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Abstract: This study presents an industrial fault diagnosis system based on the cubic dynamic
uncertain causality graph (cubic DUCG) used to model and diagnose industrial systems without
sufficient data for model training. The system is developed based on cloud native technology. It
contains two main parts, the diagnostic knowledge base and the inference method. The knowledge
base was built by domain experts modularly based on professional knowledge. It represented the
causality between events in the target industrial system in a visual and graphical form. During the
inference, the cubic DUCG algorithm could dynamically generate the cubic causal graph according
to the real-time data and perform the logic and probability calculations based on the generated cubic
DUCG models, visually displaying the dynamic causal evolution of faults. To verify the system’s
feasibility, we rebuild a fault-diagnosis model of the secondary circuit system of No. 1 at the Ningde
nuclear power plant based on the new system. Twenty-four fault cases were used to test the diagnostic
accuracy of the system, and all faults were correctly diagnosed. The results showed that it was feasible
to use the cubic DUCG platform for fault diagnosis.

Keywords: industrial fault diagnosis; cubic DUCG; causal inference; expert knowledge

1. Introduction

With the increasing complexity of industrial systems, the systems’ safety has attracted
extensive attention. Suppose some minor faults in the system cannot be detected and
eliminated in time. In that case, it may cause the failure and paralysis of the entire system,
and even lead to substantial disastrous consequences [1–4]. Improving the safety and
reliability of the system and preventing and eliminating the occurrence and development
of faults that affect the regular operation of the system has become a crucial problem to
be solved. Fault monitoring and diagnostic technology is an effective method to improve
the safety and reliability of complex systems [5–7]. Early fault-diagnosis expert systems
were mostly rule-based and case-based [8–10]. The systems’ diagnostic rules and cases
were constructed by experts based on experience. The advantage is that they are less
dependent on data and are interpretable. When the industrial system is relatively simple, it
is practical to use those methods. When the industrial system is complex, those methods
are prone to knowledge conflict, repetition, and circulation [11]. In addition, the increase in
knowledge reduces the reasoning efficiency of the system [12,13]. With the development
of machine learning, some machine-learning algorithms are applied in fault-diagnosis
systems, including SVM [14–16], ANN [17,18], and DNN [19–21]. Those methods use
machine-learning theory to adaptively learn the diagnostic knowledge from the collected
data, rather than using the experience and knowledge of engineers. The fault diagnostic
system based on machine learning has high diagnostic efficiency. When the training data are
sufficient, the diagnostic accuracy of the model is high. However, the models constructed
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based on these methods are black-box models, which lack interpretability of the diagnostic
results [22].

In some customized complex systems, such as nuclear power plants or space-
craft [23], these systems are usually unique. They have high complexity, safety, and
reliability, and almost no failures. So, the data used to train the diagnostic model are
insufficient [24]. The fault diagnosis of such systems requires high reliability and the
entire fault diagnostic process to be interpretable, helping the operator understand the
fault transmission process to take measures to eliminate the fault quickly. Obviously,
in the fault diagnosis of such systems, the fault diagnostic method based on machine
learning is not feasible. However, the construction of such systems condenses a large
amount of expert knowledge, experience, and statistical data. Therefore, using domain
expert knowledge, experience, and statistical data to construct a diagnostic model intu-
itively and realize an efficient and reliable diagnosis is a feasible method to solve such a
diagnostic system [25].

The cubic DUCG is a probabilistic graphical model [26] developed from the dynamic
uncertain causality graph theory [27]. It can intuitively describe the uncertain causality
of events using probabilities and different graphical symbols, and has a solid ability to
express the propagation of causal uncertainty, as well as the advantages of visualization,
interpretability, and high computational efficiency. It has a complete mathematical
foundation and theoretical system, and provides a concise expression and reasoning
method of uncertain knowledge in the form of causal graphs. It can realize the causal
inference problems of discrete, continuous, and fuzzy variables. At the same time, it
can handle causal loops, allowing directed loops in the model [28–30]. These features
enable the cubic DUCG to implement accurate inference of multiconnected causality
efficiently. The cubic DUCG’s reasoning knowledge base can be constructed by domain
experts based on their knowledge, experience, and statistical data [31,32]. Therefore, it is
suitable for scenarios in which causal inference is required but there are insufficient data
to train the diagnostic model.

In this study, we built a time-series-based industrial fault diagnosis platform based
on cubic DUCG theory. The following sections of this paper are arranged as follows:
Section 2 introduces the cubic DUCG theory and describes the reasoning algorithm used in
this diagnosis system; Section 3 presents the design and implementation of the diagnosis
system; Section 4 provides the system verification; and Section 5 summarizes the study and
suggests directions for future research.

2. The Cubic DUCG Modeling and Fault-Diagnosis Method
2.1. Cubic DUCG Modeling

The cubic DUCG theory was developed from DUCG theory. It used the DUCG
model as the inference knowledge base. The DUCG model represents the causal rela-
tionship between events, and can be built graphically and visually by domain experts
using their knowledge, experience, and statistical data. Figure 1 is an example of the
DUCG; its parameters are shown in Appendix A. As shown in Figure 1, in the DUCG
model, different variables are represented by different shapes with numbers as indexes.
Various variables give the DUCG a complete causal expression ability and make the
causal expression more accurate. When constructing a DUCG model, domain experts
only need to determine the events to be expressed and the causal relationship between
events. Then, the appropriate variables and relationships to represent them are selected
according to the construction rules of the DUCG model. The variables and their physical
meanings are shown in Table 1.
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Figure 1. An example of the DUCG model. It describes the fault-propagation process through
graphical symbols.

Table 1. The physical meanings of variables in the DUCG.

Type Shape Description

Bi
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The B-type variable is the root-cause variable used to represent the root cause/fault that
causes other variables to occur.

Xi
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The X-type variable is the consequence or process variable used to represent the result
caused by the root-cause variable, and can also be used as the cause of other variables.

Gi

Sensors 2022, 22, x FOR PEER REVIEW 3 of 21 
 

 

 

Figure 1. An example of the DUCG model. It describes the fault-propagation process through graph-

ical symbols. 

Table 1. The physical meanings of variables in the DUCG. 

Type Shape Description 

Bi 
 

The B-type variable is the root-cause variable used to represent the root cause/fault that causes other 

variables to occur. 

