is suggestive of the large extent of matrix remodelling which takes place over decades and 
remains unmonitored for the large part. Accurate monitoring of early cardiac ECMR could prompt early intervention and prevention of disease progression.
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underline some of the strengths and weaknesses that 
these have, and propose an approach for future, novel 
biomarker development.

Clinically Relevant Cardiac Markers
Creatinine kinase (CK) and CK-MB
Creatinine kinase MB is an enzyme present primarily 
in cardiac muscle. The MB is one of the three 
CK isoenzymes the other being the MM and BB. 
CK-MB is released rapidly after myocardial injury.7 
During an onset of acute myocardial infarction (AMI), 
CK-MB rises to twice the normal levels within 6 hours 
and peaks within 12–24  hours.8–10 Serial CK-MB 
mass measurements have a nearly 90% sensitivity of 
AMI three hours after a patient is first assessed in a 
hospital emergency department, which equates to 
approximately 6 hours after symptom onset, but these 
measurements are only 36%–48% sensitive when used 
at, or shortly after, presentation.9,11 CK-MB plays an 
important role in defining the infarct size, expansion 
and risk of re-infarction. If a cTn is not available, the 
CK-MB is considered the best alternative marker of 
AMI. Decades ago, elevated serum levels of CK-MB, 
the cardiac-specific isoform of CK, were also used as 
biomarkers for the diagnosis of myocardial necrosis. 
This measure satisfied one component of the diagnos-
tic criteria for MI, as proposed by the World Health 
Organization, and its use was later extended to moni-
tor trends and determinants in a cardiovascular disease 
study.12 Even though the CK-MB has been proven a 
relatively sensitive measure of myocardial necrosis 
and AMI, this enzyme is not exclusively specific to 
myocardial damage, as elevated levels in several con-
ditions following acute or chronic muscle injury and 
in patients undergoing surgical procedures, have been 
found.13 Furthermore, CK is present in the intestine, dia-
phragm, uterus and prostate, and injury to these organs 
would result in release of CK-MB and thus impair the 
specificity of CK-MB serum measurements. In order 
increase the specificity of CK-MB measurements and 
thereby distinguish the “true positive” serum eleva-
tions secondary to myocardial injury from the “false 
positive” elevations due to other tissue injury, the 
measurement of CK-MB as a percentage of total CK 
has been used. There is no clear consensus on whether 
absolute CK-MB or the CK-MB relative index is the 
preferred test for patients with potential acute coro-
nary syndromes, but the World Health Organization 

international diagnostic criteria, and several others, 
recommend use of absolute CK-MB.14

Myoglobin
Myoglobin is a relatively small, 17.8  kDa, heme 
protein that is abundant in the cytoplasm of cardiac 
and skeletal muscle cells. The main function of myo-
globin is to transport oxygen within muscle cells, and 
it constitutes approximately 2% of muscle protein in 
both skeletal and cardiac muscles.

The tissue/plasma ratio of myoglobin is very 
high, and combined with its small size, myoglobin is 
rapidly released into the circulation upon tissue necro-
sis and injury. Of the biomarkers routinely collected 
from patients suspected or diagnosed with CVD, 
myoglobin is generally accepted as one of the earliest 
to appear during the development of the disease. 
Elevated levels following an AMI appear in the 
circulation after 0.5–2 hours. Since myoglobin is only 
released as a result of tissue necrosis, it is a poor bio-
marker of acute cardiac ischemia. Furthermore, myo-
cardial and skeletal muscle myoglobins share 100% 
homology, thus making this marker tissue unspecific. 
Myoglobin is cleared by kidneys, and it has been 
reported that patients suffering from renal insuffi-
ciency have increased plasma levels of myoglobin, 
and thus readings may be falsely high. There is dif-
ference of opinion as to whether myoglobin is a 
useful biomarker in the evaluation of patients with 
suspected acute coronary syndromes. As assays for 
measurements of cardiac-specific biomarkers such as 
cTnI and cTnT have become available, the value of 
myoglobin as a cardiac biomarker has decreased.15 
Current guidelines recommend myoglobin measure-
ments only in patients presenting within 6 hours of 
chest-pain onset.16 Recent studies have demonstrated 
that, among patients with ST-elevation myocardial 
infarction (MI), those with raised myoglobin lev-
els before the initiation of fibrinolytic therapy are at 
high risk for death and heart failure.17 For patients 
presenting to the emergency room with chest pain 
in the absence of ST-elevation, the addition of 
myoglobin to biomarker panels that include CK-MB 
and cTnI or cTnT improves sensitivity for the detec-
tion of MI, particularly in patients presenting early 
after symptom onset.8,9,11,15,18,19 Beyond the diagnosis 
of MI, there are discrepancies as to whether myo-
globin is useful for risk-stratification in patients with 
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non–ST-elevation acute coronary syndromes (ACS). 
One recent study has suggested that myoglobin pro-
vides incremental prognostic information to CK-MB 
and troponin,9 but several others have not reached the 
same conclusion.8,18,19

