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A B S T R A C T

Sewage sludge was evaluated as high available and low cost microbial oils feedstock for biodiesel
production. Samples from four different wastewater treatment plants from La Araucanía Region in
Southern Chile presented total lipids content ranging between 7.7 and 12.6%, being Vilcún sewage sludge
that with the highest transesterifiable lipids content of about 50% of the total extracted lipids. The most
relevant identified bacteria present in sludge samples were Acinetobacter,Pseudomonas and Bacillus, being
Bacillus sp. V10 the strain with the highest transesterfiable lipids content of 7.4%. Bacillus sp. V10 was
cultured using urban wastewater supplemented with glucose to achieve nitrogen depleted medium and
using milk processing wastewater as a low-cost carbon source. Bacillus sp. V10 lipid profile indicates that
low degree unsaturated long chain fatty acids such as C18:1 may account for approximately 50% of the
lipids content, indicating its suitability to be used as raw material for biodiesel production.
ã 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In 2010, liquid fuel consumption in the world reached 87 million
barrels per day and it is projected to increase up to 122 million
barrels of liquid fuel per day in 2040, reducing fossil fuels reserve
and acting as a driving force behind the search for alternative fuels
[1]. Nowadays, biodiesel is one of the most important alternative
biofuel due to lower emissions generation (particularly
hydrocarbons, CO and particulate matter) compared to diesel
performance [2] and the absence of sulfur content. Biodiesel is
mainly produced by transesterification, reaction that occurs
between an acylglycerol (from vegetal oils or animal fats), and a
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short chain alcohol (methanol or ethanol) in the presence of a
catalyst.

So-called “first generation biodiesel” is produced from virgin
edible vegetable oils as soybean, rapeseed, sunflower, palm and
coconut oil, where feedstock costs may account for about 80% of
the total biofuel production cost [3]. Non-edible vegetable oils
used in second generation biodiesel production such as jatropha,
castor, karanja, pongamia, babassu, neem, tobacco and rubber seed
oil, may have lower prices than edible oils and could be available to
produce biodiesel without competing with food oils [4]. Third
generation biodiesel production is nowadays focused on the use of
microbial oils such as microalgae, bacteria, yeast and fungi [5–10].

Municipal sewage sludge is a by-product generated in
wastewater treatment facilities after primary and secondary
treatment processes and could be considered as one of the most
interesting potential feedstock for biodiesel production in the
future. Wastewater treatment processes produce two main types
of sludge: a primary sludge, normally a combination of organic and
inorganic matter with gas bubbles trapped within the suspension
and a secondary sludge, also called activated sludge, mainly
composed of microbial cells and suspended solids produced during
der the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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aerobic biological wastewater treatment [11]. In addition, a third
kind of sludge can be considered, namely digested sludge, which is
a mixture of primary and activated sludge that has been stabilized
through the anaerobic digestion process [11]. Raw primary sludge
lipids content on a dry basis could be in the range of 20–26% [12],
while activated sludge lipids content may range between 2 and 54%
[13–15]. Nevertheless, as pointed out by [16] there are still
challenges to be faced in the production of biodiesel from sewage
sludge, such as determining the best way to collect and treat the
different fractions for increasing the lipids extraction yield.

In particular, activated sludge contains a microbial population
responsible for wastewater treatment and is mainly composed by
heterotrophic bacteria. These bacteria use the organic compounds
contained in wastewater to grow or as energy and carbon storing
compounds, mainly as lipid droplets such as triacylglycerol (TAG)
[6,17]. The biosynthesis of TAG is common between some filamen-
tous bacterial species belonging to the Actinomycetales order
(Mycobacterium, Streptomyces, Nocardia and Rhodococcus), which
have been defined as oleaginous bacteria since they can accumulate
more than 20% of their biomass as lipids [17,18]. It is well known that
microbial culture conditions (carbon and nitrogen sources, aera-
tion, temperature, etc.) can affect microbial intracellular lipids
concentration and composition [9]. In this regard, the use of
wastewater sludge has demonstrated to be a suitable inoculum for
TAG biosynthesis by oleaginous microorganisms using a wide range
of inexpensive carbon and nutrients sources [19,20]. In addition,
sewage sludge has been recently considered as a source of lipids for
biodiesel production by using direct transesterification [21–23].

