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Cardiac mast cells (CMCs) are multifarious immune cells with complex roles both in
cardiac physiological and pathological conditions, especially in cardiac fibrosis. Little is
known about the physiological importance of CMCs in cardiac homeostasis and
inflammatory process. Therefore, the present review will summarize the recent progress
of CMCs on origin, development and replenishment in the heart, including their effects on
cardiac development, function and ageing under physiological conditions as well as the
roles of CMCs in inflammatory progression and resolution. The present review will shed a
light on scientists to understand cardioimmunology and to develop immune treatments
targeting on CMCs following cardiac injury.
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INTRODUCTION

Mast cells, innate non-circulating immune cells, exist in almost all tissues and play key roles in
allergic disease and host defense, including the heart. Mast cells are highly heterogeneous, express a
range of receptors on their surface and generate a variety of mediators to involve in extensive
inflammation and immune regulation through degranulation. Therefore, mast cells are called
“sentinels” in harmful conditions, with the ability to rapidly perceive invasion and initiate immune
defense and different biochemical programs of homeostasis in time (1). Cardiac mast cells (CMCs)
are present in the heart at a low density at homeostasis and is generally detected in the epicardium,
endocardium, and myocardium of ventricle and atrium in mice, rats, and humans. Published data
show that CMCs density is <1 cell/mm2 in mouse heart (2). Our unpublished data also demonstrate
that CMCs account for <3% of CD45+ cells in mouse heart. Therefore, the present review will
summarize the novels progress of CMCs on origin, development, replenishment, especially on
cardiac development, function and ageing under physiological conditions as well as the roles of
CMCs on inflammatory progression and resolution.
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ORIGIN, DEVELOPMENT AND SURVIVAL
OF CMCS

Mast cells have been always thought to originate from
hematopoietic stem cells (HSCs) in bone marrow (3).
However, recent data indicate that mast cells probably derive
from three embryonic hematopoietic waves: early and late
erythron-myeloid progenitors (EMPs) from yolk sac, and
definitive HSCs from the aorta, gonads, and mesonephros
region (4). Mast cells derived from different hematopoietic
waves have different tissue preferences, for example, from the
early EMPs distribute in adipose tissue, from late EMPs widely
distribute in most connective tissues, and from fetal HSCs are the
main cells group in mucosa. It is also suggested that bone
marrow derived mast cells mainly replenish the mucosal mast
cells (MMCs) after birth (4–6). Mast cells from the embryonic
stage are thought to have reached peripheral tissues and matured
into resident mast cells before birth, which possess tissue and
function heterogeneity. After birth, mast cells precursors from
bone marrow need to be released into the bloodstream and
recruited by various mediators before entering the peripheral
tissues. It is known that plenty of biologic agents, including
growth factors, integrins, chemokines and adenosine nucleotides
contribute to this recruitment process (7–10). Different mast
cells subsets express different receptors which may contribute to
their movement into specific tissues. For example, the
recruitment to intestine requires a4b7 integrin and chemokine
receptor CXCR2 expressed on mast cells progenitors (MCps),
accompanying with mucosal addressin cellular adhesion
molecule-1 and vascular cell adhesion molecule-1 on intestinal
endothelium (11, 12). Furthermore, a4b7 and vascular cell
adhesion molecule-1 are also required for the recruitment of
mast cells precursors to the lungs (13). However, it is unclear that
CMCs are derived from early and late EMPs, or maturation from
MCp (14, 15). If it is the later, which factor can mediate the
specific homing or recruitment of MCps to heart?

In both mouse and human, obtaining the cell surface and
intracellular characteristics of fully differentiated mature mast
cells requires a gradual process, that can be regulated by different
cytokines, in which stem cell factor (SCF) and IL-3 may play a
major role. SCF, the ligand of c-kit, not only facilitates cells
migration, but also contributes to their development (16, 17). IL-
3 can benefit the multiple hematopoietic lineage differentiation
into mast cells in vitro (18, 19). However, IL-3 is not necessary
for the generation of mast cells at homeostasis, it does benefit to
increase the number (20). Like IL-3, the other cytokines, such as
IL-4, IL-9, IL-10 and IL-13 can also synergistically promote mast
cell proliferation and differentiation (21).