Lipoprotein A
Lipoprotein (A) is a low-density lipoprotein (LDL) 
particle with an apolipoptotein A (apoA) attached. 
Apo(A) is linked to LDL by a disulfide bond.20 
This structure has significant homology to plasminogen, 
and the enhanced coronary heart disease (CHD) risk 
associated with Lp(a) is reportedly due to inhibiting 
the effects of this lipoprotein particle on plasminogen 
activation, enhancing the risk of thrombosis. Lp(a) 
may also increase atherogenicity of LDL.21,22 Many 
observational trials support the association of Lp(a) 
with enhanced cardiovascular risk.23 In general, it has 
been postulated that every 30 mg/dL increase in Lp(a) 
doubles the risk of CHD. Therapeutic modification of 
Lp(a) is controversial. Only estrogen and niacin have 
been showed to moderately lower Lp(a).24

Brain natriuretic peptide (BNP)
Measurement of plasma brain natriuretic peptide 
(BNP) concentration is a very efficient and cost-
effective mass screening technique for identifying 
patients with various cardiac abnormalities, regard-
less of aetiology.25 BNP is a 32-amino acid polypep-
tide cardiac neuro-hormone secreted from membrane 
granules in the cardiac ventricles, particularly the 
left ventricle, as a response to ventricular volume 
expansion and pressure overload.25,26 Atrial natri-
uretic peptide (ANP) and B-type natriuretic peptide 
(B-NP) are of myocardial cell origin, while C-type 
natriuretic peptide (CNP) is of endothelial origin.25 
BNP was originally named brain natriuretic peptide, 
and it was first detected in porcine brain.27,28 BNP lev-
els have been found elevated in patients with various 
clinical conditions such as heart failure, MI, left 
ventricular hypertrophy, cardiac inflammation, pri-
mary pulmonary hypertension, renal failure, ascetic 
cirrhosis and is associated with advanced age.29 The 
levels correlate with severity of symptoms and with 
prognosis, and so it helps to detect the presence of 
heart failure, determine its severity, and estimate 
prognosis. BNP has the potential to considerably 
improve the management of patients with congestive 

heart failure (CHF) and may become a routinely 
assessed serum parameter in clinical medicine. BNP 
is considerably less costly than other tests for CHD, 
and due to its cost-effectiveness is highly desirable 
in developing countries. Originally, the US Food and 
Drug Administration (FDA) approved the use of BNP 
or NT-proBNP (amino terminal pro-brain natriuretic 
peptide) to assist in differentiating a cardiac cause 
(such as congestive heart failure) from a non-cardiac 
origin (such as chronic obstructive pulmonary disease) 
for dyspnea. Recently, NT-proBNP was approved by 
the FDA for use in assessing the prognosis of patients 
with congestive heart failure and acute coronary syn-
drome, while the BNP assay is also approved for risk 
stratification in acute coronary syndrome.30

