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Abstract: Musculoskeletal disorders in the elderly have significantly increased due to the increase in
an ageing population. The treatment of these diseases necessitates surgical procedures, including
total joint replacements such as hip and knee joints. Over the years a number of treatment options
have been specifically established which are either permanent or use temporary natural materials
such as marine skeletons that possess unique architectural structure and chemical composition for
the repair and regeneration of bone tissue. This review paper will give an overview of presently used
materials and marine structures for hard tissue repair and regeneration, drugs of marine origin and
other marine products which show potential for musculoskeletal treatment.

Keywords: marine skeletons; musculoskeletal; bone repair; tissue regeneration; seashells; corals;
seas urchin; cuttlebone

1. Introduction

Understanding bone repair and regeneration is an important requirement for designing novel
materials for the treatment of bone diseases, articulations and fractures. Designing biomimetic scaffolds,
for example, requires knowledge of bone biology and physiology to build a proper representation of
bone that matches healthy tissue and participates in healing. Clinical practice for the treatment of bone
loss due to trauma, disease, or infection has been the use of bone grafts. The most successful bone
substitute procedures are the autograft, bone from one point to another of the same individual’s body,
specifically from the iliac crest, distal femur or the proximal tibia; or allograft, bone from one person
to another but not genetically identical. The reason for this is the fact that osteogenesis can only take
place with either autograft tissue or allograft cellular bone matrices. Given the scarcity of human bones
and the complications associated with bone harvesting such as infection, scarring, pain, blood loss,
and donor-site morbidity, there is significant interest in searching for alternatives in natural and
synthetic bone materials for clinical bone repair and regeneration [1]. In tissue engineering, allografts
that lack the osteogenic, osteoconductive or osteoinductive ability are being improved in order to
mimic the bone microenvironment by incorporating bone progenitor cells and growth factors [2].

The inspiration from natural skeletons and extracellular matrices has been the driving force that
has led to the use and development of functional musculoskeletal tissue-engineered constructs that
mimic natural skeletons. It is almost impossible to synthetically mimic natural constructs successfully.
There have been successes in the fabrication of constructs that mimic natural skeletons but with limited
biofunctionality in terms of their biological responsiveness and functions for circulation and flow of
growth medium, metabolites, and waste products [3,4]. Success in developing novel materials for

Mar. Drugs 2018, 16, 225; doi:10.3390/md16070225 www.mdpi.com/journal/marinedrugs

http://www.mdpi.com/journal/marinedrugs
http://www.mdpi.com
https://orcid.org/0000-0002-7517-4537
http://www.mdpi.com/1660-3397/16/7/225?type=check_update&version=1
http://dx.doi.org/10.3390/md16070225
http://www.mdpi.com/journal/marinedrugs


Mar. Drugs 2018, 16, 225 2 of 11

tissue substitution and regeneration depends on our willingness to learn from nature and attempt to
copy the vital components [5].

Bone is a complex and highly organized structure of organic–inorganic architecture consisting of
nano- and micro-composite tissue. The excellent mechanical properties come from the mineralized
matrix composed of collagen (35% w/w dry weight), carbonated apatite phase (65% w/w dry weight)
and other non-collagenous organic protein [6]. Bone tissue consists of a hard and dense cylindrical shell
of cortical bone with a porous structure of trabecular bone at the proximal and distal ends. Trabecular
bone has a porosity range from 50% to 90% with a pore size of around 1 mm and an average density of
0.2 g cm−3 [7,8]. Bone tissue undergoes dynamic processes through continuous remodelling, removal
of bone by osteoclast cells, followed by new bone formation by osteoblast cells for structural and
nutritional purposes, changing functional demand. Replacing bone tissue during treatment of bone
defects with biomaterials requires the use of materials with similar mechanical integrity to natural
bone with the ability to adapt and participate in the tissue growth processes. From a biomaterials point
of view, marine structures have an enormous richness of these properties for tissue engineering.