The purpose of this research was to screen transesterifiable
lipid accumulating bacteria from sewage sludge obtained from
four wastewater treatment plants belonging to the Araucanía
Region of southern Chile and to explore the potential of selected
bacteria from these sewage sludge samples to accumulate lipids for
biodiesel production under specific culture conditions.

2. Materials and methods

2.1. Sewage sludge

Sewage sludge (SS) was collected from the sedimentation tanks
of wastewater treatment plants belonging to four localities of the
Araucanía Region in southern Chile. The samples were transported
to the laboratory and stored at �20 �C.

2.2. Lipids extraction from sewage sludge

Bligh and Dyer [24] modified method was used to extract the
lipids contained in sewage sludge samples. Briefly, 3 g (wet weight)
with a solids content ranging between 13.2 and 16.7%, were mixed
with a 15 mL of chloroform (CHCl3):methanol (MeOH) mixture
(1:2 v/v ratio). The mixture was shaken in vortex for 1 min. Then
15 mL chloroform was added and shaken for 1 min. Finally, 10 mL
distilled water were added to the mixture, shaken in vortex for
1 min followed by centrifugation at 13,000 � g for 10 min. The
chloroform phase containing lipids (bottom phase) was separated
and the solvent was removed by evaporation.

2.3. Transesterifiable lipids fraction from sewage sludge

Identification and quantification of transesterifiable lipids of
sewage sludge was achieved by esterification of the extracted
lipids to methyl esters according to the methodology described by
Sathish and Sims [25] with some modifications and subsequent
analysis by gas chromatography. Briefly, lipids (50 mL) were firstly
hydrolyzed by the addition of 1 mL of a 0.5 M potassium hydroxide
solution in methanol at 100 �C during 5 min, followed for the
addition of 400 mL of a 4:1 (v/v) HCl/methanol solution and heated
to 100 �C for 5 min. The resulting FAMEs were extracted from the
acidified methanol phase after the reaction with 3 mL of petroleum
ether (boiling point between 35 �C and 60 �C). Chromatographic
analysis was carried out using a Clarus 600 chromatograph
coupled to a flame ionization detector from PerkinElmer (GC-FID)
according to the method described by the Comité Européen de
Normalization (EN14103). An Elite-5MS capillary column with a
length of 30 m, thickness of 0.1 mm and internal diameter of
0.25 mm was used. The vials were prepared by adding 10 mL of
sample to 233 mL methyl heptadecanoate as an internal standard
(initial concentration of 2060 mg L�1). FAME yield (% based on lipid
content) was calculated as the ratio between methyl ester mass (g)
and lipid mass (g) multiplied by 100.

2.4. Bacteria isolation and culture

Bacteria isolation was performed from collected SS using the
method described by Hamaki et al. [26] with some modifications. A
solid culture media based on SS extract was prepared using 150 g of
dry SS and incubated in 300 mL NaOH 50 mM overnight at room
temperature. After incubation, the mixture was centrifuged at
13,000 � g for 40 min and the supernatant was filtered (1.2 mm)
obtaining a sludge-media. The pH of the sludge-media was
adjusted to 6.8. Finally, 1 g agar–agar was added for each 100 mL
of sludge-media and autoclaved at 121 �C for 15 min at 1 atm.

Activated sludge samples (5 g) were suspended in distilled
water (50 mL) and serial dilutions (10�1 and 10�5) were performed.
Portions of 50 mL of each dilution were spread onto agar plates
containing the sludge-media and incubated at 30 �C for 96 h. Single
colonies were randomly picked up from the culture on SS agar,
which represented the most abundant phenotypes (color,
brightness, form, elevation and margin). Then, the selected
colonies were purified by streaking on new agar plates for 24 h
at 30 �C. After that, pure single colonies were grown on plates with
nutritive media and stored in glycerol at �80 �C.