Xi 
 

The X-type variable is the consequence or process variable used to represent the result caused by the 

root-cause variable, and can also be used as the cause of other variables. 

Gi 
 

The G-type variable is the logic-gate variable. It is used to describe the logical relation combination 

of parent variables. 

Di 
 

The D-type variable is the unknown cause or default-cause variable. When the cause of a variable’s 

occurrence is unknown, then the D-type variable is used to represent the root cause that causes it to 

occur. 

Fi;j  
The F-type variable is the weighted functional-event variable. It is used to represent and quantify the 

causalities between parent variables and child variables. 

The causal mechanism between variables of the DUCG is shown in Figure 2. The 

child event Xnk may be caused by one or more of its parent events Vij (V∈{B, X, D, G}-type 

variable). The parent events cause the child event through the weighted functional events 

Fnk;ij. Fnk;ij = (rn;i/rn) Ank;ij, where Ank;ij is the virtual random functional event representing the 

causal mechanism that Vij independently causes Xnk. ank;ij = Pr {Ank;ij} is the probability that 

Vij causes Xnk to occur independently. The virtual random functional events between the 

parent Vi and the child Xn are represented by the matrix 

0; 0 0;

; ;

; 0 ;

n i n iJ

n i nk ij

nK i nK iJ

A A

A A

A A

 
 

=  
 
 

. 

The matrix allows incomplete expression; if there is no causality between Vij and Xnk, then 

Ank;ij does not exist, and Ank;ij is replaced with the symbol “-” in the matrix. When construct-

ing causalities, we only need to give the parameters of the states that we care about to 

reduce the difficulty of knowledge-base construction. rn;i/rn (
;n n ii

r r= ) is the weight 

parameter used to normalize the effect of parent variables on child variables. The relation-

ship between parents is the logical weighted exclusive OR of the DUCG weighted set the-

ory [33]. The weighted functional event and the logical weighted exclusive OR enable the 

DUCG to freely modify (add, delete, or update) the influence of parent variables on child 

variables. 

i 

i 

Gi 

i 

 

The G-type variable is the logic-gate variable. It is used to describe the logical relation
combination of parent variables.

Di
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The D-type variable is the unknown cause or default-cause variable. When the cause of
a variable’s occurrence is unknown, then the D-type variable is used to represent the

root cause that causes it to occur.

Fi;j
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The F-type variable is the weighted functional-event variable. It is used to represent and

quantify the causalities between parent variables and child variables.

The causal mechanism between variables of the DUCG is shown in Figure 2. The child
event Xnk may be caused by one or more of its parent events Vij (V∈{B, X, D, G}-type vari-
able). The parent events cause the child event through the weighted functional events Fnk;ij.
Fnk;ij = (rn;i/rn) Ank;ij, where Ank;ij is the virtual random functional event representing the
causal mechanism that Vij independently causes Xnk. ank;ij = Pr {Ank;ij} is the probability that
Vij causes Xnk to occur independently. The virtual random functional events between the

parent Vi and the child Xn are represented by the matrix An;i =

An0;i0 · · · An0;i J
... Ank;ij

...
AnK;i0 · · · AnK;i J

.

The matrix allows incomplete expression; if there is no causality between Vij and Xnk, then
Ank;ij does not exist, and Ank;ij is replaced with the symbol “-” in the matrix. When con-
structing causalities, we only need to give the parameters of the states that we care about to
reduce the difficulty of knowledge-base construction. rn;i/rn (rn = ∑i rn;i) is the weight pa-
rameter used to normalize the effect of parent variables on child variables. The relationship
between parents is the logical weighted exclusive OR of the DUCG weighted set theory [33].
The weighted functional event and the logical weighted exclusive OR enable the DUCG to
freely modify (add, delete, or update) the influence of parent variables on child variables.
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Figure 2. The causal mechanism between variables of the DUCG, where Xnk is the child variable and
Viji is the parent variable.

In order to infer to which root causes the child event is related, the child event performs
logic expression expansion along the opposite direction of the causal chain. After expression
expansion, the child event is expressed by its parent events, and the expansion process
can be executed recursively until the parent events are the B-type variables. The B-type
variables are the root causes of other variables and the objects of inference calculation.
The expansion expression is shown in Equation (1) [27]:

Xnk = ∑
i

∑
ji

Xnk;iji = ∑
i

∑
ji

Fnk;iji Viji = ∑
i

∑
ji

(rn;i/rn)Ank;iji Viji (1)

For simplicity, Equation (1) can be briefly written as Equation (2):

Xnk = ∑
i

∑
j

Fnk;ijVij = ∑
i

∑
j
(rn;i/rn)Ank;ijVij (2)

Logic expression expansion is an essential step of cubic DUCG reasoning. It can
recursively expand the observation evidence E (E = E′E”, E′ = {Xij, j 6= 0} is the collection of
abnormal evidence, and E” = {Xi0} is the collection of normal evidence) to the root faults.
The result of the logic-expanded expression is used to calculate the conditional probability
of each hypothesis under the current evidence.

2.2. The Inference Method of the Cubic DUCG

The reasoning process of the cubic DUCG reflects the temporal correlations among
events, and is capable of representing the sequential causality interactions in fault-spreading
processes. The reasoning step of the cubic DUCG is described as follows: (1) DUCG
decomposition. The original DUCG is decomposed into several sub-DUCGs; each sub-
DUCG contains one root event Bi, remarked as DUCG(Bi); (2) Obtain Slice_DG (Bi, tm). The
Slice_DG (Bi, tm) is the intraslice causality graph at time tm. According to the evidence E
(tm) at tm, the DUCG (Bi)s are decomposed into several Slice_DG (Bi,tm)s based on the cubic
DUCG simplification rules [26,34]. Each Slice_DG (Bi,tm) contains one root fault, and it
describes the causality between the root fault Bi and the evidence E (tm) at tm; (3) Cubic_DG
(Bi,tm) generation. The Cubic_DG (tm) is the generated cubic causality graph at tm. It is
generated by merging the Cubic_DG (Bi,tm-1) generated at tm-1 and Slice_DG (Bi,tm) obtained
at tm. Cubic_DG (tm) describes the propagation process of the evidence related to root fault
Bi from time t1 to time tm. In particular, when tm=t1, Cubic_DG (Bi,t1) = Slice_DG (Bi,t1);
(4) Select a valid Cubic_DG (Bi,tm)s. The reasoning of the cubic DUCG is based on the unary
assumption that there can only be one root fault at the same time. Therefore, if the Cubic_DG
(Bi,tm) cannot explain all the evidence E (tm) at tm, it is regarded as an invalid Cubic_DG
(Bi,tm) and discarded. Only the Cubic_DG (Bi,tm) that can explain all abnormal evidence E
(tm) is regarded as a valid Cubic_DG (Bi,tm); (5) Obtain the hypothesis space SH (tm). The
root fault Bi in a valid Cubic_DG (Bi,tm) is regarded as the hypothesis Hkj, and forms the
hypothesis space, SH (tm) = {Hkj}; (6) The logical expansion of expression. Logical expansion
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of E (tm) and HkjE (tm) are based on each respective Cubic_DG (Bi,tm), until the expression
contains only the form of the sum of variable products of {B-,D-,A-,r-}-type variables. Those
expressions are used for the probability calculation; (7) Probability calculation. Calculate
the conditional probability Pr