Then, how are CMCs maintained and renewed? Tissue mast
cells are known to be long-lived cells and even after degranulation
they can re-granulate and continue to survive, which is dependent
on the local SCF levels (22). Because SCF can inactivate FOXO3a,
a fork-head transcription factor, and down-regulate and
phosphorylate its target Bim (a Bcl-2 homology 3-only
proapoptotic protein) which promote mast cells survival (23).
Bcl-2 family, well-known proteins, are critical for cells survival
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and death. Christine Moller and his colleagues are the first to
directly demonstrate that both Bcl-x and Bcl-2 are essential for
keeping mast cells survival during late development.
Nevertheless, the upregulation of Bcl-XL and Bcl-2 by IgE is
eliminated for bone marrow derived mast cells in IL-3–/–mice. IL-
3 regulates pro-survival Bcl-2 family members (24, 25) and SCF
suppresses pro-apoptotic Bim (23). The survival of mast cells
depends on the ratio and interaction of anti-apoptotic and pro-
apoptotic factors (26). Additionally, fibroblasts can also promote
human mast cells survival (27). For example, it has been proved
that mouse skin 3T3 fibroblasts can sustain the primary human
lung mast cells for 13 days in the absence of exogenous growth
factors (28). Although all the mast cells seemed not to have tight
junctions and proliferation, these cells still maintained the general
morphology, granule morphology and mediator content (29).
Furthermore, the co-culture of gut-derived human mast cells with
gut fibroblasts has the similar phenomena, and it is also indicated
that human fibroblasts promote survival of human mast cells
independent of SCF, IL-3, IL-4, and nerve growth factor (NGF).
That’s because fibroblasts can release a soluble heat-sensitive
molecule that downregulates apoptosis without promoting cell
proliferation (30). In addition, an increase of mast cells is noted in
the healing myocardium, and their progenitors are also found in
the infarcted area, which is related to the activation and
proliferation of fibroblasts following cardiac injury or not? The
contribution of fibroblasts proliferation cannot be clarified, while
the chemotaxis of circulating precursors to the heart may be the
main mechanism leading to the accumulation of mast cells in
ischemic heart (31). We at least know that fibroblasts contribute
to mast cell survival. Other chemokines and cytokines involving
in mast cells growth and survival need to be further confirmed in
future (Figure 1) (32).
MAST CELLS SUBSETS

The classic classification of mast cells is based on their tissue
distribution and granule content. According to the proteases they
contained, mast cells are divided into mainly containing tryptase
(MCTs) or chymase (MCCs) or both (MCTCs) (33). In human,
almost 90% CMCs are MCTCs (34). MCTs is usually localized to
mucosal surfaces and closely related to T cells, especially Th2-
type. MCTCs, on the other hand, includes tryptase, chymase,
carboxypeptidase and cathepsin G. It mainly exists in the
gastrointestinal tract, skin, synovium and subcutaneous tissues.
But the proportion and distribution of the two subsets may
change in pathological states. For example, the number of
MCTCs is increased in fibrotic diseases, but relatively
unchanged in allergic or parasitic diseases. Therefore, MCTCs
may be biased towards tissue remodeling and angiogenesis, and
MCTs contribute to inflammation (35). Besides, mouse mast
cells also can be divided into two lineages: inducible bone
marrow–mucosal mast cells (MMCs) and constitutive
embryonic-derived connective tissue mast cells (CTMCs) (36).
Phenotypic differences between CTMCs and MMCs are acquired
during the local tissue development, rather than determined by
July 2022 | Volume 13 | Article 963444
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the genetic composition of their MCp or their different location
in connective or mucosa tissue (37). In addition, like neutrophils
(N1 and N2) and macrophages (M1 and M2), the complex
biochemical environment of the tumor may promote mast cells
differentiation into anti-tumor MC1 or pro-tumor MC2 (38). On
the one hand, mast cells can generate excessive functionally
active ROS which may induce cytotoxic effects that can promote
tumor regression (39). On the other hand, large amounts of ROS
exceed the capacity of cellular DNA repair systems, that may
foster the occurrence of tumors. In addition, many other mast
cell-derived mediators can also play distinct or even opposite
roles in tumorigenesis (40).
THE MICROENVIRONMENT PROMOTES
FORMATION OF SPECIFIC MAST CELLS
PHENOTYPE