2.5. Bacteria characterization

Firstly, a preliminary characterization of isolated strains was
carried out by microscopic observations and gram staining.
Genetic characterization of each isolated strains was also carried
out by partial sequencing of 16S rRNA genes (Macrogen Inc., Korea).
The sequences obtained were compared with those present in
GenBank database from the National Center for Biotechnology
Information (NCBI) by using BLAST tools (http://blast.ncbi.nlm.nih.
gov/Blast.cgi). The search was done using the non-redundant
nucleotide collection and optimized for highly similar sequences
using Megablast. The nucleotide sequences obtained in this study
were deposited in the GenBank database under accession numbers
from KP099624 to KP099639.

2.6. Lipid content in isolated strains by gravimetric method

Microbial lipids extraction was performed following the Bligh
and Dyer [24] methodology with some modifications. Briefly, 50 L
of a bacterial culture were centrifuged at 13,000 � g for 15 min and
the cell pellet was washed with deionized water and suspended in
100 mL of sodium chloride solution (1.0% NaCl). After that, the cell
suspension was centrifuged and the final pellet was stored at
�20 �C overnight. Frozen biomass was freeze-dried and subse-
quently stored at �20 �C.

In covered flasks, 100 mg of freeze-dried cells were blended
with 114 mL solvent in the following sequence: chloroform,
methanol and water, to achieve a final ratio of 1:2:0.8. Samples
were shaken for 15 s after adding each solvent, allowing then
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samples to stand for about 6 h with occasional manual agitation.
Phase separation of the biomass-solvent mixtures in the separa-
tion funnels was achieved by adding chloroform and water to
obtain a final chloroform:methanol:water ratio of 1:1:0.9.
Chloroform phase (bottom phase) was evaporated and recovered
lipids were determined by gravimetric method

2.7. Lipid content in isolated strains by Nile red fluorescence method

Neutral (transesterifiable) and polar lipids content were
determined using flow cytometry according to the methodology
described by Lopes da Silva et al. [27]. Briefly, 1 mL of cell
suspension (�106 cells/mL) was mixed with 10 mL of a Nile Red
solution (0.033 mg/mL) and incubated for 2 min at 37 �C in
darkness. Nile Red fluorescence was determined using a FACs
Canto II flow cytometer of double laser (Becton Dickinson
instrument). Upon excitation by the 488 argon laser, Nile Red
exhibits yellow and red fluorescence when dissolved in neutral and
polar lipids, detected by the channels FL2 and FL3. Non-staining
cells were used as autofluorescence control. A semi-quantitative
determination of the transesterifiable lipids was performed using
this methodology by Chen et al. [28]. A standard curve based in the
fluorescence generated by triolein in a range of concentration (0–
30 mg mL�1) was used to establish the transesterifiable lipid
content of each strain in percentage of total biomass.

2.8. Bacillus sp. V10 growth kinetics and lipids characterization

Based on lipid content determinations, Bacillus sp. V10 was
selected as the most suitable strains for biodiesel production and
was therefore cultured for biomass accumulation and lipids profile
characterization. Bacillus sp. V10 was cultured using urban
wastewater (kinetic trial K1 in Table 1) supplemented with
glucose as carbon source (kinetic trials K2 and K3 in Table 1) to
achieve a medium with higher C/N ratio for an efficient lipids
accumulation yield. In addition, Bacillus sp. V10 was cultured in
milk processing wastewater as a low-cost C source (kinetic trial K4
in Table 1). Kinetic trials were then performed in shaken (150 rpm)
Erlenmeyer flasks at 30 �C during 10 days, taking samples every
12 h in a laminar flow chamber and analyzing biomass concentra-
tion spectrometrically at 660 nm. Specific growth rate (m), biomass
productivity (g L�1 day�1) and lipid productivity (mg L�1 day�1)
were calculated from the obtained data to assess growth
characteristics of Bacillus sp. V10. The quantification of lipids
produced by Bacillus sp. V10 was performed using the Nile red
fluorescence method, as described before.