{
Hkj(tm)

}
of each Hkj in SH (tm) to evaluate which root fault

is more likely to occur. The probability is calculated using Equation (3):

Pr
{

Hkj(tm)
}
= hs

kj(tm) = ξi(Bi, tm)
Pr
{

HkjE(tm)
}

Pr{E(tm)}
(3)

ξi(Bi, tm) =
Pr{E(tm)}

∑i Pr{E(tm)}
=

ς(Bi, tm)

∑i ς(Bi, tm)
(4)

In Equation (3), E (tm) is the abnormal evidence at time tm, and E(tm) = ∏i Xi,ji .

Pr{E(tm)} = ς(Bi, tm) is the joint probability of E (tm) on Cubic_DG (Bi,tm). Pr
{

HkjE(tm)
}

is the joint probability of HkjE (tm) on Cubic_DG (Bi,tm). ξi(Bi, tm) is the weight factor of
E(tm) on different Cubic_DG (Bi,tm)s calculated using Equation (4). If there is only one
Cubic_DG (Bi,tm), then ξi(Bi, tm) = 1. The sorted results are the reasoning result of the cubic
DUCG at tm. Those Cubic_DG (Bi,tm)s are used as the graphical explanations for inference
results; (8) Repeat the procedures until the root fault is confirmed or no more abnormal
evidence is received. The pseudo algorithm description of the calculation process is shown
in Algorithm 1.

Algorithm 1: The Inference of the Cubic DUCG. (Note: The pseudo algorithm for inference
process of the cubic DUCG.)

Input: the original DUCG, the evidence E(tm) = ∏i Xi,ji at time tm.
Steps:

1. Decompose the original DUCG to get the list of DUCG (Bi);
2. for DUCG (Bi) in list of DUCG (Bi)
3. Slice_DG (Bi, tm)←GenerateValidSlice_DG (DUCG (Bi), E (tm));
4. Cubic_DG (Bi, tm)←GenerateCubic_DG (Slice_DG (Bi, tm), Cubic_DG (Bi, tm-1));
5. SH (tm)←GetHypothesis (Cubic_DG (Bi, tm));
6. end
7. for Cubic_DG (Bi, tm) in list of Cubic_DG (Bi, tm)
8. Logical expand E (tm) and HkjE (tm) based on each Cubic_DG (Bi,tm);
9. end
10. for Hkj (tm) in SH (tm)

11. ξi(Bi, tm) =
Pr{E(tm)}

∑i Pr{E(tm)} =
ς(Bi ,tm)

∑i ς(Bi ,tm)

12. Pr
{

Hkj(tm)
}
= hs

kj(tm) = ξi(Bi, tm)
Pr{Hkj E(tm)}

Pr{E(tm)}
13. end
14. Sort the list of hs

kj(tm) in descending order.

Output: The sorted list of hs
kj(tm) and Cubic_DG(Bi, tm) at tm.

An example is used to exemplify the dynamic inference process of the cubic DUCG
in a continuous time series. The original DUCG knowledge base is shown in Figure 1.
It contains three root faults: B1, B2, and B8. Other variables include some intermediate
processes or results caused by root faults. The inference process contains three moments:
t1, t2, and t3.

At time t1, suppose the received evidence is E (t1) = X3,0X5,1X6,0.
Step 1.1. DUCG decomposition. By decomposing the original DUCG shown in

Figure 1, we obtain three sub-DUCGs: DUCG (B1), DUCG (B2), and DUCG (B8). Each
DUCG (Bi) describes the relationships between the root fault Bi and its related variables;
the results are shown in Figure 3. Usually, the green circle stands for the normal evidence,
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the circle with other colors stands for the abnormal evidence, and the circle without colors
stands for the state of the variable is known.
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Figure 3. The original DUCG decomposed into three DUCG (Bi) s.

Step 1.2. Obtain the valid Slice_DG (Bi,t1)s and generate Cubic_DG (Bi,t1)s at t1. By
simplifying DUCG (Bi)s according to the simplification rules of the cubic DUCG, we obtain
the three Slice_DG (Bi,t1)s shown in Figure 4; The Slice_DG (Bi,t1) shows the relationship
between the root fault Bi and the current evidence E (t1) at t1. The Slice_DG (B1,t1) and the
Slice_DG (B2,t1) can explain the abnormal evidence, so they are the valid Slice_DG (Bi,t1)s.
In Slice_DG (B8,t1), the abnormal evidence X5,1 cannot be explained by the root fault B8, so
it is the invalid Slice_DG (Bi,t1) and is deleted.
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Figure 4. Three Slice_DG (Bi,t1)s based on the evidence E (t1) = X3,0X5,1X6,0.

Step 1.3. Cubic_DB (Bi,t1) generation. At time t1, the valid Slice_DG (Bi,t1)s are used
as Cubic_DG (Bi,t1)s, as shown in Figure 5. From the two Cubic_DG(Bi,t1)s, we obtain the
hypothesis spaces SH(t1) = {H1,1, H2,1, H2,1} = { B1,1, B2,1, B2,2}.



Sensors 2022, 22, 4118 7 of 20

Sensors 2022, 22, x FOR PEER REVIEW 7 of 21 
 

 

 

Figure 5. The Cubic_DG (Bi,t1)s generated by the valid Slice_DG (Bi,t1)s at t1. 