Heterogeneity is a major feature of mast cells, reflecting the
complex interaction between different microenvironmental signals
transmitted by tissues and the differentiation programs that
determine their phenotypes (41). However, how mast cells form a
highly heterogeneous phenotype affected by microenvironment in
peripheral tissues has rarely been mentioned. Generally, cells in a
given population show heterogeneity, which means that once they
show a certain minimum level of variation in one or more
characteristics (42). The preliminary studies demonstrate that
mast cells at different anatomical positions have significant
morphological differences (43). Other studies also show that in
addition to differing in morphologic, rat and mouse MMCs
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and CTMCs appear to differ in many other aspects of
biochemistry, histochemical characteristics, function and roles in
inflammation and immunity (44–46). Similarly, human mast cells
also differ in various aspects of their phenotype, just like
morphologic characteristics, histochemistry, contents of proteases
and sensitivity to stimulation by secretogogues (47–51). Notably,
it has been suggested that the phenotype of mast cells, such
as mediator contents or responsive abilities to specific stimuli,
can be regulated, at least in some cases reversibly, by
microenvironmental signals such as cytokines and growth factor
(52). In fact, many potential variations in microenvironment may
affect phenotype. The anatomical location is the first factor that
affects the phenotype. For example, when cultured mast cells in
vitrowere transferred into different locations in vivo, which can give
the chance to develop into CTMCs or MMCs, depending on local
signals (53, 54). Secondly, inflammatory or immune processes may
also cause transient changes of mast cells phenotype. For instance,
the number of CMCs increase in cardiomyopathy compared to
normal myocardium, and a second increase occurred after long-
term mechanical support, but the phenotype is conversion from
MCTCs into MCTs with the decrease of cardiac fibrosis (55).
Furthermore, similar switch also exists in other specific conditions,
for example, T cell-dependent responsemay contribute tomast cells
proliferation or maturation/differentiation, high concentrations of
eosinophils may benefit the switch of mast cells from MMCs to
MCTCs (42). Finally, mast cells may also participate in the
regulation of their numbers and phenotypes, especially during
inflammation or disease, by autocrine or paracrine or other
potential mechanisms (56). For instance, IL-4 possessing growth
factor activity for mast cells in mice can promote phenotypic
conversion into CTMCs with IL-3 (57). The more detailed
FIGURE 1 | CMCs origin, development and survival. Most of CMCs in the physiological state of the heart come from embryonic stage, and only a small part come
from bone marrow. The increase of CMCs can be differentiated from MCp or through self-proliferation. Under pathological conditions, MCps are recruited from bone
marrow. The density can also be increased by the relocation of CMCs in non-injured sites. In addition, some cytokine chemokines, cardiac fibroblast derived growth
factors and Bcl-2 family can promote the survival of CMCs.
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mechanisms of the microenvironment on phenotype still need to be
explored. Single cell RNA sequencing data of mast cells will provide
further insights into heterogeneity as well as clear views of
differences between and within different tissues.
CMCS DISTRIBUTION IN HEART
AND THEIR FUNCTIONS

