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Abstract

HIV-1 transgenic mice on the FVB/NJ background (TgFVB) represent a validated model of
HIV-associated nephropathy (HIVAN). A major susceptibility locus, HIVAN1, was previ-
ously mapped to chromosome 3A1-A3 in a cross between TgFVB and CAST/EiJ (CAST)
strains, and introgression of a 51.9 Mb segment encompassing HIVAN1 from CAST into
TgFVB resulted in accelerated development of nephropathy. We generated three sub-con-
genic strains carrying CAST alleles in the proximal or distal regions of the HIVANT locus
(Sub-Il, 3.02—-38.93 Mb; Sub-lll, 38.45-55.1 Mb and Sub-1V, 47.7-55.1 Mb, build 38). At
5-10 weeks of age, histologic injury and proteinuria did not differ between HIV-1 transgenic
Sub-1l and TgFVB mice. In contrast, HIV-1 transgenic Sub-I1l and Sub-1V mice displayed
up to 4.4 fold more histopathologic injury and 6-fold more albuminuria compared to TgFVB
mice, similar in severity to the full-length congenic mice. The Sub-1V segment defines a
maximal 7.4 Mb interval for HIVAN1, and encodes 31 protein coding genes: 15 genes have
missense variants differentiating CAST from FVB, and 14 genes show differential renal
expression. Of these, Frem1, Foxo1, and Setd7 have been implicated in the pathogenesis
of nephropathy. HIVAN1 congenic kidneys are histologically normal without the HIV-1
transgene, yet their global transcriptome is enriched for molecular signatures of apoptosis,
adenoviral infection, as well as genes repressed by histone H3 lysine 27 trimethylation, a
histone modification associated with HIV-1 life cycle. These data refine HIVAN1to 7.4 Mb
and identify latent molecular derangements that may predispose to nephropathy upon
exposure to HIV-1.

Introduction

HIV-1 associated nephropathy (HIVAN) is a major complication of HIV-1 infection, and
results in end-stage renal disease without antiviral treatment [1, 2]. Clinically HIVAN mani-
fests with proteinuria, and histologically it is characterized by collapsing focal and segmental
glomerulosclerosis, microcystic tubular dilatation, and interstitial inflammation [3]. HIVAN
arises due to HIV-1 induced dysregulation of podocytes, the glomerular epithelial cells that

PLOS ONE | DOI:10.1371/journal.pone.0163860 October 13,2016

1/14


http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0163860&domain=pdf
http://creativecommons.org/licenses/by/4.0/

@° PLOS | ONE

Refinement of the HIVAN1 Susceptibility Locus

maintain the kidney filtration barrier [4-7]. HIVAN development has a strong genetic compo-
nent both in humans and mouse models. In humans, HIVAN predominantly develops in indi-
viduals of African descent, and relatives of HIVAN patients have a higher incidence of end-
stage renal disease [8]. Recently, studies have shown that susceptibility in humans is attribut-
able to coding variants in APOLI that confer resistance to trypanosomiasis but increase suscep-
tibility to kidney failure [9]. The mechanisms through which APOLI variants produce kidney
injury are under active investigation [10, 11]. Although mice do not have an APOLI ortholog,
transgenic expression of a replication deficient HIV-1plasmid that contains all the structural
viral proteins except Gag and Pol reproduces characteristic lesions of HIVAN in the FVB/NJ
genetic background (TgFVB strain) [4-6]. This finding indicates that perturbations in alterna-
tive biological pathways, in the absence of APOLI, can produce HIVAN in the mammalian
kidney, and hence analysis of mouse models of HIVAN may inform the pathogenesis of
human disease. The development of murine HIVAN is strain dependent, with the FVB/N]J as
the most susceptible strain, while F1 hybrids of TgFVB with other inbred strains show variable
susceptibility to disease [12-14]. We have used crosses between TgFVB and other inbred
strains to map four nephropathy susceptibility loci (named HIVANI-4) [12-14]. The HIVANI
susceptibility locus was previously mapped to chromosome 3A1-A3 in a cross between TgFVB
and CAST/Ei] (CAST) strain. [12]. To confirm this locus, we previously generated a congenic
strain, TgFVB-HIVAN1“*5T, by introgressing a 51.9 Mb CAST interval encompassing the
HIVANI locus into the FVB genome [15]. While wild-type FVB-HIVAN1 “**T mice were phe-
notypically normal, HIV-1 transgenic counterparts developed early onset and more severe kid-
ney disease by 6-8 weeks of age compared to TgFVB. This initial congenic interval contained
over 300 protein coding genes, leaving open the possibility that multiple genes contribute to
increased susceptibility to nephropathy. Here, we report generation and characterization of
three sub-congenic strains that carry sub-regions of the original HIVANTI locus. These new
HIVANI sub-congenic strains allowed us to refine the HIVANI locus to a maximum 7.4Mb
interval, enabling detailed annotation of positional candidates and analysis of molecular path-
ways producing susceptibility to nephropathy.