Step 1.4. Logical expression expansion and probability calculation. The hypothesis 

H1,1 is included in Cubic_DG (B1,t1), and the hypotheses H2,1 and H2,2 are included in Cu-

bic_DG (B2,t1). In order to calculate the Pr {H1,1 (t1)}, we should use expression expansion 

of E (t1) and H1,1E (t1) based on Cubic_DG (B1,t1), and then calculate Pr {E(t1)}, Pr {H1,1 E (t1)}. 

Equations (5) and (6) are the logic expansion of E (t1) and H1,1 E (t1) according to Equation 

(2). Equations (7) and (8) are the numerical calculation process of the expanded expres-

sions; the parameters used in calculation can be seen in Appendix A. 

( )1 3,0 5,1 6,0 3,0;1,1 1,1 5,1;1,1 1,1 6,0;1,1 1,1 3,0;1,1 5,1;1,1 6,0;1,1 1,1E t X X X F B F B F B F F F B= = =  (5) 

( )1,1 1 1,1 3,0 5,1 6,0 3,0;1,1 5,1;1,1 6,0;1,1 1,1H E t B X X X F F F B= =  (6) 

( ) ( )     

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1 3,0 5,1 6,0 3,0;1,1 5,1;1,1 6,0;1,1 1,1

3,0;1,1 5,1;1,1 6,0;1,1 1,1

1 3 3,0;1,1 1 5 5,1;1,1 1 6 6,0;1,1 1,1

1 3 3,1;1,1 1 5 5,1;1,1 1 6 6,1;1,1 1,1

, Pr Pr Pr

1 1

1 1 1 0.5 1 1 0.1 1 1 1

B t E t X X X F F F B

f f f b

r r a r r a r r a b

r r a r r a r r a b

 = = =

=

=

 −     − 

=  −     −( )0.4 0.2

0.006



=

 (7) 

( )     1,1 1 1,1 3,0 5,1 6,0 3,0;1,1 5,1;1,1 6,0;1,1 1,1Pr Pr Pr 0.006H E t B X X X F F F B= = =  (8) 

Similarly, for H2,1 and H2,2 in Cubic_DG (B2,t1), the results of expression expansion for 

E (t1), H2,1E (t1), and H2,2E (t1), as well as the results of Pr {E (t1)}, Pr {H2,1 E (t1)}, Pr {H2,2 E 

(t1)}, are shown in Equations (9)–(14). 

( )1 5,1 6,0 5,1;2,1 6,0;2,1 2,1 5,1;2,2 6,0;2,2 2,2E t X X F F B F F B= = +  (9) 

( )2,1 1 2,1 5,1 6,0 5,1;2,1 6,0;2,1 2,1=H E t B X X F F B=  (10) 

( )2,2 1 2,2 5,1 6,0 5,1;2,2 6,0;2,2 2,2=H E t B X X F F B=  (11) 

( ) ( )   2 1 1 5,1;2,1 6,0;2,1 2,1 5,1;2,2 6,0;2,2 2,2, Pr Pr 0.04B t E t F F B F F B = = + =  (12) 

( )   2,1 1 5,1;2,1 6,0;2,1 2,1Pr Pr 0.025H E t F F B= =  (13) 

Figure 5. The Cubic_DG (Bi,t1)s generated by the valid Slice_DG (Bi,t1)s at t1.

Step 1.4. Logical expression expansion and probability calculation. The hypothesis H1,1
is included in Cubic_DG (B1,t1), and the hypotheses H2,1 and H2,2 are included in Cubic_DG
(B2,t1). In order to calculate the Pr {H1,1 (t1)}, we should use expression expansion of E
(t1) and H1,1E (t1) based on Cubic_DG (B1,t1), and then calculate Pr {E(t1)}, Pr {H1,1 E (t1)}.
Equations (5) and (6) are the logic expansion of E (t1) and H1,1 E (t1) according to Equation
(2). Equations (7) and (8) are the numerical calculation process of the expanded expressions;
the parameters used in calculation can be seen in Appendix A.

E(t1) = X3,0X5,1X6,0 = F3,0;1,1B1,1F5,1;1,1B1,1F6,0;1,1B1,1 = F3,0;1,1F5,1;1,1F6,0;1,1B1,1 (5)

H1,1E(t1) = B1,1X3,0X5,1X6,0 = F3,0;1,1F5,1;1,1F6,0;1,1B1,1 (6)

ς(B1, t1) = Pr{E(t1)} = Pr{X3,0X5,1X6,0} = Pr{F3,0;1,1F5,1;1,1F6,0;1,1B1,1}
= f3,0;1,1 f5,1;1,1 f6,0;1,1b1,1
= (r1/r3)a3,0;1,1(r1/r5)a5,1;1,1(r1/r6)a6,0;1,1b1,1
(r1/r3)× (1− a3,1;1,1)× (r1/r5)× a5,1;1,1 × (r1/r6)× (1− a6,1;1,1)× b1,1
= (1/1)× (1− 0.5)× (1/1)× 0.1× (1/1)× (1− 0.4)× 0.2
= 0.006

(7)

Pr{H1,1E(t1)} = Pr{B1,1X3,0X5,1X6,0} = Pr{F3,0;1,1F5,1;1,1F6,0;1,1B1,1} = 0.006 (8)

Similarly, for H2,1 and H2,2 in Cubic_DG (B2,t1), the results of expression expansion for
E (t1), H2,1E (t1), and H2,2E (t1), as well as the results of Pr {E (t1)}, Pr {H2,1 E (t1)}, Pr {H2,2 E
(t1)}, are shown in Equations (9)–(14).