In mice, CMCs are mostly distributed in the epicardium (50%) or
myocardium (45%), and a fraction is distributed in the
endocardium (5%) (58). Similarly, the most CMCs of human
are located in the interstitium and in the epicardium (59). Mast
cells and their mediators are generally thought to participate in
allergic diseases, however, increasing evidences suggest that mast
cells may also play protective roles in several other pathological
or physiological processes (59, 60). Single-Cell Sequencing shows
that CMCs are existence in myocardium and epicardium, and
activated and expanding in pressure overload-driven heart
failure mouse model (61), furthermore, CMCs infiltration
increase atrial fibrillation susceptibility following atrial burst
stimulus (62). CMCs increase has been implicated in the
chronic volume overload secondary to mitral regurgitation and
aorto-caval fistula (63). Furthermore, mast cells in different site
may possess the functional heterogeneity (60), for example,
tryptase can activate protease-activated receptor 2 (PAR-2)
located on cardiomyocytes, which may play a protective role
during myocardial infarction (64). Moreover, PAR-2 on nerve
fibers and myofibroblasts can also be activated by tryptase, which
stimulates the release of substance P from sensory nerve fibers,
which in turn activates MRGPRX2 receptors, a family of mas-
related G-protein-coupled receptors, on human CMCs (1). The
renin and chymase derived from the activated MRGPRX2
receptor, then respectively remove angiotensinogen and
angiotensin I (Ang I) to form Ang II. The co-expression of
renin and chymase by CMCs is very important for regulating the
homeostasis of the cardiac renin-angiotensin system (59).
Additionally, immunologic stimuli, bacterial and viral
superantigens can activate primary human CMCs to release
angiogenic (VEGF-A) and lymphangiogenic (VEGF-C) factors
(1, 60, 65). Besides VEGF-A promoting angiogenesis, VEGF-C
can also stablize blood pressure, promote lipid metabolism, and
coronary artery development (60, 66–68).
CMCS ON CARDIAC DEVELOPMENT,
SENESCENCE AND FUNCTION

Most reviews focus on the roles of mast cells in pathological
conditions, the present review focuses on the physiological roles.
A few studies have suggested that mast cells may participate in
the morphogenesis of some mouse organs, such as the mammary
glands (69) and corneal (70). The published data demonstrated
that the density and number of CMCs are dynamically changed
with age in rat (71). Our unpublished data also demonstrate that
CMCs exist at embryonic stage in mouse heart. Therefore, we
Frontiers in Immunology | www.frontiersin.org 4
speculate that the CMCs may contribute to cardiac development.
Similarly, CMCs density in children was low under the two years
old, but the number of CMCs firstly increases and then decreases
continuously with age (72). The rapid increase of CMCs density
in the early postnatal period accompanies angiogenesis.
Furthermore, the corneal mast cells promote corneal
angiogenesis (73). All these data suggest that CMCs may play
physiological roles on cardiac growth and development. In
addition, immune-activated human CMCs can also produce
VEGF-A and VEGF-C to induce the formation of new blood
vessels and lymphatics, while the similar function in
physiological state has not been confirmed (60, 68). CMCs
exist not only around the cardiac vessels of neonatal mouse,
but also around the nerve fibers. So CMCs might also have a
positive effect on nerve development in heart (74, 75).