Materials and Methods
Mouse strains and their genotypes

This study was carried out in accordance with the recommendations in the Guide for the Care
and Use of Laboratory Animals of the National Institutes of Health. The protocol was approved
by the IACUC committee at the Columbia University Medical Center. The mice were housed
in a pathogen-free facility with 12 hour light cycle and were fed with a regular chow ad
libitum.

The FVB/NJ mice were purchased from Jackson Laboratories. The HIV-1 transgenic mouse
line TgN(pNL43d14)Lom 26 (TgFVB) on the inbred FVB/N] genetic background and the
TgFVB-HIVAN1 “**T congenic strain were previously described [15-17]. We backcrossed
TgFVB-HIVAN1“**" mice to FVB/N]J strain and identified recombinant mice to generate
three sub-congenic lines containing smaller regions of the original congenic locus (Fig 1). The
Tg-Sub-1I-HIVAN1 CAST (Sub-1I) strain carried CAST alleles between rs6372626 (4.25 Mb)
and rs46441005 (38.55 Mb), delimited by FVB alleles at rs6171250 (3.02 Mb) and D3mit295
(38.93 Mb), defining a maximal interval size of 35.9 Mb. The Tg-Sub-III-HIVAN1 CAST (Gub-
III) strain carried CAST alleles between rs46441005 (38.55 Mb) and rs241187315 (54.8 Mb)
delimited by FVB alleles at rs45703844 (38.45Mb) and rs30553284 (55.1Mb), defining a maxi-
mal interval size of 16.65 Mb. The Tg-Sub-IV-HIVAN1 CAST (Qub-1V) strain carried CAST
alleles between rs30758031 (48.7 Mb) and rs241187315 (54.8Mb), delimited by FVB alleles at
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Fig 1. Map of the HIVAN1 locus, congenic and sub-congenic regions. The rectangles depict the congenic and sub- congenic segments. The top line
shows the position of the limiting markers in Mb (genome build 38p.3/mm10). The limiting markers with FVB genotypes are shown in blue, and those with
CAST genotypes in red. The segments carrying CAST alleles are shown in grey. (Con = congenic strain)

doi:10.1371/journal.pone.0163860.g001

rs30102504 (47.7Mb) and rs30553284 (55.1Mb) defining a maximal interval size of 7.4 Mb.
The marker positions are indicated by genome build 38p.3. SNP IDs and annotation across the
HIVANI interval were obtained from the Mouse Phenome Database (http://phenome.jax.org/).
The SNP annotations are presented in S1 Table.

Animals were euthanized (by CO, asphyxiation followed by cervical dislocation) at 5-10
weeks of age and urine and kidneys were collected for phenotypic studies. Proteinuria and
renal histology were compared between mice of differing genotypes at the HIVANI locus.

Evaluation of renal histopathology and albuminuria, and statistical
analysis

Kidneys were formalin fixed and paraffin embedded, and 3 um sections were cut and stained
with periodic-acid Schiff (PAS). Renal histology was scored independently by an investigator
(VDD) blinded to genetic background, using a semi-quantitative scale. We scored the severity
of glomerular injury (segmental and global glomerulosclerosis), tubulo-interstitial disease
(tubular proteinaceous casts/ tubular cystic dilatation, tubular atrophy /interstitial fibrosis),
and interstitial inflammation. The histology phenotypes were quantified according to the per-
cent of glomeruli or percent cortical parenchyma affected in whole kidney cross-sections after
visualization of at least 200 glomeruli. Representative images of characteristic HIVAN kidney
histopathology features are shown in Fig 2 and S1 Fig.

