
Exploring Potential Causal Genes for
Uterine Leiomyomas: A Summary
Data-Based Mendelian
Randomization and FUMA Analysis
Yuxin Dai1, Xudong Liu2, Yining Zhu3, Su Mao1, Jingyun Yang4,5 and Lan Zhu1*

1Department of Obstetrics and Gynecology, State Key Laboratory of Complex, Severe and Rare Diseases, National Clinical
Research Center for Obstetric and Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical
Sciences and Peking UnionMedical College, Beijing, China, 2Medical Science Research Center, State Key Laboratory of Complex
Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union
Medical College, Beijing, China, 3School of Mathematical Sciences, Fudan University, Shanghai, China, 4Rush Alzheimer’s
Disease Center, Rush University Medical Center, Chicago, IL, United States, 5Department of Neurological Sciences, Rush
University Medical Center, Chicago, IL, United States

Objective: To explore potential causal genetic variants and genes underlying the
pathogenesis of uterine leiomyomas (ULs).

Methods: We conducted the summary data-based Mendelian randomization (SMR)
analyses and performed functional mapping and annotation using FUMA to examine
genetic variants and genes that are potentially involved in the pathogenies of ULs. Both
analyses used summarized data of a recent genome-wide association study (GWAS) on
ULs, which has a total sample size of 244,324 (20,406 cases and 223,918 controls). We
performed separate SMR analysis using CAGE and GTEx eQTL data.

Results: Using the CAGE eQTL data, our SMR analysis identified 13 probes tagging 10
unique genes that were pleiotropically/potentially causally associated with ULs, with the
top three probes being ILMN_1675156 (tagging CDC42, PSMR = 8.03 × 10−9),
ILMN_1705330 (tagging CDC42, PSMR = 1.02 × 10−7) and ILMN_2343048 (tagging
ABCB9, PSMR = 9.37 × 10−7). Using GTEx eQTL data, our SMR analysis did not identify
any significant genes after correction for multiple testing. FUMA analysis identified 106
independent SNPs, 24 genomic loci and 137 genes that are potentially involved in the
pathogenesis of ULs, seven of which were also identified by the SMR analysis.

Conclusions: We identified many genetic variants, genes, and genomic loci that are
potentially involved in the pathogenesis of ULs. More studies are needed to explore the
exact underlying mechanisms in the etiology of ULs.
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INTRODUCTION

Uterine leiomyomas (ULs), also called myomas or uterine
fibroids, are benign tumors in the smooth muscle tissue in
myometrium (Bulun, 2013; Stewart et al., 2016). The overall
prevalence of UL is about 70% in women of reproductive age, and
approximately 25% of UL patients suffer from apparent clinical
symptoms and require treatment (Stewart et al., 2017). ULs are
the most prevalent benign tumor in female reproductive tract and
the leading indication for hysterectomy. ULs represent a major
cause of morbidity in women of childbearing age and account for
excessive menstrual bleeding, pelvic pain or pressure, infertility,
and pregnancy complications (Commandeur et al., 2015). To
date, the only definitive treatment for ULs, including the familial
subtype, is hysterectomy, which creates a great challenge if
fertility preservation is desired. ULs also cause tremendous
economic burden. For example, the annual cost of ULs in the
US alone, including direct medical costs and indirect financial
losses, is estimated to be up to $34.4 billion, higher than the
combined cost of breast and colon cancer (Cardozo et al., 2012).

UL is a complex, multi-factorial gynecological benign disease
with highly variable tumor size, tumor location and clinical
manifestations. Many factors have been reported to be
associated with the risk of ULs, including biological,
demographic, reproductive and lifestyle factors (Parazzini,
2006; Sparic et al., 2016; Wise and Laughlin-Tommaso, 2016).
Furthermore, previous studies also suggested that genetics plays
an important role in the pathogenesis of ULs. For example,
African-American women, or generally women with African
origin, are more predisposed to develop ULs, with a
prevalence as high as 80% (Day Baird et al., 2003), suggesting
that ethnicity-specific factors, potentially ethnicity-specific
genetic structure, may underlie the pathogenesis of ULs.
Familial clustering between first-degree relatives and twins was
also observed as well as multiple inherited syndromes in which
fibroid development occurred (Luoto et al., 2000; Tomlinson
et al., 2002). Moreover, many genome-wide association study
(GWAS) and candidate gene studies have identified several
genetic variants/loci associated with the susceptibility of ULs
(Cha et al., 2011; Hellwege et al., 2017; Rafnar et al., 2018;
Välimäki et al., 2018; Edwards et al., 2019; Gallagher et al.,
2019). However, the role of putative risk factors and the
underlying biological mechanisms underpinning ULs remain
largely unclear, which has contributed to the slow progress in
the development of effective treatment options for ULs. More
studies are needed to explore genetic variants/genes that are
potentially causally associated with ULs to better understand
the pathogenesis of ULs.