Marine skeletons are exemplary bioresources that have tailored architectures which give
them structural support, and other functions viable for human tissue repair and regeneration.
Marine structures such as seashells with dense lamellar structures or sea urchin, cuttlebone and
coral with interconnected porous structures, are enriched with bioactive elements and are important
and significant medical materials that could be effectively used for tissue engineering and drug
delivery applications [9,10]. It has been demonstrated that invertebrate shells and skeletons can induce
bone formation, particularly coralline skeletons having structural characteristics resembling natural
bone architecture and, therefore, can temporarily replace bone while the body regains the ability to
heal itself. Most of these skeletons contain mainly layers of calcite or aragonite polymorphs in their
structures that can easily be converted into calcium phosphates similar to natural bone minerals [11,12].
Natural materials have superior biological and structural properties compared to synthetic materials,
have successfully been used, and provide an abundant source of novel biomedical applications [13].
Calcium phosphates, specifically HAp and TCP, can be prepared from natural materials composed of
calcium carbonate such as sea coral [13], mussel [10], egg shells [14] and nacre venus verrucosa [15],
all with unique architecture, for biomedical applications. The high price of bioceramics in the market
reflects the significant costs of raw materials that can easily be replaced by natural biogenic materials.
In this review, a highlight of recent advancements in the use of marine skeleton biomaterials for tissue
engineering and drug delivery applications will be given.

2. Marine Skeletons

Marine skeletal carbonate (Figure 1) contains trace elements of strontium, magnesium and sodium
and has a unique architecture, with excellent biomedical, strength and resilience properties and
considerable success as apatite precursors and bone graft materials. There is striking evidence of the
osteointegrative properties of these materials in vivo [16,17], an indication of the ability to initiate
osteogenic differentiation of mesenchymal stem cells into clinically acceptable bone formation. This has
spurred on researchers to conduct further studies in which marine skeletons have been converted into
calcium phosphates and included into the design of biomaterials to induce bone formation [9,18–21].
Marine skeletons have interconnected porous structures with pore size ranges from 20–500 µm suitable
for the vascularization and infiltration of bone cells. The conversion of these carbonate porous skeletons,
to maintain structural integrity, contributes disproportionately to their mechanical properties resulting
in stronger, less soluble scaffolds suitable for promoting tissue regeneration [22]. Useful bioactive
components in these natural structures are retained following conversion to calcium phosphate.
Collective efforts to learn and adapt from the natural materials will enable us to develop an array
of better structures for regenerative medicines. Biomimetic approaches have revealed promising
outcomes for the application of tissue regeneration and repair of skeletal tissues. The ideal approach has
been to design materials at the micro- and macromolecular level with a high possibility of mimicking
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native extracellular matrices. The goal is to be able to design clinical scaffolds for regenerative
medicines incorporating an optimal hierarchical architecture according to biological principles.
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Figure 1. Marine skeletal carbonate.

The use of marine skeletons is not only limited as templates for tissue reconstruction in
maxillofacial [23,24], dental [25] and orthopaedics [26], but can also be used as a delivery vehicle,
due to the nano- and mesopores in their structures, for drugs, genes or growth factors in a controlled
manner [9,27,28]. These drug-release systems have been proven to provide an outstanding alternative
to conventional clinical therapies. With advancement in both science and material design and
engineering, more sophisticated therapeutic agent release systems have been developed with improved
capabilities and performances for the treatment of resilient diseases such as musculoskeletal disorders
and bone diseases. Drug-delivery technology presents an interesting interdisciplinary challenge for the
pharmaceutical, chemical engineering, biomaterials and medical communities [29]. The hierarchical
and porous structures of marine skeletons play a major role in drug-loading and progressive delivery
over time to surrounding tissues.