Albuminuria was quantitated in the urine of random subsets of mice of each genotype (4-
10 mice in each group) and presented as albumin-to-creatinine ratio (ug/mg). Albumin and
creatinine were measured with Albuwell M and Creatinine ELISA kits (Exocell, Philadelphia,
PA).
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Fig 2. Comparison of renal histopathology between TgFVB, HIVAN1 congenic and sub-congenic strains. A &D. Representative kidney
histopathology in transgenic mice of Tg-FVB (A) and homozygous Sub-IV (D) genotypes. The images depict features of the histopathology scores that
were close to the average for each group. Focal segmental and global glomerulosclerosis, tubular casts and focal interstitial inflammation were more
severe in Sub-1V mice than in Tg-FVB mice (Periodic acid-Schiff, x200). B& C. Severity of renal histopathology in mice heterozygous (B) and
homozygous (C) for CAST alleles across congenic segments. HIV-1 transgenic congenic, Sub-lll and Sub-IV mice, but not Sub-Il mice have statistically
significant increased renal injury compared to TgFVB mice (* -p<0.05, ** -p<0.01, *** -p< 1x10°3, **** _p< 1x10™*,, E&F. Additive effect of CAST
alleles on renal injury in HIV-1 transgenic Sub-IIl (E) and Sub-IV (F) mice. The traits are shown as mean + standard errors of mean. Panels E and F show
genotypic comparisons for each trait by nonparametric test (Kruskal-Wallis one way ANOVA) with the associated p-values shown to the right of each

curve.

doi:10.1371/journal.pone.0163860.9002

Statistical analyses of proteinuria and histologic injury between TgFVB and TgFVB-HIVANI1-
CAST strains were performed using Kruskal-Wallis Anova and two-sided Mann-Whitney nonpara-
metric tests, using GraphPad Prism 7.01 software. P-values < 0.05 were considered significant.

RNA isolation and microarray analysis

Total kidney RNA was isolated using trizol reagent (Invitrogen, Grand Island, NY), followed
by treatment with DNasel and clean-up using the RNeasy kit (QIAGEN) according to the pro-
tocols recommended by the manufacturers.

We performed microarray analysis with the Affymetrix ST 1.0 gene arrays (Santa Clara,
CA). Total kidney RNA was extracted from 20 HIVANI congenic mice (11 females / 9 males)
and 19 FVBN/J littermates (10 females / 9 males). Sample preparation, labeling and hybridiza-
tion were performed as per Affymetrix recommended protocol. Signal intensities were normal-
ized using the RMA method. Differential gene expression was analyzed with two sided t-tests
and corresponding False Discovery Rates (FDR) q-values were calculated. Pathway analysis
was performed by computing overlap with two curated gene sets from the Molecular Signature
Database (Canonical Pathways and Chemical and Genetic Perturbations, http://www.
broadinstitute.org/gsea/msigdb/).We also cross-annotated the congenic kidney transcriptome
with a recently described RNAseq transcriptome from murine FACS-sorted podocytes[18].
The transcriptome datasets are presented in S2 and S3 Tables.
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HIV interactions were queried from the NCBI HIV-1 Human Interaction Database.

Results

Characterization of HIVAN1 sub-congenic Sub-Il, Sub-Ill and Sub-I1V
strains, carrying distal or proximal regions of the HIVAN1 locus

The TgFVB-HIVAN1“4ST congenic strain carries a 51.9 Mb segment on Chr. 3 containing a
susceptibility allele(s) for nephropathy from CAST, introgressed into the TgFVB genome [15].
To dissect the HIVANI locus, we generated three sub-congenic strains carrying proximal or
distal regions of the HIVANT locus (Sub-II-HIVAN1“*ST, Sub-TII-HIVAN1“**" and Sub-III-
HIVAN1 “*3T, abbreviated as Sub-II, Sub-IIT and Sub-IV, respectively). The boundaries of the
sub-congenic intervals are depicted in Fig 1. In the absence of the HIV-1 transgene, all con-
genic mice were phenotypically normal for up to 9 months of age and showed no histopatho-
logic or biochemical evidence of nephropathy.

We first characterized HIV-1 transgenic mice heterozygous for each sub-congenic segment.
The renal injury parameters did not differ between Tg-Sub-I1“*""*V? and TgFVB (Fig 2B). In
contrast, Tg-Sub-II1-“*sT"FVE and Tg-Sub-IVEASTFVE mijce showed a 1.5-2.4 fold increase in
glomerulosclerosis, tubule-interstitial casts/cysts, tubular atrophy/interstitial fibrosis and
inflammation (Table 1 and Fig 2), and were comparable to the TgFVB-HIVAN1 57 strain
mice carrying the full congenic segment. This suggested that the HIVAN susceptibility gene(s)
is encoded within the smaller Sub-IV interval.