Troponins I and T
The troponin protein complex consists of 3 subunits, 
the C (TnC) subunit which is the calcium binding 
component, the I (TnI) which maintains the struc-
tural position of the troponin-tropomyosin complex, 
and the T (TnT) which is the tropomyosin binding 
subunit. All are located on the thin filament of both 
skeletal and myocardial myocytes, the latter playing 
an integral role in the Frank-Starling mechanism of 
the heart.31,32 Interestingly, both TnT and TnI sub-
units have distinct isoforms for each muscle type, 
hence there is a specific cardiac isoform.33 Cardiac 
troponins T and I (cTnT and cTnI) are now recognized 
as the most tissue-specific biomarkers related to car-
diac damage and have been included as a diagnostic 
criterion for several cardiac-related pathologies.34–39 
This success is closely related to the troponins’ 
unique position and function in the cardiomyocyte 
and the ability to generate specific monoclonal anti-
bodies against both cTnT and cTnI which are precise 
tissue-specific biomarkers of myocardial injury that 
are not detected in healthy individuals.31 Due to the 
integral role of troponins in myocardial contraction 
and their success as cardiac-specific markers, the 
question has risen as to whether troponin-related 
proteolysis is somehow also implicated in the devel-
opment of cardiac damage that leads to heart fail-
ure, through a gradual procedure which eventually 
leads to decreased diastolic and systolic function.34 
The notion that proteolysis is present early in cardiac 
disease and can facilitate progress to cardiac dam-
age through troponin degradation has not been yet 
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broadly utilised for the development of proteolytic 
fragments as cardiac-specific markers.

Osteopontin
Osteopontin (OPN) is a matricellular glycoprotein/
cytokine that has been recently found to be a promis-
ing prognostic biomarker for patients with heart fail-
ure, ischemic heart disease and cardiac remodelling 
in both clinical and pre-clinical settings.40–44 Even 
though its expression by macrophages during myo-
cardial necrosis has been reported since 199445 its 
precise function is not fully understood. OPN has 
previously been described as a regulator of inflamma-
tion and bio-mineralisation via macrophage interac-
tion while also associated with bone remodelling.46–48 
OPN has been characterised as an independent pre-
dictor of death within 4 years for patients with heart 
failure and was found highly elevated in patients 
with left ventricular dysfunction.40 However, OPN 
is expressed in many tissues and has also been 
described as a marker in non-CVD related patholo-
gies which include cancer, myeloma, multiple sclero-
sis, bone destruction, angiogenesis, Graves’ disease 
and pulmonary hypertension.48–54 This inherently 
impedes the direct association of OPN up-regulation 
with the early phase of any of its related pathologies, 
particularly early CVC, prior to the development of 
other clinical symptoms that can facilitate reliable 
diagnosis.

C-reactive protein (CRP)
C-reative protein (CRP) is a non-specific acute-phase 
reactant protein produced in the liver. It is associated 
with a variety of diverse functions related to immune 
reactivity including complement activation, innate 
immunity and phagocyte stimulation.55 Even though 
its usefulness was initially greeted with scepticism 
due to the fact that it has been previously used as an 
non-specific inflammatory marker,56 it has since been 
widely used as an acute inflammation marker. It has 
been found to be a reliable marker for a variety of 
CVD-related pathologies which include atheromatic 
plaque vulnerability, atherosclerosis, coronary artery 
disease, coronary vasospasm, left ventricular dysfunc-
tion, angina pectoris and myocardial infarction.57–61 
CRP levels have been found to be related to levels 
of cardiac enzymes and troponin I,61 while in some 
cases it was found to be a better marker of CVD than 

troponin T.62 CRP has been found to have a role in 
myocardial and cerebral infarct growth and has been 
consequently targeted by inhibitors to induce a car-
dio-protective effect.63 However this application has 
yet to be fully realised.64 Its reliability has several 
limitations as human CRP levels greatly vary, depend-
ing on ethnicity, gender, and genetics, and it has also 
been associated with obesity and weight loss.64,65 
In addition, it has been described as an indicator/
marker for non-cardiac related pathologies such as 
anastomotic leakage, systemic lupus erythematosus 
(SLE), and dementia.66–68

Recent advances in identifying clinical 
markers with promising early prognostic 
and diagnostic capacity
A number of additional novel clinical markers have 
also been studied recently. Some of these show 
promising results as early prognostic and diagnostic 
markers, as outlined below, although their ultimate 
utility remains to be tested in large clinical settings.