3. Seashells

Various materials have been used as bone substitutes to replace autogenous or allogenous bone
substitutes in the treatment of bone defects. In the past, bioinert bone substitute materials were
being used as a space holder during healing processes. However, tissue engineering and regenerative
medicines have changed the norms and now bone substitute materials are being used to promote
tissue regeneration and osseointegration [30]. The chemistry and topography of bone substitute
materials can be designed to guide cell growth, proliferation and differentiation. Marine shells are one
group of biogenic materials composed of mostly carbonate with the dense tailored microstructures
that have been used for centuries in the treatment of bone defects [16]. Having excellent mechanical
properties, essential for load bearing in orthopaedic applications, marine shells have topographical
features in their inherent chemistry that impart osteoinductive properties with an enhanced osteogenic
response to human tissue [31]. The conversion of seashells results in ceramic materials such as
tri-calcium phosphates, hydroxyapatite and calcium phosphate ceramics, which are biomaterials for
bone substitute and fillers [32,33]. It has been shown that in the conversion of marine shells they retain
their nano- and microstructures, which are a vital component, and can temporarily serve in a structural
capacity for bone repair and drug delivery applications.
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Seashells have also been reliable bioresources for biopolymers such as chitin. Chitosan can
be derived from chitin, providing more useful biopolymers and important raw materials in many
industrial sectors such as medicine, food, pharmaceutical and packaging. Chitin is the second most
popular biopolymer extracted from exoskeletons of crustaceans and such as crabs, lobsters and
krill [34]. Chitosan derived from marine skeletons is regarded as a functional material with excellent
biocompatibility; it is non-toxic, biodegradable and has the ability to regulate cell activation.

4. Corals

Most of the coral stony skeletons have interconnected pores throughout their hierarchical structure
(Figure 2) and are composed primarily of calcium carbonate, with porosity and pore sizes which
closely resembles that of trabecular bone, making it a suitable material for bone graft application.
Commercially, the use of coral came into use in the early 1990s, becoming available as Biocoral and
Interpore [35]. In an animal study, a three-dimensional coral skeleton structure promoted hard tissue
gowth as it is resorbed and totally replaced by new bone [36]. Similar results were observed when coral
skeleton was used in human implantation [37]. In both cases, due to the structural compositions of coral,
the body absorbed calcium carbonate too quickly for new bone tissue to grow on the coralline scaffold.
Converting coralline calcium carbonate to calcium phosphate materials can control the resorption rate
of coral. Although coral structurally resembles trabecular bone, its mechanical properties are too weak
for load-bearing applications. This limitation can be addressed by hydrothermally converting coral
skeletons to calcium phosphate-derived coralline, in which the coral structure is retained, followed
by sol-gel coating to enhance strength for load-bearing skeletal applications [22]. Further studies
were conducted to improve the mechanical strength of coralline-derived hydroxyapatite (HAp) by
incorporating fluoride into the HAp structure [38]. Clinical studies have shown that coralline HAp
displays excellent biocompatibility and bioactive properties with both soft and hard tissue.
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4.1. Coral Skeletons in Dentistry

Coral skeletons are one of the natural materials suggested to have potential in dental hard tissue
restoration and augmentation. Several other marine skeletons such as marine sponges, nacre shells
and foraminifera have also been studied for dentistry applications [39]. Coralline has to be regarded as
the mirror image of alveolar sponge tissue and can be used for regeneration of jawbone, dentine or
periodontium [40].

4.2. Coral Skeletons as a Drug Carrier

With a structure and composition roughly similar to human bone and their rapid dissolution
behaviour, coral or coralline-derived calcium phosphate exhibit properties necessary to deliver drug
occlusion in their porous structures. In addition to reducing toxicity to non-diseased cells, the use
of ceramic systems has the potential benefit of increasing drug efficiency, which translates to a
significant cost saving for many of the expensive drug treatments now being engineered. A study
on the ability of coralline-derived HAp and beta-tricalcium phosphate scaffolds to release drugs
suitable for osteomyelitis showed a better performance, influenced by this carrier material [41].
One of the factors that controls the release of drugs from the drug carrier is the physical-chemical
interaction between drug and carrier surface. Baradari et al., after investigating the use of porous
β-TCP as an anti-inflammatory drug carrier, found that the adsorption isotherm fitted the Freundlich
model suggesting that the interaction between ibuprofen and β-TCP is weak [42]. The release of
bisphosphonate from coralline-derived HAp-Polylactic acid film composites suggests that an affinity
between the bisphosphonate and Hap-enhanced controlled release rate [28]. It has to be noted that
better properties for drug release systems can be carefully achieved by the combinatory approach
where two or more components are used for a composite delivery system. It has been reported that
composite drug delivery systems composed of silica nanoparticles coated with β-TCP and bioactive
glass showed a high performance in the local and extremely sustained delivery of bi-component
anti-tubercular drugs [43].