E(t1) = X5,1X6,0 = F5,1;2,1F6,0;2,1B2,1 + F5,1;2,2F6,0;2,2B2,2 (9)

H2,1E(t1) = B2,1X5,1X6,0 = F5,1;2,1F6,0;2,1B2,1 (10)

H2,2E(t1) = B2,2X5,1X6,0 = F5,1;2,2F6,0;2,2B2,2 (11)

ς(B2, t1) = Pr{E(t1)} = Pr{F5,1;2,1F6,0;2,1B2,1 + F5,1;2,2F6,0;2,2B2,2} = 0.04 (12)

Pr{H2,1E(t1)} = Pr{F5,1;2,1F6,0;2,1B2,1} = 0.025 (13)

Pr{H2,2E(t1)} = Pr{F5,1;2,2F6,0;2,2B2,2} = 0.015 (14)

According to Equation (3), we obtain the posterior probability of H1,1, H2,1, and H2,2
shown in Equations (15)–(17):

Pr{H1,1(t1)} = hs
1,1(t1) = ξ1(B1, t1)

Pr{H1,1E(t1)}
Pr{E(t1)}

=
ς(B1, t1)

ς(B1, t1) + ς(B2, t1)
× Pr{H1,1E(t1)}

Pr{E(t1)}
= 0.13 (15)

Pr{H2,1(t1)} = hs
2,1(t1) = ξ1(B2, t1)

Pr{H2,1E(t1)}
Pr{E(t1)}

= 0.543 (16)
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Pr{H2,2(t1)} = hs
2,2(t1) = ξ1(B2, t1)

Pr{H2,2E(t1)}
Pr{E(t1)}

= 0.326 (17)

In the sorted results for hs
2,1(t1) > hs

2,2(t1) > hs
1,1(t1), we can see that the hypotheses

H1,1, H2,1, and H2,2 may cause the occurrence of the abnormal evidence X5,1 at time t1,
and H2,1 is the most likely. The root fault B8 is excluded because it could not explain
abnormal evidence.

At time t2, suppose the received abnormal evidence is X6,1, and combined with the
evidence at t1, the total evidence at t2 is E (t2) = X3,0 X5,1 X6,1. The reasoning calculation
process at t2 is as follows.

Step 2.1. By simplifying DUCG (Bi)s based on the evidence E (t2), we obtain the
Slice_DG (B1,t2) and Slice_DG (B2,t2) shown in Figure 6.
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Figure 6. Slice_DG (Bi,t2)s at t2.

Step 2.2. Generate Cubic_DG (Bi,t2)s. The Cubic_DG (Bi,t2)s at t2 are generated by
synthesizing the Cubic_DG (Bi,t1)s at t1 and the Slice_DG (Bi,t2)s at t2; we then obtain the
Cubic_DG (Bi,t2)s shown in Figure 7. From Cubic_DG (Bi,t2)s, we can see that X3 and X5
did not change, but the state of X6 changed from normal to abnormal.
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Step 2.3. At time t2, due to the emergence of the abnormal evidence X6,1, Cubic_DB
(Bi,t2)s are regenerated, so the posterior probability of each hypothesis needs to be re-
calculated under the evidence E (t2) based on Cubic_DB (Bi,t2)s. For H1,1 in Cubic_DB
(B1,t2):

E(t2) = X3,0X5,1X6,1 = F3,0;1,1F5,1;1,1F6,1;1,1B1,1 (18)

ς(B1, t2) = Pr{E(t2)} = Pr{F3,0;1,1F5,1;1,1F6,1;1,1B1,1} = 0.004 (19)

H1,1E(t2) = B1,1X3,0X5,1X6,1 = F3,0;1,1F5,1;1,1F6,1;1,1B1,1 (20)
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Pr{H1,1E(t2)} = Pr{B1,1X3,0X5,1X6,1} = 0.004 (21)

For H2,1 and H2,2 in Cubic_DB (B2,t2):

E(t2) = X5,1X6,1 = F5,1;2,1F6,1;2,1B2,1 + F5,1;2,2F6,1;2,2B2,2 (22)

ς(B2, t2) = Pr{E(t2)} = Pr{F5,1;2,1F6,1;2,1B2,1 + F5,1;2,2F6,1;2,2B2,2} = 0.16 (23)

H2,1E(t2) = B2,1X5,1X6,1 = F5,1;2,1F6,1;2,1B2,1 (24)

Pr{H2,1E(t2)} = 0.025 (25)

Pr{H2,2E(t2)} = 0.135 (26)

Calculate the posterior probability of each hypothesis according to Equation (3), and
we get:

Pr{H1,1(t2)} = hs
1,1(t2) = ξ1(B1, t2)

Pr{H1,1E(t2)}
Pr{E(t2)}

= 0.024 (27)

Pr{H2,1(t2)} = hs
2,1(t2) = ξ1(B2, t2)

Pr{H2,1E(t2)}
Pr{E(t2)}

= 0.152 (28)

Pr{H2,2(t2)} = hs
2,2(t2) = ξ2(B2, t2)

Pr{H2,2E(t2)}
Pr{E(t2)}

= 0.823 (29)

The sorted result is hs
2,2(t1) > hs

2,1(t1) > hs
1,1(t1). With the emergence of new evidence

at time t2, the ranking probability of each hypothesis changes. From the ranking results, it
can be seen that H2,2 is most likely to cause the abnormal evidence, and the probability of
H1,1 and H2,1 decreases.

At time t3, suppose the received new abnormal evidence is E = X4,1 X7,1. Then, we get
E (t3) = X3,0X5,1X6,1X4,1X7,1.

Step 3.1. Simplify the DUCG (Bi)s under E (t3), then we obtain the two Slice_DG (Bi,t3)s
shown in Figure 8. In Slice_DG (B1,t3), the abnormal variable X7,1 is isolated evidence.
H1,1 cannot explain the occurrence of X7,1, so Slice_DG (B1,t3) is regarded as an invalided
Slice_DG (Bi,t3) and deleted. Only Slice_DG (B2,t3) is valid.
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Step 3.2. According to Cubic_DG (B2,t2) at t2 and Slice_DG (B2,t3), generate the Cu-
bic_DG (B2,t3) at t3, as shown in Figure 9.
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Step 3.3. Logical expand E (t3), H2,1 E (t3), and H2,2 E (t3) based on Cubic_DB (B2,t3)
and calculate the joint probability of Pr {E (t3)}, Pr {H2,1 E (t3)}, Pr {H2,2 E (t3)} shown in
Equations (30)–(35):

E(t3) = F4,1;5,1F5,1;2,1F6,1;2,1F7,1;2,1B2,1 + F4,1;5,1F5,1;2,2F6,1;2,2F7,1;2,2B2,2 (30)

Pr{E(t3)} = Pr{F4,1;5,1F5,1;2,1F6,1;2,1F7,1;2,1B2,1 + F4,1;5,1F5,1;2,2F6,1;2,2F7,1;2,2B2,2} = 0.08085 (31)