3. Results and discussion

3.1. Content and characterization of lipids in sewage sludge

Lipids content of sewage sludge (SS) from four different
wastewater treatment plants ranged between of 7.7–12.6%, where
the high lipid contents not necessarily implies a high content of
transesterifiable lipids (Fig. 1). This result is expected as lipids
extraction is related to solvents characteristics such as polarity,
Table 1
Chemical oxygen demand (COD) and total Kjeldahl nitrogen (TKN) in urban
wastewater (K1), in wastewater supplemented with glucose (K2 and K3) and in milk
processing wastewater (K4).

Kinetic trial COD (mg/L) TKN (mg/L) COD/TKN (C/N)

K1 272 47 5.8
K2 1686 47 35.9
K3 2528 47 53.8
K4 6743 187 36.1
volatility, immiscibility with water and boiling point. In our case,
the extraction method used considered a chloroform:methanol
mixture. Using this mixture it was possible to extract glycerides
and other compounds, resulting in a higher lipids extracted mass
compared to transesterifiable lipids (neutral lipids). Transesterifi-
able lipids were however present in all samples, demonstrating a
high potential of transesterifiable lipids synthesis by SS micro-
organisms. The Vilcún locality showed the highest content of
transesterifiable lipids in SS, representing about 50% of the total
extracted lipids. On the opposite, transesterifiable lipids content in
SS of the other wastewater treatment facilities represent not more
than 20% of total lipids (Fig.1). Given these results, bacteria from SS
were isolated and identified for further evaluation of their ability to
produce transesterifiable lipids.

3.2. Screening of bacteria from sewage sludge

Sixteen different bacterial strains were isolated from the four SS
through culture in sludge-media and agar. The morphological and
somephysiological characteristicsof the culturesare given inTable 2.
Mostof the isolateswererod-shape,bothgramnegativeandpositive,
followed by isolates with coccus and spherical morphology. The
facilities of Pucón and Traiguén presented rod-shape and mainly
gram negative isolates. The isolates belonging to Lonquimay and
Vilcún facilities presented the more diverse morphology including
filamentous, rod and spherical shape morphologies.

The results of 16S rRNA gene sequencing indicated that 16 strains
we characterized, belonging to eight different genus (see the
phylogenetic tree in Fig. 2). Three of the eight genus showed
similarity to Acinetobacter, Pseudomonas and Bacillus genera, which
have previously been studied on biodiesel production or lipids
accumulators [20,29]. In particular, Acinetobacter has been already
reported as lipids accumulators present in the biomass of activated
sludge [20]. Acinetobacter has beenpreviously defined as oleaginous
bacteria and produces a high oil content of more than 20% of its total
biomass [29]. Acinetobacter sp. accounts for less than 10% of the
sewage sludge bacteria [30]; however, it is a bacterium commonly
present in wastewater treatment plants and therefore, it is available
as a microbial lipids source for biodiesel production [31].

In the case of Pseudomonas, enzymes from Pseudomonas have
been used as biological catalysts in the transesterification process
for biodiesel production. These enzymes include lipases from
Pseudomonas fluorescens [32], Pseudomonas cepacia [33] and
Pseudomonas aeruginosa [34], acting in lipids biosynthesis and
promoting lipids solubilization by hydrolyzing triglycerides.
Regarding Bacillus, Bacillus subtilis HB1310 has been described as
an oleaginous microorganism isolated from thin-shelled walnut. B.
subtilis H1310 is able to reach a lipid content of 39.8% in 48 h, when
cultured in cotton stalk hydrolysate as substrate [35]. In addition,
Bacillus lipases are easily produced and display high tolerance
toward organic solvents, proving them useful in the synthesis of
esters for food industry, cosmetics and biodiesel production [36].