5. Sea Urchins

Unlike corals, which have poor machinability properties due to their brittleness, sea urchins have
a similar hierarchical porous structure to coral, marine sponges and cuttlebone but display superior
mechanical properties with high strength-to-weight ratios; and can be machined to different shapes.
It is well known that spines of sea urchin Heterocentrotus mammillatus and Heterocentrotus trigonarius,
consist of magnesia calcite crystals in concentric-ring-mesostructures similar to trabecular bone [44,45].
It was reported that the compression fracture strength of hydrothermally-converted beta-tri-calcium
magnesium phosphate scaffolds is about 9.3 MPa, which is similar to that of human trabecular bone
and in a vivo study of this scaffold revealed a strong promotion of bone tissue formation and a
tight interface from the rat femoral bone defect model [46]. These are strong scientific shreds of
evidence pointing to the potential clinical production and use of sea urchins for bone defect repair and
regeneration in load-bearing skeletal positions.

Apart from being biocompatible, inherited from the biogenicity, one of the major factors which
play an important role in bone formation is the interconnective porous structure of sea urchin scaffolds.
Similar results have been reported from coral, seashells, and cuttlebone [36,47]. Close cell structural
scaffolds, on the other hand, do not behave similarly because they lack the facilitation of cell penetration,
vascular ingrowth, and nutrient transportation into the scaffold structure as well as waste elimination,
all of which are important physiological activities of bone. Microstructures and the crystallography of
sea urchins, as well as other marine skeletons, should be the basis, of biomimicking a multifunctional
single material as a new morphological form [48]. It is not yet possible to copy all vital components
from marine skeletons, despite advanced technology, due to their complex inorganic morphology.
Harnessing self-assembling chemistry to bio-emulate calcification could help to mimic skeleton
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scaffolds close to natural design. Microfluidics has been suggested as one of the techniques that
can be used to replicate skeletons in a controlled automated system [49,50]. However, using living cells
to replicate marine skeletons would incorporate biological properties and result in better scaffolds [51].

6. Cuttlebone

Cuttlebone is the cuttlefish (Sepia) internal shell, with a unique structure that provides a
near-neutral buoyancy effect for cuttlefish at varying diving depths. Cuttlebone displays a high
compressive strength, for it must withstand hydrostatic pressure at depth and be as lightweight as
possible to maximize buoyancy. It has a pore size range from 200 to 600 µm and a porosity of above
90% [52], with similar chemistry and crystallography as coral. The combination of these properties in
cuttlebone makes it extremely attractive for bone structural materials, specifically as templates for tissue
regeneration. It can directly replace bone tissue for bone defect repair in a load-bearing bone site due to
its excellent mechanical strength. The structure [53,54], chemical composition [55], crystallography and
its mechanical-structural analysis have been studied in detail [56]. Cuttlebone performed remarkably
well when used as an xenograft for the treatment of a bone defect in a male rabbit model as it showed
a lack of re-infection and infection responses and faster bone tissue regeneration [47].

7. Marine Sponges

One of the most facinating porous structures belongs to marine sponges. Although they
are not calcium carbonates they form excellent 3D structures for bone growth and are flexible if
required [57–63]. Marine sponges share much in common with multi-cellular tissues (Figure 3).
Similarities, from a biochemical and morphological perspective exist between a marine sponge and
vertebrate extracellular matrix suggesting that the fundamental rules of organization evolved initially
by marine sponges.

Bioinspiration from biological functioning in biosilica-based marine sponge spicule structures
could be employed to develop future bone materials by adapting the ability to adjust the degree of
mineralization so as to reach the preferred physical and chemical properties. It is envisaged that,
by applying biological rules, cell culture systems could be used to develop smart materials resembling
biosilica in sponges for bone repair and regeneration [63,64].

In a physiological environment it has been shown that silica deposition takes place prior to
the ossification process. The effect of biosilica on the osteoblast activity revealed an increase in
mineralization activity of human osteogenic sarcoma cells [59].

The mechanisms and bioformation of sponge skeletal structures have been extensively studied
by Muller and his group [57,61]. In summary, microscopic silica deposited within sponging cells,
results in mineral skeleton structures consisting of silicatein and concentric lamellar layers as a scaffold
of protein silintaphin-1 know as sponge spicules. The developing spicule is then transported into the
extracellular space to obtain their final sizes, starting from 450 µm (Demospongiae) to much larger
sizes and structures (Hexactinellida) [58,60,62].