During the last 10 years, asymmetric dimethy-
larginine (ADMA) has received much attention as 
a promising cardiovascular biomarker. ADMA is an 
endogenous competitive inhibitor of nitric oxide syn-
thase although it can also cause vasoconstriction.69 
It has been found to be increased in a number of 
cardiovascular events that include atherosclerosis, 
hypertension, coronary artery disease and chronic 
heart failure, and even on its own, is believed to be a 
novel cardiovascular risk factor.69–72 ADMA has also 
been associated with inflammation and increased risk 
of death in cardiovascular related events.73

Myeloperoxidase (MPO) is another recently 
described biomarker that has been found to be rel-
evant for heart failure, acute coronary syndrome and, 
recently, atherosclerosis.74,75 MPO is an enzyme which 
among other molecules can produce hypochlorite and 
has been shown to be released early in the inflamma-
tory process, while it has been linked to both inflamma-
tion and oxidative stress.75,76 MPO has been found to be 
related to CVD due to its involvement in LDL and HDL 
oxidation which is closely related to plaque formation 
in arterial walls through increased cholesterol aggrega-
tion.75 MPO has shown some promising early results in 
clinical settings, being able to demonstrate a diagnos-
tic value of CVD even in individuals showing negative 
results for troponin T. However, a key characteristic of 
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MPO utilisation is that its elevation may not be directly 
related to cardiac or vascular tissue remodelling and 
may be attributed to underlying inflammatory processes 
which ultimately lead to organ failure.77

F2 isoprostanes are a family of prostaglandin com-
pounds derived from arachidonic acid peroxidation 
which have recently shown promising potential as 
in vivo markers of oxidant injury in cardiovascular 
pathologies such as atherosclerosis, hypertension 
and, recently, ACS.78–80 Even though increased levels 
of this marker have been found in non-cardiovascular 
related pathologies such as Alzheimer’s disease, 
pulmonary disorders and renal failure, its presence has 
been strongly linked with well-known cardiovascular 
risk factors.78,81,82 However, and despite these promis-
ing results, use of F2 isoprostanes have not been used 
on a large scale. Relevant literature in large cohorts is 
limited, which restricts evaluation of its potential.

Cardiac Extracellular Matrix 
Components and Opportunities  
for Biomarker Development
Cardiac extracellular matrix
The cardiac extracellular matrix (CECM) is a vibrant 
three-dimensional entity which offers structural sup-
port to which cells adhere and migrate. It consists pri-
marily of collagen, mainly type I but also III, IV, V, VI, 
glycoproteins, proteoglycans as well as diverse cell 
types such as fibroblasts and endothelial cells.83 
Recognition of the constantly active dynamics of the 
CECM attracted additional attention to the possibil-
ity that its close monitoring could enhance our under-
standing of the underlying mechanisms occurring in 
the transition from physiology to pathology.84

CECM modifications during the natural ECM 
remodelling process increase with age and are part 
of a physiologic process, particularly because the 
CECM activates cardiac fibroblasts.85,86 However, 
unbalanced cardiac extracellular matrix remodelling 
(CECMR) can result in cardiovascular-related pathol-
ogy through a mast cell-driven process and ultimately 
in heart failure.87,88

The collagenous cardiac CECM has been shown to 
have higher turnover rates than other tissues, possibly 
due to its contribution to diastolic stiffness.89,90 The 
practical outcome of this observation was the intro-
duction and utilisation of CECM-related biomarkers 

such as procollagen types I and III (PINP, PICP, and 
PIIINP) that could monitor CECMR91 and its effects 
on diastolic dysfunction, pumping capacity and ven-
tricular volume. An additional key property of cardiac 
CECM constituents is their ability to participate in 
inflammatory pathways that ultimately affect cardiac 
repair and pathogenesis.92 Due to these exceptional 
properties as active participants of cardiac and vas-
cular remodelling, the use of CECM constituents as 
promising non-invasive early indicators of underlying 
developing pathology and inadequate tissue adapta-
tion has been proposed.91,93–96