H2,1E(t3) = X4,1X5,1X6,1X7,1B1,1 = F4,1;5,1F5,1;2,1F6,1;2,1F7,1;2,1B2,1 (32)

Pr{H2,1E(t3)} = Pr{F4,1;5,1F5,1;2,1F6,1;2,1F7,1;2,1B2,1} = 0.00525 (33)

H2,2E(t3) = X4,1X5,1X6,1X7,1B2,2 = F4,1;5,1F5,1;2,2F6,1;2,2F7,1;2,2B2,2 (34)

Pr{H2,2E(t3)} = Pr{F4,1;5,1F5,1;2,2F6,1;2,2F7,1;2,2B2,2} = 0.0756 (35)

Because there is only one Slice_DG at t3, ξ2(B2, t3) = 1, and according to Equation (3),
we get the inference results of H2,1 and H2,2 shown in Equations (36) and (37):

Pr{H2,1(t3)} =
Pr{H2,1E(t3)}

Pr{E(t3)}
= 0.065 (36)

Pr{H2,2(t3)} =
Pr{H2,2E(t3)}

Pr{E(t3)}
= 0.935 (37)

The sorted result is hs
2,2(t1) > hs

2,1(t1). Since H1,1 cannot explain the occurrence of
X7,1 at time t3, it is considered an invalid hypothesis and excluded. Both H2,2 and H2,1 can
explain all abnormal evidence. The probability of H2,2 causing the abnormal evidence at t3
is 0.935, while the probability of H2,1 causing abnormal evidence is 0.065. According to the
results, we can preliminarily judge that the abnormal evidence may be caused by H2,2.

This was the reasoning process of the cubic DUCG, and the inference was based on a
time series. The algorithm reconstructed the current cubic DUCG based on the evidence
received at the current moment and the cubic DUCG at the last moment, showing the causal
propagation process based on the time series. The DUCG simplification could simplify
the complex original DUCG into a set of simple Slice_DG (Bi,tm) according to the evidence
E (tm) at tm. Slice_DG (Bi,tm) described the relationship between the evidence E (tm) and
hypothesis Bi. The DUCG simplification could remove the impossible causalities and
irrelevant variables on the condition of the evidence E (tm). Meanwhile, the computation
scale was reduced exponentially without losing accuracy. The Cubic_DG (Bi,tm) reflected
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how evidence changed over time slices, and was used as the graphical explanation of
the hypothesis Bi and to enhance the interpretability of the inference results. The logical
expansion of expression then expressed the logical relationship between the evidence and
hypothesis, which is the premise of probability calculation. The reasoning calculation calcu-
lated the conditional probability of each hypothesis under the current evidence according
to the causal effect between variables.

3. System Design

According to the reasoning mode of cubic DUCG and the characteristics of industrial
diagnostic systems, the cubic-DUCG-based industrial fault diagnostic system was divided
into four parts: the communication module, real-time monitoring and diagnosis module,
inference engine, and knowledge-editing tool. The summary of each functional module is
shown in Figure 10.
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Figure 10. System block diagram of the cubic-DUCG-based industrial fault diagnostic system.

The knowledge-editing tool was used by domain experts to design the DUCG knowl-
edge base. The DUCG knowledge base can be built in a modular way, and a whole DUCG
can be divided into several sub-DUCGs. Generally, each sub-DUCG contains one fault, and
represents causal relations between the fault and its related monitoring signals. This mod-
ular method of knowledge-base construction could reduce the difficulty in constructing
a large complex knowledge base. Figure 11 shows a complete DUCG knowledge base. It
was used for the fault diagnosis of the secondary circuit of No. 1 at the Ningde nuclear
power plant. This DUCG knowledge base is reconstructed from the knowledge base in
paper [35]. It contains 24 B-type variables that represent 24 different root faults in the
secondary circuit of the nuclear power water reactor; the detail of the faults are shown in
Appendix B. 141 X-type variables were used to describe the intermediate process or results
arising from a root fault; a total of 1192 F-type variables (the direct red line) were used to
describe the causal relations among variables.

The communication module was used for signal processing. The communication
module received the monitoring data from the industrial system. It transformed the data to
conform to the data format requirements of DUCG according to the mapping relationship
between the measure points and variables, then transmitted the data to the real-time
monitoring and diagnosis module.
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The inference engine was the core module of the fault diagnostic system. It could
generate cubic DUCG and engage in continuous causal reasoning based on the abnormal
evidence. Its diagnostic results were presented in probabilistic form, and the generated
cubic DUCG was used to explain the results. The inference engine was an independent
service. Its data resulted from the real-time monitoring module, and its inference results
were sent back to the real-time monitoring module for user decision making.

The real-time monitoring and diagnosis module was the control and human–computer
interaction center. In this module, users could choose the DUCG knowledge base based
on monitoring requirements, and then the instruction was sent to the communication
module to receive and process signals associated with the current DUCG knowledge base.
The monitoring module displayed and monitored signals in real-time.

The four functional modules of the system completed the functions of building
a knowledge base, receiving and processing data, diagnosing faults, and displaying
results. Through this system, users could translate knowledge and experience into
diagnostic models. Furthermore, the model was used for real-time fault diagnosis.
The system was a web application, the web client of the system was implemented
with jquery+html, and the server–client was implemented using Java; the framework
adopted by the system was the spring boot. The system is developed based on cloud
native technology. Compared with the DUCG system based on traditional web tech-
nology [35]. The system has good scalability and can dynamically increase computing
power according to task requirements.
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4. Experiment

In order to validate the feasibility and diagnostic accuracy of the system, an exper-
iment was done based on the secondary circuit of No. 1 at the Ningde nuclear power
plant. The DUCG knowledge base is shown in Figure 11. The system was deployed on
the computer cluster. The inference engine was deployed on one machine of the cluster
with an AMD Ryzen 7 5700G CPU at 4.45 GHz, an 8-core processor, and 128 GB of RAM.
The test data were collected from the simulator of the secondary circuit of No. 1 at the
Ningde nuclear power plant. A total of 24 fault cases were used to test the system. Each
fault case contained several time slices, and each time slice contained 141 signal data.
The data types of the signals included switching value, continuous data, and discrete
data. These signal data corresponded to 141 variables in the model one by one. During
the system test, the simulator sent a group of signal data to the system every other
second, which was recorded as a time slice. An example of condensate extraction pump
failure was used to demonstrate the diagnostic process of the system.