To date, three types of collagen have been identified from marine sponge. All sponges are
comprised of collagen fibrils 22 nm thin with highly ordered periodic banding. These collagen fibrils
are secreted in bundles in a similar fashion to vertebrates. The amino acid sequence and genome
organization is similar even though the ultrastructure of collagen is relatively simple compared to
vertebrate collagens. Correspondingly, collagen fibrils are closely associated with proteoglycans,
which, in mammalian tissue design, shape and form at long-range scale. Dermapotin, fibronectin,
and tenascin polypeptides are also discovered in marine sponge collagen fibers and cross-react with
antibodies raised against vertebrate analogies underlining their common origins. A number of sponge
species possess an analogue of type IV collagen found in vertebrate basement membrane collagens [65].
The organization of collagen fibrils is analogous to collagen type XIII which sticks cells to surfaces [66].
It is with these properties (cell adherent collagens and fibronectin) that collagenous marine sponge
represents a significant potential for future development as bioactive tissue-engineering scaffolds.
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Marine sponges are at the moment extensively exploited for novel biological compounds as
potential treatments for leukemia, cancer tumors, and inflammation. They are also a source of collagen
for cosmetics [67] and dermatological preparations [68]. Half of all marine-derived materials in total
are sourced from a wide spectrum of marine sponges. Collagenous marine sponge skeletons are
extremely strong, soft, elastic, highly absorbent, and resistant to bacterial attack and high temperatures.
They are very suitable for use in surgical procedures as a result of these properties. Investigations
are being carried out by several researchers to examine feasibility and the exact conditions needed to
commercially grow marine sponges on a large production scale. Some have established aquatic pilot
forms for the cultivation of selected bath sponge species. An additional aim for cultivating marine
sponges is the extraction of medically important secondary metabolites in much greater quantity than
is possible compared to collections made by conventional bio-prospecting.

It has been suggested that useful lessons in the construction of man-made frameworks with
minimal starting materials for maximum strength has been provided by the superior optimized
structural design of marine sponges [69,70].

Consolidated silica spheres on the nanometer scale are arranged in well-defined microscopic
concentric rings held together by an organic matrix to form laminated spicules. Influenced by the
laminated silica-based cement, the assembly of these spicules into bundles results in the formation of a
macroscopic cylindrical lattice-like structure reinforced by diagonal ridges (Figure 1). Hence, there is
considerable mechanical benefit to specific arrangements of structural elements at many different
hierarchies of scale.

The 3-D topology and specific surface features of hydrozoans has been suggested to initiate faster
cell adhesion, proliferation, and differentiation [70]. Further work is needed to determine the exact
mechanism of action between cell and material. The potential of a clinically relevant scaffold for a
range of tissues such as bone, cartilage, fat connective, liver and kidney is accomplished by collagenous
marine sponges. The fiber-bonded meshwork of sponges provide channels for cell guidance along
with spaces for rapid tissue infiltration and infilling. The collagenous composition of the fibers has
been found to promote attachment of all types of human cells. The unique layered ultrastructure may
explain the high wettability and adsorption of growth factors onto the collagen fibers, which infuse
into attached cells and promote their activities. It has been shown that the formation of tissue in vivo
within 4 weeks is both extensive (completely filling the entire sponge implant) and well developed,
with the quality and structure of tissue being equivalent to immature bone and neocartilage.
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8. Concluding Remarks and Future Perspectives

This review has clearly revealed the clinical potential of a few selected marine skeletons for
the treatment and repair of bone defects as part of an effective regenerative strategy. The porosity,
microstructures and crystallography of these structural marine skeletons can be used to either improve
existing bone repair materials or to develop novel bone tissue materials. With this in mind, we can
improve the availability of marine skeletons by opting to farm them effectively in an artificial marine
environment. This objective is to establish appropriate conditions for the full utilization of marine
natural products in tissue engineering. Biomimetics of marine structures is not simple but as the
evidence of successful copying of some vital components is striking, and includes the incorporation
of biological properties, it helps to build competent biomaterials similar to human bones. The future
of tissue engineering and the use of marine natural products depend on our willingness to learn the
marine aqua system.

Conflicts of Interest: The authors declare no conflict of interest.
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