Next, we generated HIV-1 transgenic mice that were homozygous for each sub-congenic
segment. Consistent with the phenotype of heterozygous congenic mice, Tg-Sub-TI“*$7“A5T mice
were indistinguishable from TgFVB. However, Tg-Sub-III“4ST“A5T and Tg-Sub-TVCEAST/CAST
mice displayed advanced kidney disease, with 2.5-4.4 fold increase in severity across all histologi-
cal parameters (p = 6x10”7-0.003 compared to TgFVB, Table 1 and Fig 2C). Thus the severity of
kidney disease increased with the number of CAST alleles in Tg-Sub-IIT and Tg-Sub-IV mice,
demonstrating an additive effect (Fig 2E and 2F, nonparametric p-value = 9x10~°5x10"). Similar
to the histopathology traits, albuminuria levels were not statistically different between Tg-Sub-

Table 1. Renal pathology scores in TgFVB and HIV-1 transgenic congenic and sub-congenic strains.

CAST/FVB

CAST/CAST

Phenotype

age (weeks)

sex

GS (%)
Tub-int/casts (%)
Tub. Atr. & Fibr(%)
Inflam. (%)

age (weeks)

sex

GS (%)
Tub-Int/casts (%)
Tub. Atr. & Fibr(%)
Inflam. (%)

TgFVB Congenic Sub-Il Sub-lll Sub-IV
7.3t.2 7.1£0.3 6.4+0.2 7.11£0.2 7.210.2
17M/29F 11M/14F 9M/15F 20M/16F 12M/20F
26.4+3.6 46.7+6.6 14.3+3.2 38.9+4.4 41.6+5.3
14.3+2 33.56+4.7 11.51£2.6 23.81+2.6 24.4+3
7.2t1.4 13.242.2 3+1 15.4+2.7 15+2.7

11.4+2.2 16.9+2.8 5.5+1.9 21.7+3.4 21.5+3.6
7.3+.2 6.5+0.2 7.4+0.5 6.7+0.3
17M/29F - 5M/8F 7M/7F 9M/13F
26.4+3.6 - 21.8+6.3 64.116.4 6515.6
14.312 - 16.214.6 38.515.7 36+3.7
7.281.4 - 6.4+2 20.1+4.7 19.0+3.1
11.4+2.2 - 13.214.6 28.115 28.3+3.2

The histology phenotypes are expressed at percent of affected kidney segments after visualization of at least 200 glomeruli. GS = Percent glomeruli with
sclerosis, Tub-Int/casts = Percent tubular interstitial cystic dilation/casts, Tub. Atr.&Fibr = Percent tubular atrophy and fibrosis, Inflam. = Percent of sections
containing inflammatory infiltrates. Male (M) and female (F) distribution by group is also indicated. The trait values are shown as mean + standard error of
mean. Statistically significant differences between groups are indicated in Fig 2.

doi:10.1371/journal.pone.0163860.t001
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Fig 3. Albuminuria in TgFVB and the HIV-1 transgenic sub-congenic strains. Albuminuria is expressed as pg albumin/
mg creatinine ratio. Statistically significant increase in albuminuria was observed in Sub-IIl and Sub-1V groups, but not in the
Sub-Il group when compared to TgFVB mice. (nonparametric P-value: *-p<0.05, **-p<0.01).

doi:10.1371/journal.pone.0163860.9003

[1-CAST/CAST and Tg-FVB mice, but were up to 6-fold higher in Tg-Sub-IIT and Tg-Sub-IV con-
genic mice, with an additive effect of CAST alleles (Fig 3).

In summary, only the Tg-Sub-III and Tg-Sub-IV mice showed increased severity of disease,
capturing the phenotypic effect observed in the original congenic mice carrying the full
HIVANI congenic segment. Taken together, these data further confirm the HIVANTI locus and
refine the susceptibility gene(s) to the 7.4Mb delimited by rs30102504 and rs30553284 within
the Sub-1V region.

Annotation and prioritization of genes within the Sub-1V locus

The Sub-IV locus spans 7.4Mb and encodes 31 RefSeq/UCSC annotated protein coding genes,
2 tRNAs, and 13 pseudogenes (Table 2 and S1 Table). To identify putative sequence variants
that may account for differential susceptibility to nephropathy, we compared the Sub-IV locus
sequence between CAST/Ei] and FVB/NJ strains (Genome Build 38.p3). Consistent with the
known genetic diversity between CAST/Ei] and laboratory-derived strains, all 31 RefSeq/UCSC
annotated genes contained at least one coding and/or non-coding SNP differentiating the two
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Table 2. List of candidate genes within the Sub-IV locus.