Mendelian randomization (MR) uses genetic variants as the
proxy to randomization. Recently, it has been widely adopted to
explore pleiotropic/potentially causal effect of an exposure on
various outcomes (e.g., ULs) (Davey Smith and Hemani, 2014).
Confounding and reverse causation, which are commonly
encountered in traditional association studies, can be greatly
reduced by MR. This method has been successful in identifying
gene expression probes or DNA methylation loci that are
pleiotropically/potentially causally associated with various

phenotypes, such as neuropathologies of Alzheimer’s disease
and severity of COVID-19 (Liu et al., 2021a; Liu et al., 2021b).

In this paper, we attempted to prioritize genes that are
potentially causally associated with ULs through a summary
data-based MR (SMR) approach. We also performed
functional mapping and annotation to further explore genetic
variants and genomic loci that are potentially involved in the
pathogenesis of ULs.

METHODS

Genome-Wide Association Study Data for
Uterine Leiomyomas
The GWAS summarized data for ULs were provided by a recent
genome-wide association meta-analysis of ULs (Gallagher et al.,
2019). The results were based on meta-analyses of ULs using data
from four population-based cohorts (Women’s Genome Health
Study, United Kingdom Biobank, Queensland Institute of
Medical Research, and North Finnish Birth Cohort), with a total
sample size of 244,324 (20,406 cases and 223,918 controls).
Genotyping was done on different platforms, and imputation was
performed using the reference panel from the 1000 Genomes Project
European dataset (1000G EUR) Phase 3 or the Haplotype Reference
Consortium (HRC) panel. For each cohort, logistic regression or
linear mixed model association analysis was done, assuming an
additive genetic model and adjusting for age, BMI, and/or the first
five principal components, and/or array type, as appropriate. The
GWAS summarized data can be downloaded at http://ftp.ebi.ac.uk/
pub/databases/gwas/summary_statistics/GCST009001-
GCST010000/GCST009158/.

Expression Quantitative Trait Loci Data
The SMR analyses used cis-eQTL genetic variants as the
instrumental variables (IVs) for gene expression. We
performed separate SMR analysis using eQTL data from two
sources. Specifically, we used the CAGE eQTL summarized data
for whole blood (Lloyd-Jones et al., 2017), which included 2,765
participants, and the V7 release of the GTEx eQTL summarized
data for uterus, which included 70 participants (Consortium,
2020). The eQTL data can be downloaded at https://cnsgenomics.
com/data/SMR/#eQTLsummarydata.

Summary Data-Based Mendelian
Randomization Analysis
The SMR analyses, based on the principle of MR (Davey Smith
and Ebrahim, 2003), used cis-eQTL as the IV, gene expression as
the exposure and ULs as the outcome. It was essentially a two-
sample MR analysis which jointly analyzed summarized GWAS
data and eQTL data from different samples to test for pleiotropic
association between gene expression and a ULs. Detailed
information regarding the SMR method was reported
elsewhere (Zhu et al., 2016). The analyses were done using the
software SMR, and we followed an approach similar to the one
adopted in our previous publication (Liu et al., 2021b). The
existence of linkage in the observed association was assessed
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using the heterogeneity in dependent instruments (HEIDI) test.
PHEIDI<0.05 means rejection of the null hypothesis. That is, the
observed association could be due to two distinct genetic variants
in high linkage disequilibrium with each other. We adopted the
default settings in SMR [e.g., PeQTL <5 × 10−8 and minor allele
frequency (MAF) > 0.01] and used false discovery rate (FDR) to
adjust for multiple testing (for full details of the default settings,
see Supplementary Table S1). The SMR analytic process is
illustrated in Figure 1.

FUMA Analysis
To better understand the genetic mechanisms underlying ULs, we
also conducted a FUMA analysis to functionally map and annotate
the genetic association, again using the GWAS summarized results
of ULs. FUMA is an on-line platform that integrates information
from multiple resources for easy implementation of post-GWAS
analysis, such as functional annotation and gene prioritization
(Watanabe et al., 2017). It has two processes, SNP2GENE, which
annotates SNPs regarding their biological functions and maps them
to genes, and GENE2FUNC, which annotates the mapped genes in
biological contexts. In SNP2GENE, we performed both positional
mapping and eQTL mapping using GTEx v8 of whole blood and
uterus. We selected all types of genes in gene prioritization and
adopted the default settings otherwise (e.g., maximum p-value of
lead SNPs being 5 × 10−8 and r2 threshold for independent
significant SNPs being 0.6). In GENE2FUNC, we adopted the
default settings (e.g., using FDR to correct for multiple testing in
the gene-set enrichment analysis).