Cardiac matrix metalloproteinases 
(MMPs)
MMPs are a family of proteases that together with other 
proteases, such as cathepsins and elastases, play a key 
regulatory role in tissue remodelling in both physi-
ology and in a number of pathologies which include 
cancer, fibrosis and CVD.97,98 Under normal physi-
ologic conditions, there is a balance between MMPs 
that degrade CECM components and tissue inhibitors 
of metalloproteinases (TIMPs).99,100 However, dur-
ing developing pathology, events such as decreased 
TIMP expression and activation of mast cells through 
chronic stimuli or increased stress, can induce 
increased MMP activation which in turn drives abnor-
mal CECMR, eventually leading to cardiac and vas-
cular disease and ultimately death.88,101 MMP activity 
has been implicated in a large number of diverse 
cardiac and vascular pathologies which include car-
diomyopathies, atherosclerosis, aneurism, myocardi-
tis, hypertension and viral heart disease.88,97,100,102–105 
MMP effects and activity are closely related to the 
availability of substrates, some of which have been 
found to be specific for some MMPs.86 An example 
of such specificity is MMP-8, -3 and -13 which have 
been described as specific for fibrillar collagens; 
MMP-7 against collagens I, III and proteoglycans; 
while MMP-2 and -9 were found to preferentially 
cleave proteoglycans in myocardial tissue.97,102 
Analogous substrate-MMP specificities and interac-
tions have been reported in the ECM of both cardiac 
and vascular components, further highlighting the 
importance of these interactions in ECMR during 
physiology and pathology.106–111 The tangible product 
of this recognition was MMP utilisation as CECMR 
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specific markers with promising results.105,112 MMPs 
are also actively employed in non-cardiovascular 
related tissues and organs which include liver, skin, 
and lung. This presents the practical problem of how 
to pin-point the precise tissue source of the substrate-
MMP biomarker. Biomarkers that rely on MMPs and 
their action on specific substrates to form tissue-specific 
neoepitopes have been successfully employed for 
ECMR- related pathologies other than cardiovascular. 
The utilisation of such technologies should be further 
investigated for cardiovascular pathologies.98,113–119

MMPs and ECM remodelling  
in atherosclerosis
In most cases the underlying cause of CVD is 
atherosclerosis. Vulnerable atherosclerotic plaques 
are characterized by their propensity to rupture, 
exposing thrombogenic material to the circulation 
and consequently initiating the formation of luminal 
thrombi and ischemia. One of the key determinants of 
lesion stability is the composition and integrity of the 
plaque ECM. The quantity and quality of the ECM is 
of paramount importance in defining plaque stability. 
For instance, stable ECM-rich plaques which remain 
generally asymptomatic are characterized by their 
dense ECM, composed primarily of fibrillar and non-
fibrillar collagens and proteoglycans. On the other 
hand, vulnerable or unstable plaques have a thin and 
disrupted fibrous cap and the collagen content in the 
ECM is clearly reduced.108 The proteolytic activity 
of MMPs is a key regulator of ECM integrity in ath-
erosclerosis.120 Several studies have shown increased 
expression and activity of MMPs, including MMP-1, 
-2, -3 and -9, in vulnerable areas of atherosclerotic 
plaques.121,122 While MMPs could collectively target 
many different ECM components, most studies have 
focused on the collagenolysis, especially of type I 
collagen, taking place in lesions. In one of the key 
studies, the proteolytic activity was attributed to 
MMP-1 and -13.123 Another proteinase which has 
received substantial attention is MMP-9. Synthesis of 
active MMP-9 by macrophages and smooth muscle 
cells was demonstrated in human coronary atherec-
tomy specimens taken from patients with unstable 
angina but was not found in stable patients.124 MMP-9 
is one of the few extracellular proteins with biomarker 
potential in CVD.125 While collagen degradation has 