Gene Position No. of missense | Renal expression
variants CASTvs. FVB
start end CASTvs.FVB | Log2-fold| P-
value
Pcdh18 49743291 | 49757382 1 0.13 NS
Slc7al1 50364936 | 50499087 - -0.12 NS
Noct (Ccrn4l) 51224447 | 51251654 - -0.18 NS
Elf2 51252720 | 51340644 2 0.03 NS
Mgarp 51388412 | 51396547 1 -0.66 NS
(4930583H14Rik)
Ndufec1 51405479 | 51408955 - 0.23 1.9E-
04
Naa15 (Narg1) 51416016 | 51475985 - 0.12 0.007
Rab33b 51483966 | 51496228 - 0.00 NS
Setd7* 51515318 | 51560823 1 -0.35 3.3E-
05
Mgst2 51559757 | 51567117 1 0.21 NS
Mami3 51687320 | 52105085 1 -0.12 NS
Foxo1* 52268337 | 52350109 - -0.11 0.02
Cog6 52982123 | 53017223 2 0.12 2.E-04
Lhfp 53041547 | 563261679 - -0.31 5.E-04
Nhirc3 53451996 | 53463258 - -0.42 1.4E-
11
Proser1 53463817 | 53481755 2 -0.23 2.2E-
(2810046L04Rik) 06
Stoml3 53488793 | 53507652 - -0.07 NS
Frem2* 53513938 | 53657912 8 -0.60 0.002
ufm1 53853376 | 53863807 - -0.18 2.2E-
06
Trpc4 54156057 | 54318471 - 0.04 0.02
Postn 54361096 | 54391041 1 -0.61 0.02
Supt20 (D3Ertd300e) | 54692761 | 54728763 - -0.20 1.1E-
05
Exosc8 54728679 | 54735364 2 -0.11 NS
Alg5 54735539 | 54749795 - 0.11 0.001
Smad9 54755457 | 54801741 - 0.05 NS
Rixap 54803115 | 54807791 3 0.04 NS
Sertm1 54897068 | 54915887 - 0.07 NS
(6030405A18Rik)
Ccnat 55045469 | 55055330 - -0.03 NS
Spg20 55112074 | 55137332 2 0.04 NS
Ccdc169 55137339 | 55175250 1 -0.01 NS
(A730037C10Rik)
Sohlh2 55182044 | 55209957 1 -0.04 NS

Note: Only significant t-test p-values <0.05 are shown in the table. NS not significant.
*indicates genes implicated in nephropathy. The missense variants are listed in S1 Table.

doi:10.1371/journal.pone.0163860.t002

HIV
Interactions

yes

yes
yes

Molecular class

Cadherin superfamily

Membrane transport protein
Deadenylase

Transcription factor

Membrane protein (mitochondria)

Subunit of the NADH

Predicted N-acetyltransferase
GTPase of the RAB family
Arginine Methyltransferase

Glutathione transferase

DNA binding protein
Transcription factor

Structural protein (Golgi complex)
Integral membrane protein
Integral membrane protein

Unknown

Integral membrane protein

Extracellular matrix membrane protein
(mutated in Fraser syndrome)

Unclassified (ubiquitin-like protein)

Calcium lon channel
Adhesion molecule
Transcription regulatory protein

Ribonuclease
Glycosyltransferase

A member of the SMAD family
DNA binding protein
Unclassified

Cell cycle control protein
Unclassified
Unknown

Transcription factor

strains. Among these, 15 genes had coding non-synonymous variants, but none harbored loss
of function variants between the two strains (S1 Table). Missense variants in Frem2, Mgarp
and Rfxap were predicted to be damaging by at least 1 program. There were multiple non-
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coding structural variants within this interval, including eight located within intronic regions
of seven genes (S1 Table).

Concurrently with generation of sub-congenic strain, we performed genome-wide expres-
sion profiling of whole kidneys from wild-type full congenic FVB-HIVAN1“**T and FVB
strains. We only profiled healthy wild-type kidneys because the profound histopathological
lesions of HIV-1 transgenic mice introduce many secondary gene expression changes that can
confound interpretation of transcriptomic data. We identified 327 differentially expressed
transcripts between the two strains at a FDR g-value < 0. 1 (corresponding to a nominal P-
value < 0.0014, Table 2 and S1 Table). As expected, the majority of the genes that were most
differentially expressed were encoded within the congenic interval, indicating cis-eQTL effects.
Within the Sub-IV locus,14 genes were differentially expressed between the two strains at a
nominal p-value < 0.05. Three genes (Frem2, Foxol and Setd7) have been implicated in
nephropathy [19-21]. In addition, 6 genes have an interaction with HIV-1 documented in the
NCBI database (Table 2). Finally we cross-annotated our data with a recently published podo-
cyte RNA-seq transcriptome dataset (S2 Table) [18]. Five genes located within the Sub-IV
locus (Ndufcl, Setd7, Ufm1, Alg5, Cog6) are in the top 50™ percentile for podocyte-expressed
transcripts and are also differentially expressed in congenic mice (Table 2). Of note, Ndufcl,
encoding a subunit of the NADH dehydrogenase in mitochondria, is in the top 10" percentile
of podocyte expressed transcripts [18] and is also highly expressed in human kidney according
to Genotype-Tissue Expression database (GTEx: http://www.gtexportal.org/). Complex I
enables electron transfer from NADH to Coenzyme-Q;, and mutations affecting CoQ; bio-
synthesis can cause nephrotic syndrome [22, 23]. Hence annotation of the Sub-IV locus identi-
fied a number of plausible candidates that require further investigation.