Multiple evidences indicate that mast cells may be involved in
the development of the heart, so whether it has an impact on the
aging of the heart? Although there is no direct evidence that mast
cells are involved in heart aging, we can speculate from the effect
of mast cells on the aging of other tissues and organs. Firstly, the
number of mast cells in the mesenteric lymphatic vessels is 27%
higher and in the mesentery is 400% higher of the older rats (24
months) compared with the younger rats (9 months) (76). In
healthy elderly (≥ 75 years old), the mast cells in the skin
increased by 40% compared with the biopsy of young people
(≤30 years old) (77). Furthermore, although the liver has only a
slight aging process compared to other organs, mast cells also
play an important role in this process (32). One study has
demonstrated that inhibiting SCF/c-Kit signaling pathway can
reduce biliary senescence, with decrease mast cells activation and
hepatic damage (78). In conclusion, the increase of mast cells can
be detected in a variety of aging organs, so we suspect that they
may play a role in the process of organ aging. The effect of mast
cells on cardiac senescence can be reflected from two aspects:
structure and function (79). It is normally assumed that the
damage and apoptosis caused by mast cells to cardiomyocytes
will eventually lead to cardiac dysfunction, a manifestation of
cardiac aging. Co-culture of mast cells with cardiomyocytes
promotes significant cardiomyocytes apoptosis for possibly the
exposure to mast cell granules (80). It has been suggested that
chymase derived from CMCs may induce myosin degradation in
cardiomyocytes (81). Furthermore, activation of CMCs is pro-
inflammatory and not only induces apoptosis, but also leads to
extracellular matrix degradation, which may lead to eventual
myocardial dysfunction (Figure 2) (82). These data suggest that
CMCs can induce heart aging, but a more detailed mechanism
remains to be explored.
THE TRIGGER OF CMCS ACTIVATION
AND DEGRANULATION

Degranulation is considered to be the main way of mast cells
playing physiological and pathological roles with IgE as the main
trigger. As well known, mast cells express a large number of
FcϵRI receptors, once IgE receptor cross-linking and calcium
July 2022 | Volume 13 | Article 963444
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influx lead to mast cell degranulation (83). Currently, there are at
least three ways in which mast cells release intracellular
mediators, namely kiss-and-run, piecemeal, and compound
exocytosis (84). In IgE-mediated allergic reactions, almost all
vesicles are released from mast cells within minutes to hours.
However, IgE is not the only trigger that stimulates mast cell
degranulation, and activation induced by different components
also leads to release of different mediators. There are numerous
stimulants such as IgG, neuropeptides, cytokines, chemokines,
TLR ligands, complements and other inflammatory products,
that can directly cause mast cells to degranulate and selectively
release mediators to stimulate proliferation, differentiation and
migration (85). Mast cells subsets functions are different, not
only because of the mediators produced, but also because of
different sensitivities to stimulus. In addition to endogenous
stimulus, some exogenous molecules can also directly activate
mast cells, manifested as drug side effects or aggravating
individual allergic state (86). It is worth mentioning that the
process of mast cell degranulation in fibrosis is different from
that in allergic reactions, and the release of mast cell vesicles may
be more frequent and accompany with more subtle symptoms. It
can occur by a slow process called piecemeal degranulation, and
the vesicles can travel through the lymphatic vessels across the
interstitial space to distant lymph nodes. Additionally, less
discussed mechanism is the direct penetration of mast cell
vesicles into another cell via intercellular contact, known as the
transgranulation (83).
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CMCS IN CARDIAC INFLAMMATION AND
FUNCTIONAL REMODELING FOLLOWING
INJURY

The growing evidence shows that CMCs plays an important role
in the occurrence and development of cardiovascular diseases
(87). After myocardial infarction, CMCs density increase, rapidly
degranulate, release a large number of bioactive mediators and
initiate a cascade of cytokines to promote early inflammatory
healing (88). CMCs play an undeniable role in the cardiac
inflammation initiation and resolution. Because optimal healing
requires inhibition of chemokine and cytokine synthesis, this
leads to regression of inflammation and collagen deposition (31).
However, the influence of CMCs on fibrosis remains a focus.
CMCs produce a variety of growth factors, angiogenic factors and
extracellular matrix regulators. All the products can affect matrix
remodeling, promote granulation and scar formation, and have
an important role on cardiac remodeling.