3.3. Lipids characterization of isolated bacterial strains

Fig. 3 shows total lipids content in dry biomass of each isolated
strain. Total lipids were found in the range between 3.1 and 10.7%.
Clearly, relevant differences exist in neutral or transesterifiable
lipids between isolated strains. Higher neutral lipids content were
observed in strains isolated from Vilcún (V) and Traiguén (T)
wastewater treatment plants, suggesting that microbial oils in
terms of neutral lipids from strains Pseudomonas sp. T2 (3.6%),
Pseudomonas sp. T15 (4.8%), Acinetobacter sp.V4 (3.0%), and Bacillus
sp. V10 (7.4%) are suitable for biodiesel production. In particular,
Bacillus sp. V10 is the strain with the highest neutral lipids content
and therefore the most suitable for biodiesel production. In this
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sense, Bacillus sp. V10 was selected for kinetic trials growth for
both, biomass accumulation performance and lipids accumulation
and characterization. The results of 16S rRNA gene sequencing and
BLAST indicate that Bacillus sp. V10 matches in a 99% with Bacillus
thuringiensis and Bacillus cereus. B. thuringiensis can be naturally
found on leaf surfaces, aquatic environments, animal feces, insect-
rich environments, flour mills and grain-storage facilities, contrary
to this, B. cereus in responsible of alimentary intoxications and is
Table 2
Bacterial strains isolated from sewage sludge belonging to the Lonquimay, Pucón, Vilcú

Locality Strain Colony
characteristics
on nutritive agar

Morphology Gram
reaction

Closet 

Pucón Acinetobacter
sp. P4

White, dry Coccobacilary
rod

– Acineto
with oi
(KM370

Citrobacter sp.
P5

Small white
transparent

Rod – Citroba
from m

Klebsiella sp. P9 White and small Rod – Klebsiel
from tr
membr

Pseudomonas
sp. P11

Yellow, dry Rod – Pseudom
from oi

Microvirgula sp.
P14

Yelow Rod – Microvi
from w

Lonquimay Citrobacter sp.
L11

Brown, creamy Coccus – Citroba
from m

Lysinibacillus sp.
L4

Light brown,
creamy

Sphere + Lysiniba
from st

Lysinibacillus sp.
L6

Transparent
white, dry

Sphere + Lysiniba
from st

Traiguén Pseudomonas
sp. T1

Filamentous
white

Filamentous – Pseudom
crude o

Pseudomonas
sp. T2

Transparent
white

Rod – Pseudom
from A

Pseudomonas
sp. T15

Transparent
white, dry

Rod – Pseudom
Qingha

Vilcún Acinetobacter
sp. V4

White
transparent

Rod – Acineto
with oi
(KM370

Bacillus sp. V7 White Rod
filamentous

+ Bacillus
from w

Bacillus sp. V8 Brown Coccus + Bacillus
from w

Microbacterium
sp. V9

Yellow Coccus + Microba
(AM747

Bacillus sp. V10 White, dry Coccobacilary + Bacillus
from w

a Based on partial sequencing of 16S gene and comparison with those present in Ge
collection and optimized for highly similar sequences using Megablast.
naturally present in soils [37]. In addition, Bacillus sp. V10 matches
in a 93% with the aforementioned oleaginous endophyte B. subtilis
HB1310.

3.4. Bacillus sp. V10 growth kinetics and lipids characterization

Bacillus sp. V10 was selected as the most suitable strain for
biodiesel production and was therefore cultured in urban
n and Traiguén wastewater treatment facilities.

relatives or cloned sequences (accession no.) Similaritya

(%)

Accession
no.

bacter sp.
l activity isolated from coastal and marine ecosystems
367)

99 KP099626

cter freundii
embrane bioreactor activated sludge (KF938666)

98 KP099627

la oxytoca
eatment of cosmetic wastewater by submerged
ane bioreactor (KC593550)

99 KP099628

onas sp.
l production water (JX997893)

99 KP099629

rgula aerodenitrificans
astewater treatment plants (NR029204)

99 KP099630

cter freundii
embrane bioreactor activated sludge (KF938666)

98 KP099625

cillus sp.
ored swine manure (KF856718)

97 KP099624

cillus sp.
ored swine manure (KF856718)