Molecular perturbations in the renal transcriptome encoded outside the
HIVAN1 interval

To gain insight into pathways that are regulated downstream of the HIVANTI locus, we exam-
ined transcripts encoded outside the 51.9 Mb HIVANIcongenic interval. Although FVB and
FVB-HIVAN1“**T mice are genetically identical outside the HIVANTI interval, we identified
287 differentially expressed transcripts at FDR q-value <0.1 (corresponding to a nominal p-
value of 0.0013), whereas only 34 transcripts would be expected to reach this significancelevel
by chance. Because the two strains are genetically identical outside the HIVANI interval, these
expression differences are attributable to a primary genetic perturbation within the HIVAN1
locus. Pathway analysis of all differentially expressed transcripts identified significant enrich-
ment for multiple molecular signatures, including apoptosis induced by TRAIL, doxorubicin
and serum deprivation (Table 2 and S1 Table). In addition, we detect signatures of histone
methylation, extracellular matrix components, and adenoviral infections. A number of these
molecular signatures may be attributable to genetic perturbations within the HIVANI locus.
For example, the molecular signature for TRAIL-induced apoptosis is likely a consequence of a
strong cis-eQTL for Tnfsf10, encoded within the HIVANTI locus, with the CAST allele associ-
ated with a nearly two-fold increased expression. Tnfsf10 encodes TRAIL, a cytokine involved
in induction of apoptosis in transformed and tumor cells. The molecular signature for extracel-
lular matrix components is also noteworthy, because the HIVAN1 Sub-IV interval contains
Frem2, encoding a component of the extracellular matrix within the glomerular filtration bar-
rier. The HIVANI congenic mice have reduced expression of Frem2, which may account for
reduced expression of multiple extracellular matrix components, such as Col4a3 and Col4a4,
encoded outside the HIVANTI locus. In addition, HIVANI congenic kidneys harbor the signa-
ture of Polycomb target gene sets (histone H3 lysine 27 trimethylation), which marks repressed
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Table 3. Pathway analysis of differentially expressed genes encoded outside the HIVAN1 locus

Gene Set Name # Genes in Overlap p-value FDRg-value
MARSON BOUND BY FOXP3 UNSTIMULATED 26 1.78E-11 8.39E-08
MIKKELSEN MEF HCP WITH H3K27ME3 17 7.30E-10 1.73E-06
GRAESSMANN APOPTOSIS BY DOXORUBICINDN 28 2.34E-09 2.76E-06
HAMAIA POPTOSIS VIA TRAIL UP 13 1.43E-06 8.44E-04
MEISSNER NPCHCP WITH H3K4ME2 AND H3K27ME3 10 2.68E-06 1.27E-03
GRAESSMANN APOPTOSIS BY SERUM DEPRIVATION UP 11 2.60E-05 6.81E-03
DORN ADENOVIRUS INFECTION 24HR DN 4 3.34E-05 7.25E-03
PILON KLF1T ARGETS DN 22 3.43E-05 7.25E-03
NABA MATRISOME 15 3.53E-05 7.25E-03
BENPORATHES WITH H3K27ME3 15 9.01E-05 1.25E-02
MIKKELSEN NPC HCP WITH H3K27ME3 8 1.10E-04 1.46E-02
MIKKELSEN ES ICP WITH H3K4ME3 11 2.62E-04 2.57E-02
PIDAVB3 INTEGRIN PATHWAY 4 2.96E-04 2.64E-02
DORN ADENOVIRUS INFECTION 12HR DN 3 3.68E-04 3.08E-02
NABA MATRISOME ASSOCIATED 11 3.91E-04 3.08E-02
DORNA DENOVIRUS INFECTION 32HR DN 3 6.05E-04 4.09E-02
DORN ADENOVIRUS INFECTION4 8HR DN 3 6.52E-04 4.22E-02
MEISSNER BRAIN HCP WITH H3K4ME3 AND H3K27ME3 13 6.69E-04 4.27E-02

Gene set names are from the Molecular signature database. Selected enriched pathways with FDR g-value <0.05 are shown. The full results of the pathway

analyses are shown in Tables A and B in S2 Table.