Inflammatory Development and Resolution
The association of inflammation with myocardial infarction has
been perceived for more than a century and inflammation is
properly considered part of the healing process. The involvement
of mast cells in inflammation has traditionally been thought to be
only one aspect of the allergic response, but this does not seem to
be the case. Following cardiac injury, the internal and external
factors mentioned above can induce CMCs degranulation, and
FIGURE 2 | The roles of CMCs in cardiac development and aging. VEGF-A, VEGF-C, NGF and neurotrophin from CMCs contribute to cardiac development through
benefiting the formation of blood vessels and lymphatic vessels, and the development of cardiac nerves (neonatal stage). CMCs produce Chymase, TNF and IL-1b to
degrade myosin or to damage cardiomyocytes. CMCs’ activation following cardiac injury causes inflammatory response, and then lead to the structural damage and
cardiac dysfunction (Old Stage). The red arrow means speculation.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Jin et al. CMCs and Cardiac Homeostasis, Pathogenesis
their derived histamine and TNF activate microvascular
endothelium, up-regulate P and E-selectin, respectively, as well
as adhesion molecules such as ICAM-1, which affect vascular
tension and permeability. Eventually it mediates the infiltration
of inflammatory cells, such as neutrophils, basophils, monocytes/
macrophages, lymphocytes, etc (85) (89).

Inflammation benefits to cardiac repair, but this effect does not
last (88).The releaseof cytokines and inflammatory cells infiltration
directly or indirectly induced by CMCs are significant events in the
progression of myocardial infarction, which play a key role in
phagocytosis and clearance of dead cells and debris. Nevertheless,
this acute inflammatory response is transient and then disappears
(31, 90). This may be related to some anti-inflammatory mediators
secreted by CMCs, such as IL-10 and IL-13, which can limit the
expansion of inflammatory response and protect non-infarcted
cardiomyocytes. IL-10 restrains the inflammatory response by
inhibiting the production of IL-1a, IL-1b, TNF-a, IL-6, and IL-8
through lipopolysaccharide-activated monocytes (91). This can be
demonstrated by the obvious inflammatory response of IL-10
knockout mice after myocardial infarction, which is characterized
by increased neutrophil infiltration and elevated blood TNF-a
levels (92). The importance of IL-13 on CMCs needs to be further
investigated as it is not only derived from CMCs, but also secreted
bymanyothercells in themicroenvironment. Inaddition,mast cells
can also exert anti-inflammatory or immunosuppressive effects by
releasing mediators that degrade proinflammatory molecules (52).
Mast cell proteinase 4 has been shown to degrade mast cell-derived
TNF in mice in vitro, and it also can reduce TNF levels in vivo and
limit inflammation (93). Besides, IL-37 is an important regulatory
cytokine that inhibits inflammation, and mast cells can modulate
the anti-inflammatory activity of IL-37 by trypsin-like action,
resulting in the more biologically active form of IL-37 (94).
Notably, VEGF-C is a major lymphangiogenic factor produced by
humanCMCs(95, 96),whichhas apotential cardioprotective effect,
as cardiac lymphatic activation contributes to inflammation
resolution and plays a crucial role in fighting myocardial edema
(60, 97). Furthermore, mast cells can also inhibit inflammation
through activation of PAR-2 on cardiomyocytes (64). Timely
suppression of the inflammatory mediators such as chemokines
and cytokines in healing infarction is critical to the repair process
and can inhibit the continuous recruitment of inflammatory cells
(31). More detailed anti-inflammatory mechanisms of mast cells
remain to be studied. If we can find out the specific mechanism of
the occurrence and resolution of cardiac inflammation regulated by
CMCs, and then identify clinically appropriate targets, it may bring
great improvement to the treatment of cardiovascular disease.