99 KP099639

onas frederiksbergensis
il degrading bacteria from Qinghai-Tibet (KF704095)

99 KP099631

onas sp.
ntarctic lakes (KF301575)

99 KP099632

onas mandelii crude oil degrading bacteria from
i-Tibet (KF704105)

99 KP099633

bacter sp.
l activity isolated from coastal and marine ecosystems
367)

99 KP099635

 subtilis
astewater treatment plants (KF453784)

95 KP099367

 subtilis
astewater treatment plants (KF453784)

95 KP099634

cterium luticocti from sewage sludge compost
814)

91 KP099636

 subtilis
astewater treatment plants (KF453784)

94 KP099638

nBank by using BLAST. The search was done using the non-redundant nucleotide



Fig. 2. Phylogenetic tree showing the taxonomic affiliation of selected strains in relation to the presentative 16S rRNA gene sequences of bacteria from sewage sludge and
deposited in Genbank. The neighbor-joining tree was constructed based on some sequences of control taken from the NCBI database and by using Mega 6 software. Scale of
bar indicate 2% of divergence and bootstrap analysis was performed with 1000 trials.
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wastewater supplemented with glucose as carbon source (kinetic
trials K2 and K3 in Table 1) to achieve a medium with different C/N
ratios. In addition, Bacillus sp. V10 was cultured in milk processing
wastewater as a low-cost C source (trial K4 in Table 1). The results
show that no cellular growth occurred during kinetic trial K1 due
to the low nutrients availability. However, kinetic trials
K2–K4 showed a significant growth of Bacillus sp. V10.Lag phase
for K2 and K3 ends at about 96 h, while the exponential growth
phase ended for both trials at about 190 h. Afterwards, the
stationary phase ended at about 230 h, followed by a declining
phase for both trials due to nutrients consumption. Contrary to
this, a faster acclimation of Bacillus sp. V10 was observed in trial K4,
where the lag phase was not observed and the exponential phase
started before 12 h and ended at 48 h approximately. After that,
trial K4 showed a stationary phase of around 48 h, similar to those
observed for trials K2 and K3. The calculated specific growth rates
(m) of 0.018, 0.019 and 0.016 for trials K2, K3 and K4, respectively,
indicate that when Bacillus sp. V10 reached the exponential phase,
a slightly growth increase in urban waste water supplemented
with glucose was observed.

K2–K4 trials presented a high neutral (transesterifiable) lipids
content (Fig. 4). K4 presented the highest neutral lipid content in
microbial cells (6.1%) at 48 h, followed by K3 which reached a
neutral lipid content of 5.3% at 180 h and, K2 with about 4.3% at
192 h. This behavior can be compared with the results obtained by
Singh et al. [38] in their study performed with the microalgae
Chlorella vulgaris. In their study authors state that fast growth
rarely correlates with high total lipid content. Our results show
that Bacillus sp. V10 is able to accumulate up to 6.1% of neutral
lipids in 48 h with a biomass and lipid productivity of 0.046 g L�1

day�1 and 2.81 mg L�1 day�1. Singh et al. [38] found a total lipid
content ranging between 7.066 and 27.6% and total lipid
productivity between 0.748 and 5.381 mg L�1 day�1 for sixteen
isolates of Chlorella vulgaris. Moreover, they determined a biomass
productivity ranging between 0.006 and 0.019 g L�1 day�1. Consid-
ering all these values we could suggest that Bacillus sp. V10 could
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be a proper candidate as a lipid accumulator for biodiesel
production.