doi:10.1371/journal.pone.0163860.t003

gene transcriptional programs observed in embryonic stem cells and poorly differentiated
tumors [24]. Consistent with these data, the majority of these Polycomb targets show reduced
expression in HIVANI congenic kidneys. In addition, this histone modification is associated
with HIV-1 latency and reactivation [25, 26]. Finally, analysis of whole kidney and the podo-
cyte-enriched transcripts in HIVANI mice revealed significant overlap with molecular signa-
tures of viral infection, particularly adenovirus (Table 3, Table B in S2 Table) and Table B in
S3 Table)). These data further suggest the presence of baseline molecular perturbations that
may be magnified in the setting of HIV-1 infection.

Discussion

HIVAN and other forms of collapsing glomerulopathy have a complex determination and
result from environmental insults (e.g. viruses or drugs) [27] as well as host genetic lesions [9,
22,23]. Although mice do not have an APOLI ortholog, the TgFVB mice recapitulates all of
the clinical and molecular features of HIVAN [4-6], providing a model enabling for studying
molecular mechanisms of glomerulosclerosisindependent or downstream of APOLI. Murine
susceptibility loci may also explain pathways leading to nephropathy in patients who do not
harbor APOLI risk alleles.

We had previously generated a HIVANI congenic mouse strain which carries a ~52 Mb seg-
ment from CAST in the FVB genome [15]. This strain did not show any spontaneous signs of
renal disease, but in the presence of the HIV-1 transgene, showed increased severity of
nephropathy under an additive genetic model. Because large congenic intervals may contain
multiple linked genes that may together contribute to the association with disease severity, we
further dissected the HIVANI locus by generation of three new HIVAN1 sub-congenic strains.
The two congenic strains carrying the distal portion of the HIVANTI locus captured all the
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phenotypic severity of the original congenic strain, and refine HIVANI to a 7.4 Mb interval
within the Sub-IV region. These data indicated that that the HIVANI QTL signal is not attrib-
utable to widely distant genes within the original interval.

Annotation of the remaining positional candidates identified several genes that may con-
tribute to disease. Three positional candidates have been implicated in kidney disease. Frem2 is
expressed in adult glomeruli, collecting ducts and transiently expressed in nascent nephrons
(tubule and podocyte epithelia) [28]. FREM2 is required for maintenance of the integrity of the
skin epithelium in utero, for renal development and for the maintenance of renal epithelial
structure in adult mice [19]. Mutations in the human ortholog cause Fraser syndrome, which
features renal agenesis and cystic, dysplastic or hypoplastic kidneys. Although Frem2 haploin-
sufficiency does not overtly affect nephrogenesis in mice, expression of Frem2 in adult kidneys
correlated with cyst formation in homozygous mutant mice, indicating that the gene is
required for maintaining the differentiated state of renal epithelia [28]. The CAST strain har-
bors multiple linked non-synonymous variants in Frem2, and this gene is also differentially
expressed in the congenic mouse kidney. This variation in Frem2 sequence and expression
likely accounts for perturbed expression of multiple matrix components, such as Col4a3
orCol4a4, which are encoded outside the HIVANI locus (S1 Table).

The transcription factor Foxol has been implicated in progression of nephropathies of differ-
ent etiology, including hypertensive and diabetic nephropathy [29]. A recent study showed that
upregulation of Foxol expression in the kidney by transduction with recombinant lentivirus
ameliorated podocyte injury and reduced severity of the symptoms in diabetic rats [20]. Foxo1-
may participate in the pathogenesis of HIVAN via multiple biological mechanisms including in
cell cycle regulation [30], oxidative stress response [31, 32] and inflammation pathways [33, 34].

The Sub-1V interval also encodes SETD7, which plays a prominent role in lysine methylation
of histone and non-histone proteins and is an important regulator of different transcription fac-
tors, including p53 [35], E2 promoter-binding factor 1 (E2F1) [36], the islet B cell factor PDX1
[37], NF-kB and others [38]. SETD7 can affect cell proliferation and apoptosis via co-activation
of E2F1, modification of Wnt signaling, or regulation of B-catenin stability [39]. SETD?7 is also a
co-activator of HIV-1 transcription, which could contribute to the development of HIVAN:
binding of SETD7 to HIV-1 TAR RNA and monomethylation of the viral transactivator Tat
enhances HIV transcription [40]. A recent study also reported that SETD7 expression is associ-
ated with the degree of fibrosis in patients with IgA and membranous nephropathy and inhibi-
tion of SETD7 suppressed renal fibrosis in unilateral ureteral obstruction mice [21].