been studied in detail, little is known of the proteolytic 
processing of other ECM components, especially 
glycoproteins and proteoglycans. One of the main 
non-collagen components of vessels with important 
structural and regulatory functions is the large aggre-
gating proteoglycan versican. Halpert et  al showed 
that versican could be a substrate for MMP-7 and -12 
at sites of plaque rupture.126 Although MMP-12 is 
a protease with general substrate specificity and is 
highly expressed by activated macrophages, its role 
in atherosclerosis is not well understood.127 However, 
it is known to play a key role in the pathological 
development of abdominal aortic aneurysms, not 
only because it cleaves elastin and type I collagen but 
because it targets various ECM glycoproteins, includ-
ing collagen XII, tenascin, fibronectin, thrombospon-
dins and periostin.106 Proteolysis of the ECM not only 
compromises its structural properties, but its degrada-
tion products have been recently shown to activate 
pro-inflammatory signalling via toll-like receptors 
(TLRs). Hyaluronic acid degradation products (that 
is, tetra- and hexa-saccharides) have the ability to act 
as endogenous TLR-2 and -4 ligands in a variety of 
cell types, including macrophages and endothelial 
cells.128 Similarly, the fibronectin splice variant 
extra-type III domain A (EDA), has been shown to 
activate T-cells and induce MMP-9 expression in 
human monocytes by activating TLR-4.129 The role 
of EDA fragments in CVD was recently highlighted 
by Arslan and colleagues.130 Moreover, Kim et  al 
recently showed that versican fragments activate 
TLR-2131 and Babelova et al described a proinflam-
matory effect of biglycan via TLR-2 and -4.132 Given 
the well-documented importance of TLR-2 and -4 in 
human atherosclerosis133 and the extensive remod-
elling of the ECM in CVD, the connection between 
MMP activity and the generation of bioactive, pro-
inflammatory fragments from ECM proteins needs to 
be further investigated.

CECM matrikines
As seen in the previous sections, CECM and its con-
stant interaction with proteases constitutes a complex 
and active entity in both physiology and pathology. 
The accumulated information on the continuous inter-
action between proteases and ECM gave birth to the 
conception of matrikines. The term was used to describe 
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peptides formed by protease-driven ECM proteolysis 
that were able to regulate cell activities via interaction 
cell surface receptors-.134 The finding that matrikines 
can regulate both ECM synthesis and remodelling as 
well as MMP production and activation is indicative of 
the strong influence they may have in physiology and 
in transition processes that ultimately lead to patholo-
gy.135 A number of proteins including elastin, various 
collagen types, glycoproteins and laminin134,136 have 
been recently described as ECM matrikine sources 
and mainly indicate the presence of tumours. How-
ever, the fact that most of these proteins exist in a large 
variety of tissues increases the possibility that these 
may be implicated in other pathologies. Angiogen-
esis is a prime example of such an occurrence, since 
it takes place in a variety of diverse processes such 
as arthritis, wound healing, tumour growth, and car-
diovascular-related events such as atherosclerosis and 
post-ischemic vascularisation of the myocardium.137 
Even though cardiovascular specific matrikines have 
not yet been described in detail, cardiovascular-re-
lated proteins such as elastin and their remodelling has 
been previously associated with angiogenesis, related 
inflammatory infiltrate and severity of atherosclerosis 
and aneurism progression.137–139 The possibility of 
cardiac-specific matrikines being implicated in cardio-
vascular pathology-related events, whether directly or 
indirectly should be further studied. The large num-
ber of potential combinations of peptide cleavages 
between cardiac-specific ECM protein constituents 
and proteases could result in a great number of matrik-
ines that even though locally generated could have an 
effect on both adjacent and distant cells and tissues.

The above is a significant task., The example of 
successful utilisation of neoepitopes as biomarkers 
for a number of different pathologies is indicative of 
potential benefits of such approach98,113–116,119 in this 
case. The question arises whether certain neoepitopes 
could also act as matrikines. Since both neoepitopes 
and matrikines are generated by proteolytic action 
of proteases on ECM, this possibility may exist and 
should be further assessed.

Discussion-Cardiovascular Continuum 
and Novel Cardiac Biomarkers
The discovery of novel and tissue-specific cardiac 
biomarkers that can reliably assess pathologic condi-
tions is important for early detection and prevention 

of cardiac damage. The existing panel of markers 
with the important addition of troponin markers 
constitutes a reliable set of tools. However, other 
markers are needed to describe underlying and 
developing pathology in the early, transient stages 
of CVC which elude existing late-stage diagnostic 
and prognostic means. The technology of combining 
protease-driven ECMR and the resulting peptide 
fragment “fingerprints” as markers of ECM moni-
toring has provided a number of reliable markers 
for ECMR pathologies98,113,115,116,119 which recently 
included cardiac-specific events such as arterial 
remodelling.140 The long timeline that separates risk 
factors which transiently develop to CVD-related 
pathology and ultimately cardiovascular death in the 
CVC include, as already described above, a large 
number of protease and protein interactions as key 
participants in ECMR. These protease and protein 
interactions could provide excellent markers of tis-
sue remodelling closely reflecting different stages in 
the disease continuum (Figs. 2 and 3).