The fault “condensate extraction pump fault (CEX001PO)” was inserted at the 13th
second after the simulator operated stably, and the opening of the pump CEX001PO
gradually decreased; then, when the communication module received the real-time data
at the 14th second, one of the variables was in its abnormal state (the intake pressure of
ABP401RE was low (ABP004MP), X71,2). Because this was the first time the system received
the abnormal evidence, this time was marked as t1 and the system started the inference.
The inference results and graphical explanation at t1 are shown in Figures 12 and 13.
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Figure 13. The graphical interpretation of the inference hypothesis and abnormal evidence at t1.

Figure 13 shows that because multiple fault sources could cause X71,2 to occur, the
fault source cannot be diagnosed at t1, but the scope of the fault and the probability of each
fault could be preliminarily inferred. Sixteen faults could cause X71,2 to occur, and the top
three faults in the result list were more likely to cause X71,2 to occur.

At the 15th second, the system did not receive the new abnormal evidence, so it did
not perform the reasoning calculation. At the 16th second, the communication module
received the new abnormal signal (condensate extraction pump (CEX003PO) failure, X195,1).
This time was marked as t2. The inference results and graphical explanation are shown
in Figures 14 and 15. Comparing the inference results in Figures 12 and 14, we can see
that hypothesis space was further reduced. The hypotheses in the first inference that could
not explain the new evidence were excluded. Only the hypotheses that could explain all
abnormal evidence were valid. According to the results, we could infer that the abnormal
signals were possibly caused by the condensate extraction pump status (CEX001PO) (B1,1)
or the condensate extraction pump status (CEX002PO) (B2,1), and B1,1 was more likely.
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At the 17th second, the communication system received more abnormal signals. This
time was marked as time t3. The third inference results and graphical interpretation are
shown in Figures 16 and 17. Because only B1,1 could explain all of the known abnormal
evidence, according to the current evidence, B1,1 was diagnosed.
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This example showed the inference process of the cubic DUCG. It performed inference
calculations based on the time series. This fault diagnosis included three moments, and
the moment that first showed the abnormal evidence was marked as t1. At t1, there was
less abnormal evidence, so the specific diagnosis result could not be determined, but the
range of possible failures could be roughly determined. At t2, new abnormal evidence was
added to the diagnosis, which further narrowed the scope of the fault diagnosis. At t3, new
evidence increased, and the fault was uniquely determined. In the next few moments, new
evidence continued to be received. However, since there was only one diagnostic fault
left and the fault could explain all abnormal evidence, the diagnosis result did not change,
and the diagnosis was completed. At each moment, the system dynamically generated
a new cubic DUCG for the diagnosis combined with the cubic DUCG obtained from the
diagnosis at the last moment and the new evidence, giving the reasoning diagnosis results.
The graphical interpretations could demonstrate the development and evolution process of
the fault with time. It was convenient for the operator to understand the development of
the fault for troubleshooting.

Table 2 shows the test results of the 24 fault cases. The “Fault” is the fault code
in the DUCG knowledge base. “Rank First” indicates the first moment when the fault
was ranked first in the diagnostic results. “Confirmed Diagnosis” indicates the moment
when the fault was confirmed. “Time Consumption” indicates the total reasoning time for
diagnosing the fault. “Average Time” represents the average time of each diagnosis. We
can see that the 24 fault cases were all correctly diagnosed from the results. This proved
that the fault-diagnosis model of the secondary circuit system constructed in this study
was accurate. It also proved that using the cubic DUCG to construct a complex diagnostic
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model was feasible. Among the 24 fault cases, 17 of them could be diagnosed at time t1.
The remaining seven faults needed multiple time slices to be diagnosed, but they could
all be sorted to the first place in the list of diagnostic faults within four diagnostic time
slices, which proved that the system could quickly locate the root faults in a short time. In
terms of inference calculation time, although the inference calculation time increased with
an increase in the diagnosis time slice, the average time (from the start of the diagnosis
to the fault being confirmed) for each diagnosis was within 400 ms. Compared with the
DUCG-based diagnostic system proposed by Zhao [35], the diagnostic efficiency of the
system in this study is more efficient. This showed that the system could complete a
real-time and efficient reasoning diagnosis and meet the real-time task requirements of
industrial diagnosis.

Table 2. The diagnostic results of the 24 faults of the secondary circuit of No. 1 at Ningde nuclear
power plant.

Fault Rank First Confirmed Diagnosis Time Consumption Average Time

B1,1 t2 t3 145 ms 48 ms
B2,1 t1 t1 19 ms 19 ms
B3,2 t1 t1 18 ms 18 ms
B5,2 t1 t1 19 ms 19 ms
B6,2 t1 t1 18 ms 18 ms
B13,1 t1 t1 313 ms 313 ms
B15,1 t1 t1 26 ms 26 ms
B16,1 t3 t8 437 ms 55 ms
B17,1 t1 t1 21 ms 21 ms
B18,1 t1 t1 20 ms 20 ms
B19,1 t3 t8 433 ms 55 ms
B20,1 t1 t1 274 ms 274 ms
B21,1 t1 t1 276 ms 276 ms
B25,1 t1 t1 81 ms 81 ms
B26,1 t2 t2 188 ms 94 ms
B28,1 t1 t1 23 ms 23 ms
B32,1 t1 t1 142 ms 142 ms
B33,1 t1 t1 230 ms 230 ms
B34,1 t4 t4 496 ms 124 ms
B35,1 t1 t12 1874 ms 157 ms
B35,2 t1 t1 31 ms 31 ms
B36,1 t1 t1 18 ms 18 ms
B37,1 t1 t1 21 ms 21 ms
B38,1 t2 t2 398 ms 199 ms

5. Conclusions

With the rapid development of science and technology in industrial systems, such as
space systems and nuclear power plants, those systems have shown the characteristics of
increasingly complex structures, increasing scales, and increasingly rich functions, as well
as gradual improvements in the levels of integration and automation. Once an accident
occurs in a complex industrial system, it may cause casualties, damage to equipment and
facilities, damage to the ecological environment, and loss of economic property. These
systems have high security, and the fault data used for model training is insufficient. In
addition, these systems are usually customized according to different task requirements,
so the fault data between different systems lacks universality. Therefore, it is not feasible
to use big data to train models for fault diagnosis. However, experts accumulate a great
deal of experience and knowledge when designing and constructing such systems. At the
same time, the fault data of other similar systems can also provide a reference for the fault
analysis of the system. Therefore, some diagnostic methods based on expert knowledge are
more suitable for the fault diagnosis of these systems. Traditional fault-diagnosis methods,
such as the rule-based method, fault tree, and event tree, have the disadvantages of a low
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reasoning efficiency, an inability to deal with the logical cycle or uncertain causalities, and
difficulty in managing the growing knowledge.