Ndufcl, encoding a subunit of the NADH dehydrogenase (complex I) in mitochondria, is
highly enriched in podocytes and was also overexpressed in HIVAN1 congenic kidneys. Com-
plex I enables electron transfer from NADH to Coenzyme-Q;, and mutations in the biosyn-
thetic pathway for CoQ; o cause syndromic as well as isolated forms of nephrotic syndrome
[22, 23]. However, Ndufcl is overexpressed in the congenic kidneys and together with the
absence of perturbations of oxidative phosphorylation pathways, this reduces the likelihood
that Ndufclis the causal gene in the HIVANI interval.

We had previously hypothesized that HIVAN susceptibility loci introduce moderate genetic
lesions that are tolerated, but are unmasked in the presence of the HIV-1 gene product [13].
Consistent with this hypothesis, analysis of apparently healthy HIVANI congenic kidneys, in
the absence of HIV-1, demonstrated perturbations in many transcripts encoded outside the
locus. Analysis of differentially expressed transcripts indicated overlap with multiple gene sets
for apoptotic pathways and tissue matrix components. We also a signature for targets of Kriip-
pel-like factor1, which belongs to a class of transcription factors that have been implicated in
HIVAN and other forms of nephropathy [41-43]. Furthermore, we detected significant overlap
with genes silenced Polycomb-group protein-mediated histone H3 lysine 27 trimethylation
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(H3K27me3). This chromatin modification is observed in embryonic stem cells and in poorly
differentiated tumors [24]. Moreover, H3K27me3 is implicated in epigenetic silencing of HIV-
1 long terminal repeats and regulation of viral latency [25, 26]. Recent data also indicate that
the HIV-1 Tat protein, which activates host programs that augment HIV-1 transcription, pref-
erentially binds to host transcription start sites enriched for H3K27me3 marks [44]. Interest-
ingly, we also detected a molecular signature of adenoviral infection, potentially indicating
latent perturbations that may enhance susceptibility to viral injury. These data suggest a com-
plex interplay between viral and host histone modification, and susceptibility to nephropathy.

In summary, analysis of congenic lines identified a number of plausible candidates that can
single-handedly or cooperatively contribute to increased susceptibility to nephropathy. Tran-
scriptomic analyses also suggested that HIVANI congenic kidneys may be poised for dysfunc-
tion, and exposure to appropriate triggers such as HIV-1 gene products may produce
molecular decompensations that lead to overt kidney disease. The standard follow-up of these
findings would involve generation of additional sub-congenic strains harboring smaller
HIVANI segments to pinpoint the causal allele(s). In addition, newer mouse strains such as the
Collaborative Cross or the Diversity Outbred strains offer a high resolution map of mouse hap-
lotypes and may aid in refinement of QTL intervals [45-47]. Most importantly, the availability
of CRISPR/Cas technology now allows rapid introduction of CAST alleles into the FVB germ-
line, enabling assessment of phenotypic consequences of candidate sequence variants [48]. The
combination of these approaches is expected to accelerate the identification of causal alleles
contributing to kidney disease in mouse models.

Supporting Information

S1 Fig. Representative kidney histology images showing HIVAN pathology features. A. A
representative image from Tg-FVB shows focal segmental glomerulosclerosis, podocyte swell-
ing, focal casts, proximal tubular protein resorption droplets and interstitial inflammation.
(PAS, x400). B-D. Representative images from Sub-IV show (B) focal segmental and global
glomerulosclerosis with adjacent large tubular casts (PAS x400), (C) extensive focal segmental
glomerulosclerosis, focal interstitial fibrosis, interstitial inflammation and casts (PAS, x200)
and (D) numerous proteinaceous casts (PAS, x200).

(TIF)

S1 Table. Coding SNPs and intronic indels in the Sub-IV region.
(XLSX)

S2 Table. Table A. Transcriptome in HIVAN1 congenic mice (CAST) vs. FVB mice.
Table B. GSEA analysis of genes encoded outside the HIVAN1 locus and differentially
expressed (at FDR<0.1) in HIVAN1 congenic mice vs. FVB/NJ mice. Table C. Transcripts
in the Matrisome (M5889) and H3K27ME3 (M2019) gene sets.

(XLSX)

§3 Table. Table A. HIVAN1 congenic mouse transcriptome cross- annotated for murine
podocyte expression. Table B. GSEA analysis of podocyte enriched genes. Top 10th percen-
tile RPKM that are differentially expressed in HIVAN1 congenic mice vs. FVBN/J mice at FDR
q-value <0.25 are shown.

(XLSX)
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