The possibility that such CECMR fragments may 
also act as matrikines which affect cell activities 
via cell surface receptors further adds to the impor-
tance of accurate measurements of such fragments. 
Measuring these fragments could potentially reflect 
protease production, cell apoptosis, proliferation and 
migration. Cardiac-specific proteins and a detailed 
description of the precise proteolytic activity of 
proteases on these proteins in vivo could provide 
a prime resource of such biomarker development. 
The successful use of troponins suggests that other 
cardiac-specific proteins such as titin, which also 
have cardiac specific regions, could be identified as 
useful matrikines. During the identification of bio-
markers, it would be helpful to investigate their tissue 
and disease stage-specific post-translational modifi-
cations (PTMs), which may add supplementary infor-
mation for detailed disease-staging. We previously 
discussed that since PTMs are modifications that 
take place following protein translation and are not 
DNA-coded, their presence may be related to tissue 
physiology or pathology either as a cause or a conse-
quence and could therefore be included in the design 
of tissue-specific biomarkers.141 Identification of spe-
cific PTMs and their association with specific time 
points of disease progression could add important 
information to the proposed biomarker continuum, 

http://www.la-press.com


Novel biomarkers and the cardiovascular continuum

Biomarker Insights 2012:7	 53

A
Cross-section of an artery and atheroma progression

B

Fibroatheroma

Complicated lesion

ECM

Fatty streak

Normal ECMR:
Neo epitopes of different stages

Initial lesion:
Fatty streak:
Intermediate lesion:
Atheroma:
Fibroatheroma:
Complicated lesion:

Initial lesion

Foam cell

Protease

Intermediate lesion

Neo epitope release
in circulation

Atheroma

Figure 2. Proteolytic activity by proteases such as matrix metalloproteinases (MMPs) is an important regulator of extracellular matrix (ECM) integrity in 
atherosclerosis, which is the central pathological feature of CVD. Interaction of different proteases combined with an altered ECM phenotype during atheroma 
formation and disease progression could result in a distinct neo epitope formation which could be used to monitor abnormal cardiac ECM remodelling and stage 
the disease. These neoepitopes are informative of protease activity, potential post- translational modifications of proteins, and tissue remodelling (A). Combining 
such biomarkers with a specific relationship to the location of atheroma formation could enable close monitoring of atherosclerosis progression (B).
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Figure 3. A proposed illustration of a biomarker continuum, which could facilitate disease staging by utilisation of specific biomarkers that correspond to 
precise extracellular matrix remodelling (ECMR) events.
Notes: A serum measurement of biomarkers would provide information on all atherosclerotic plaques and the underlying activity of both proteases and 
ECMR. For a specific clinical phenotype, the marker or combination of markers may provide more information on the specific number of plaques and 
degree of ECMR and protease activity, and thus of disease-staging.
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thus creating a detailed disease staging network of 
biomarkers that are informative of underlying and 
developing pathology. Introduction and utilisation 
of well-described biomarkers that are closely related 
to CVD-staging could facilitate their classification 
to specific pathology-linked time points in a simi-
lar way as the BIPED criteria did for biomarkers in 
osteoarthritis142.

We believe that the main challenge of future 
biomarker translational research lies in the detailed 
mapping of tissue-specific relevant protein substrates, 
identification of tissue-specific acting proteases, and 
tissue-specific PTMs. These could be combined in 
biomarker development and concurrently increase 
our understanding of CVD initiation and progression. 
Biomarkers relating to the early transient stages of 
CVD could enable early intervention and modifica-
tion of the path of such a commonplace, but often 
fatal, disease.
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