This study proposed a fault-diagnosis method for a unique industrial system based
on the cubic DUCG. The model was built based on expert knowledge, experience, and
statistical data, and it described the causal mechanism of faults and abnormal signals.
The system could carry out a continuous fault diagnosis according to the time sequence,
display the results in the form of probability, and graphically represent the propagation of
faults over time. The modular construction method of the cubic DUCG knowledge base
reduced the modeling difficulty for large and complex knowledge bases and facilitated
knowledge management and maintenance. The cubic DUCG could express logical cycles
and uncertain causal relationships to express expert knowledge accurately. The reasoning
process of the cubic DUCG included model simplification, logical calculation, and probabil-
ity calculation. This inference method reduced the computational complexity of inference
without losing the accuracy of the results. It solved the problem of the high computational
complexity of large and complex knowledge base reasoning. These characteristics of the
cubic DUCG made it more suitable for industrial system modeling and fault diagnosis
based on expert knowledge.

In order to verify the feasibility and effectiveness of the system, we cooperated with
nuclear experts to build the fault diagnostic model of the secondary circuit system of No. 1
at the Ningde nuclear power plant. The model’s 24 root faults represented the operation
status of 24 leading components of the secondary circuit system, such as the steam turbines
and electric generators. A total of 141 variables represented the abnormal signals that root
faults may have caused. The data types of variables included switching value, discrete
type, and continuous type. Experts determined the values of the causal strength between
variables based on experience or statistical data. The variables in the model could be
mapped one-to-one with the detection points in the secondary circuit system. They could
reflect the operation state of the secondary circuit system. The secondary system simulator
generated 24 groups of fault cases to test the model. Each case tested 1 root fault, and
24 faults were correctly diagnosed. The test results showed that using the cubic DUCG for
fault diagnosis in unique industrial systems was feasible. At the same time, it should be
pointed out that the diagnostic accuracy of the diagnosis system based on expert knowledge
depended on the accuracy of the model. Therefore, multiexpert joint modeling and third-
party auditing of the model is one of the methods to ensure the model’s accuracy. Since
the current verification data were only provided by the nuclear power plant simulator,
the verification model was also limited to 24 faults in the secondary circuit system of the
nuclear power plant. Therefore, the verification of the system with only one application
scenario was not complete and systematic. In a following work, we will continue to extend
the model to test it using more data. In addition, we will verify the performance of the
system in more application scenarios.

Author Contributions: Conceptualization, X.B., H.N., Z.Z. and Q.Z.; methodology, X.B., H.N. and
Q.Z.; software, X.B., H.N. and Z.Z.; validation, X.B. and H.N.; formal analysis, Z.Z. and Q.Z.;
investigation, X.B., H.N. and Z.Z.; resources, Z.Z. and Q.Z.; writing—original draft preparation, X.B.;
writing—review and editing, X.B. and Q.Z.; visualization, X.B. and H.N. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank all authors of previous papers for approving
the use of their published research results in this paper.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2022, 22, 4118 18 of 20

Appendix A. The Parameters of the Example DUCG Knowledge Base
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− 0.1 0.3
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(A1)

Appendix B. Description of 24 Faults in the Knowledge Base, Including Fault Name,
State Description, and Its Number in DUCG

Table A1. The root faults in the cubic DUCG of the secondary circuit of No. 1 at Ningde nuclear
power plant.

ID Fault Description State State Description

B1 Condensate extraction pump status (CEX001PO) 0 Working order
1 Closed

B2 Condensate extraction pump status (CEX002PO) 0 Working order
1 Closed

B3 Feedwater flow control valve status (ARE031VL)
0 Normal
1 All closed
2 All opened

B5 Feedwater flow control valve status (ARE032VL)
0 Normal
1 All closed
2 All opened

B6 Feedwater flow control valve status (ARE033VL)
0 Normal
1 All closed
2 All opened

B12 Water supply pipeline of route A 0 Normal
1 Leaked

B13 Turbine operation status 0 Working order
1 Tripping state

B15 Low pressure heater pipe (ABP401RE) 0 Normal
1 Rupture

B16 Feedwater heater bypass valve status (ABP011VL) 0 Normal
1 Accidental opening

B17 Main steam header status
0 Normal
1 Leaked

B18 Steam generator heat transfer tube 0 Normal
1 Leaked

B19 Feedwater heater bypass valve (AHP009VL) 0 Normal
1 Accidental opening

B20 Water supply pipeline of route B 0 Normal
1 Leaked

B21 Water supply pipeline of route C 0 Normal
1 Leaked

B25 Pump (MFPA) failure (APA102PO) 0 Normal
1 Fault condition

B26
Water supply valve of electric main water supply system

(APA113VL)
0 Normal
1 Accidental shutdown



Sensors 2022, 22, 4118 19 of 20

Table A1. Cont.

ID Fault Description State State Description

B28
Water supply valve of electric main water supply system

(APA113VL)
0 Normal
1 Accidental shutdown

B32 Turbine bypass valve (GCT115VV) 0 Normal
1 Accidental opening

B33 Status of A-way steam pipeline 0 Normal
1 Rupture

B34 Turbine bypass valve (GCT131VV) 0 Normal
1 Accidental opening

B35 Steam turbine regulating valve (GRE001VV)
0 Normal
1 Accidental all closed
2 Accidental all opened

B36 Condenser vacuum pump (CVI101PO) 0 Normal
1 Accidental failure

B37 Status of three main steam isolation valves (VVP001/002/003VV)
0 Normal
1 All closed

B38 SG feedwater status
0 Normal
1 Loss
2 Moderate
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