Normally, lipids accumulation in microbial cells starts when a
specific nutrient concentration such a nitrogen drastically declines
in the growth medium and the carbon excess (in the form of
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Fig. 5. Lipids profile of the different sewage sludge samples compared to Bacillus sp. V1
glucose in our case) is transformed by microorganisms in lipids
mainly in form of TAG, wax esters and polyhydroxyalkanoates
(PHA) [6]. Similar to our results, the oleaginous B. subtilis
HB1310 tends to accumulate lipids when glucose is provided as
the carbon source [35]. With limited nitrogen concentration (or a
8:2n6c C18:1n9c C18:1n9c C18:0

f fatt y acid

0. The error bars represent the standard deviation of three independent replicates.
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high C/N ratio) in the growth medium lipids accumulate inside the
cells which are not able to divide themselves, promoting lipids
accumulation [29]. With a C/N ratio of 50/1, high lipid content was
obtained by Bacillus sp. V10, showing a similar behavior compared
to B. subtilis HB1310 [35] and B. subtilis (RRL-8) from of marine
sponges [39]. These microorganisms were able to accumulate a
lipid content of 39.8% and 33.4%, respectively. However, Bacillus sp.
V10 was able to growth and accumulate a higher lipid content in
milk processing wastewater with C/N ratio of 36/1. Therefore,
growing Bacillus sp. V10 in this type of wastewater can be used
simultaneously for nutrients removal as well as bacterial biomass
growth. This approach can contribute to wastewater treatment
technology by providing an environmentally sustainable process,
as the harvested biomass can be used as feedstock for biodiesel
production thus reducing the total cost associated to the
wastewater treatment.

Under limited nitrogen conditions, genera such as Streptomyces
and Rhodococcus accumulate TAG predominantly during the
stationary growth phase, while during the exponential growth
phase the synthesis of phospholipids is predominant [18]. Also, the
aforementioned B. subtilis HB1310 and B. subtilis (RRL-8) started to
accumulate lipids during the stationary phase. In our case, we
found that Bacillus sp. V10 reached its maximum neutral lipids
accumulation at the mid-exponential phase (see Fig. 4). Finally, at
the end of the kinetic trials, chemical oxygen demand (COD) and
total Kjeldahl nitrogen (TKN) were determined in all growth media.
In all kinetic trials Bacillus sp. V10 consumed the available energy
sources being these consumption values of 68.4, 68.7, 47.9 and
63.4% for COD in K1–K4 respectively. In the case of TKN, the
observed consumption values were 16.0, 38.9, 41.9, and 58.2%,
reaching final COD/TKN ratios of 2.2, 17.1, 48.3 and 31.7 for K1–K4,
respectively.

In addition to total and neutral lipids content, the lipids profile
of Bacillus sp. V10 compared to SS samples from the four facilities
was determined (see Fig. 5). The lipids profile from Bacillus sp.
V10 indicates that low degree unsaturated long chain fatty acids
such as C18:1 may account for approximately 50% of the lipids
content, showing that this lipids profile is suitable and it could be
used as raw material for biodiesel production. B. subtilis (RRL-8)
screened from marine sponges for single cell oil and polyunsatu-
rated fatty acids (PUFA), presented a similar lipid profile compared
to Bacillus sp. V10 with C18:1 accounting for up to 43.6% [38]. On
the contrary, B. subtilis HB1310 isolated from thin-shell walnut and
grown in cotton stalk hydrolysate, presented a C18:1 content of
only 3.8%, showing a higher C16:0 content of 28.33% [35].

4. Conclusions

Sewage sludge from wastewater treatment facilities can be
considered as a high available and low cost microbial lipids
feedstock for biodiesel production, promoting a more cost-
effective production process. Sludge samples presented total lipids
content between 7.7 and 12.6%, being Vilcún wastewater treatment
sludge that with the highest transesterifiable lipids content of
about 50% of the total extracted lipids. Bacillus sp. V10, from Vilcún
wastewater treatment plant, presented the highest transesterifi-
able lipids content of 7.4%. Bacillus sp. V10 was also cultured using
urban wastewater supplemented with glucose to achieve a
medium with higher C/N ratio. In addition, Bacillus sp. V10 was
cultured in milk processing wastewater as a low cost C source.
Bacillus sp. V10 lipids profile indicates that low degree unsaturated
long chain fatty acids such as C18:1 may account for approximately
50% of the lipids content, showing a suitable potential for biodiesel
production. Future research will be focused on growing Bacillus sp.
V10 at larger scale for biodiesel production, refining and
characterization.
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