Data cleaning and statistical/bioinformatical analysis was
performed using R version 4.1.2 (https://www.r-project.org/),
SMR (https://cnsgenomics.com/software/smr/), and FUMA
(https://fuma.ctglab.nl/).

RESULTS

Basic Information of the Summarized Data
In the SMR analyses, the CAGE eQTL has a much larger number
of participants than that of the GTEx eQTL data (2,765 vs. 70), so

is the number of eligible probes (8,523 vs. 999). After checking
allele frequencies among the datasets and LD pruning, there were
more than six million eligible SNPs in each SMR analysis. In the
FUMA analysis, about 8.6 million SNPs were used as the input.
The detailed information was shown in Table 1.

Pleiotropic Association With UL
Using the CAGE eQTL data, our SMR analysis identified 13
probes tagging 10 unique genes that were pleiotropically/
potentially causally associated with ULs, with the top three
probes being ILMN_1675156 (tagging CDC42, PSMR = 8.03 ×
10−9), ILMN_1705330 (tagging CDC42, PSMR = 1.02 × 10−7) and
ILMN_2343048 (tagging ABCB9, PSMR = 9.37 × 10−7; Table 2).
There were three probes tagging CDC42 (Figure 2) and two
probes tagging ABCB9 (Figure 3) that showed significant
pleiotropic association with ULs. Using GTEx eQTL data, we
did not identify any genes that were pleiotropically/potentially
causally associated with ULs after correction for multiple testing
(Table 2).

Functional Mapping and Annotation
FUMA analysis identified 106 independent significant SNPs, 33
lead SNPs (Supplementary Tables S2–S4), and 24 genomic risk
loci (Figure 4; Supplementary Table S5). In addition, FUMA
identified 137 genes that were potentially involved in the
pathogenesis of ULs (Supplementary Table S6). These 137
genes are distributed in 20 genomic risk loci, with four
genomic risk loci containing no identified genes (Figure 4 and
Supplementary Table S6). Of the 137 identified genes, 7 were
also identified by SMR analysis, including CDC42, SLC38A1,
ABCB9, MPHOSPH9, SBNO1, MRPS31 and CD68. Expression
of the prioritized genes in 30 tissues can be found in
Supplementary Table S7 and Supplementary Figure S1.

Gene-set enrichment analysis (GSEA) was undertaken to test
the possible biological mechanisms of the 137 candidate genes
implicated in ULs (Supplementary Table S8). A total of 96 gene
sets with an adjusted p < 0.05 were identified. We found strong
enrichment signals related with uterine fibroids (adjusted p = 2.00
× 10−51). In addition, we also found enrichment of sex-related

FIGURE 1 | Flow chart for the SMR analyses. (A) SMR analysis using CAGE eQTL data from blood; and (B) SMR analysis using GTEx eQTL data. CAGE,
Consortium for the Architecture of Gene Expression; eQTL, expression quantitative trait loci; GWAS, genome--wide association studies; GTEx, Genotype--Tissue
Expression; LD, linkage disequilibrium; SMR, summary data--based Mendelian randomization; SNP, single nucleotide polymorphism.
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signals such as
GO_REGULATION_OF_GONAD_DEVELOPMENT
(adjusted p = 0.023), endometriosis (adjusted p = 7.3 × 10−4), sex
hormone-binding globulin levels (adjusted p = 0.003), and sex
hormone levels (adjusted p = 0.024; Supplementary Table S8).

DISCUSSION

In this study, we conducted SMR and FUMA analysis to prioritize
SNPs and genes to better understand the genetic mechanisms
underlying ULs. We identified multiple genetic variants, genes,
genomic risk loci and gene sets that may be involved in the
pathogenesis of ULs. These findings provided helpful leads to a
better understanding of the pathogenesis of ULs and highlight
potential therapeutic targets for the treatment of ULs.