CMCs: Pro-Fibrosis and Anti-Fibrosis
Although the obvious inflammation-related properties of CMCs,
its main function in cardiac remodeling is related to the
regulation of fibrous tissue metabolism. Cardiac fibrosis is
actually an accumulation of the extracellular matrix, such as
collagen (89). However, current studies have found that CMCs
are double-edged sword in inducing cardiac remodeling, which
can not only stimulate collagen synthesis and lead to fibrosis, but
also induce matrix metalloproteinase activation and collagen
degradation, with ultimately ventricular dilation (87).
Frontiers in Immunology | www.frontiersin.org 6
Firstly, fibrosis is necessary for proper wound healing which can
restores function to damaged tissue after myocardial injury, such as
myocardial infarction or hypertension-induced stretch injury.
Chymase and tryptase in CMCs have pro-fibrotic properties
which are well-known fibroblast activity promoters, can mediate
the activation of TGF-b and Ang II. However, fibrotic deposits are
essential to restore normal heart function, but excessive remodeling
can reduce contractile force and heart function, resulting in chronic
heart failure (15). Additionally, CMCs can also secrete some anti-
fibroticmediators, such as IL-10, IL-13, CXCL-10 andVEGF, which
have their own anti-fibrotic pathways, respectively (98). For
example, IL-10 can reduce fibrotic remodeling by decreasing IL-1b
and TNF levels, as well as MMP-9 expression and activity, and by
increasing capillary density (99). CMCs-derived IL-13 can induce
macrophages with an M2c phenotype, which is associated with
reduced fibrosis. Moreover, VEGF-A can increase capillary density
in damaged tissues and promote proper repair of cardiac fibrosis
(93). At last, CXCL10 has been proved that it can inhibit the
migration of fibroblasts to myocardium and delay their
phenotypic differentiation into fibrogenic myofibroblasts.
(Figure 3) (15). It cannot be ignored that CMCs have significant
pro-fibrotic and anti-fibrotic effects, several studies have drawn
controversial conclusions and described possible implications for
this phenomenon, including harmful, neutral, orprotective effects in
cardiac remodeling (100). These conflicting conclusions are
attributed to the failure to ensure a strictly correct clinical
environment and the selection of appropriate animal models (27).
Different culture systems, primary cell sources and even the initial
cell number used in the experiment are also critical, and subtle
differences may lead to different or even contradictory conclusions.
To clarify these contradictory results, it is significant to correctly
understand the characteristics of each in vitro and in vivo system
used to culture mast cells, which can help us understand the real
function of CMCs in the heart (21).
FUTURE PERSPECTIVE

Like macrophages and dendritic cells, CMCs are highly
heterogeneous population of innate immune cells, with different
morphological functions, mediator contents and surface receptors.
The origin and differentiation of the different subsets remain
unclear. CMCs are strategically located in close proximity to
cardiomyocytes, coronary microvessels, nerves, and lymphatic
vessels. Understanding the specific roles of CMCs in different
sites of the heart in pathological and physiological processes will
lead to a breakthrough in the treatment of cardiovascular diseases.
Although they are distributed in small numbers and proportions
within the steady-state heart, we reasonably suspect they are linked
to the cardiac development and function, even the aging process.
In a word, CMCs are a double-edged sword that may have
potentially beneficial or harmful effects. The detailed roles of
CMCs in cardiac development and injury remain controversial
and contradictory, thus, several key questions about them remain
unanswered. For example, the mechanisms about migration and
differentiation of CMCs remain to be confirmed: whether CMCs
precursors are regulated by specific mediators during migration to
July 2022 | Volume 13 | Article 963444
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heart, whether CMCs proliferate and renew according to the
pathway we mentioned above in both presence and absence of
pathological injury, and whether cardiac-resident and recruited
mast cells play divergent roles during homeostasis. Do different
CMCs subsets have the same origin and developmental process,
and whether their different phenotypes are changed by their
microenvironment or driven by their designated progenitor
cells? Specific mechanisms of CMCs on the development and
function of the heart remain in the speculative stage. Its effect on
the aging of the heart is only inferred from the performance of
other organs. Some direct evidence is still lacking. With the
growing understanding to CMCs, the other function may be
demonstrated in future except for pro-inflammation and pro-
fibrosis in cardiac injury. However, the dispute as to whether they
perform harmful, neutral or protective activities has also not
been resolved.
Frontiers in Immunology | www.frontiersin.org 7
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