Several probes tagging CDC42 (cell division control protein 42
homolog) showed significant pleiotropic association with ULs in
the SMR analysis using CAGE eQTL data (Table 2). This gene
was also identified by the FUMA analysis. CDC42 is a member of
the Rho family and is implicated in a variety of cellular functions
including cell cycle progression, survival, transcription, actin
cytoskeleton organization, and membrane trafficking (Huang
et al., 2019). CDC42 has been linked to multiple human
cancers and is involved in the initiation of many cellular
responses during oncogenic processes, such as transition from
epithelial to mesenchymal, cell-cycle progression, migration/
invasion, tumor growth, angiogenesis, and oncogenic
transformation (Qadir et al., 2015; Maldonado and
Dharmawardhane, 2018). Several studies reported that CDC42
might also play an essential role in the pathogenesis of fibroid. For
example, genome-wide analysis revealed that the 1p36.12 region,
where CDC42/WNT4 is located, was associated with uterine
fibroids (Rafnar et al., 2018; Edwards et al., 2019; Gallagher
et al., 2019). Interestingly, the genetic variant rs10917151 in
CDC42/WNT4 seems to have ancestry-specific effect on the
risk of uterine fibroids. Specifically, the A allele was associated
with a reduced risk of uterine fibroids in women of African
ancestry (OR = 0.84) and an increased risk in women of European
ancestry (OR = 1.16) (Edwards et al., 2019). Since rs10917151 has

been reported to be involved in hormone-related traits (e.g.,
endometriosis and endometrial cancer), it probably plays a
role in the development of leiomyomas via influencing
hormone metabolism (Rafnar et al., 2018). Meanwhile, another
study showed that the deregulation of CDC42 influences
fibroblasts activation which is essential in the pathogenesis of
ULs (Zheng et al., 2014). Given the fact that increased cellular
proliferation is present in fibroid compared with the adjacent
uterine tissue and the function of CDC42 in influencing cell cycle,
further investigation is needed to elucidate the role of CDC42 in
the development of leiomyoma and the potential of this gene as a
promising target for the prevention and treatment of ULs.

We also found that two probes tagging ABCB9 (ATP binding
cassette subfamily B member 9) showed significant pleotropic
association with ULs in the SMR analysis using CAGE eQTL data.
This gene was also identified in the FUMA analysis. ABCB9
belongs to the superfamily of ATP-binding cassette (ABC)
transporters which fulfill diverse physiological functions in
different cellular localizations ranging from plasma membrane
to intracellular membranous compartments (Linton, 2007).
ABCB9, located on 12q24.31, is an antigen processing-like
(TAPL) transporter that has been found to be involved in the
development and progression of various malignant tumors, such
as ovarian cancer and non-small cell lung cancer (Dong et al.,
2014; Ween et al., 2015). The genetic variant rs2270788 in ABCB9
was found to be associated with both the risk and tumor size of
ULs in African American participants (Aissani et al., 2015).
ABCB9 was downregulated in women with a high level of
progesterone serum (>1.5 ng/ml), compared with women with
a lower level of progesterone serum (<1.5 ng/ml) (Labarta et al.,
2011). Since progesterone is a major promoter of leiomyoma
development and growth (Kim and Sefton, 2012), the role of
ABCB9 in fibroids in general, and its function in progesterone-
driven growth of leiomyomas in particular, needs further
exploration.

A recent GWAS study on ULs also performed two-sample
Mendelian randomization analysis (Gallagher et al., 2019).
However, the MR analysis was different from our SMR
analyses in that their objective was to examine the causality of
genetic association between UL and heavy menstrual bleeding

TABLE 1 | Basic information of the eQTL and GWAS data.

Data Source Total
number of participants

Number of eligible
genetic variants or

probes

eQTL data
CAGE 2,765 8,523
GTEx 70 999

GWAS data for SMR analysis
WGHS 3,375/9,465 —

NFBC 363/5,000 —

QIMR 1,484/3,701 —

UKBB 15,184/205,752 —

Total 20,406/223,918 CAGE: 6,198,856; GTEx: 6,697,624
GWAS data for FUMA analysis 20,406/223,918 8,589,006

CAGE, Consortium for the Architecture of Gene Expression; eQTL, expression quantitative trait loci; GTEx, Genotype--Tissue Expression; GWAS: genome--wide association studies;
WGHS, Women’s Genome Health Study; QIMR, Queensland Institute of Medical Research; UKBB, United Kingdom, Biobank; NFBC, North Finnish Birth Cohort.
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(HMB). Their study identified 29 independent loci for ULs, with
27 of them on the autosomal chromosomes while our FUMA
analysis identified a total of 24 genomic loci on the autosomal
chromosomes. The definition of genomic locus was different
between their approach and FUMA: their genomic locus was

defined as regions of the genome containing all SNPs in LD (r2 >
0.6) with the index SNPs (independent SNPs, i.e., SNPs in low LD
(r2 < 0.1) with nearby (≤500 kb) significantly associated SNPs),
with any adjacent regions within 250 kb of one another being
combined and classified as a single locus. In FUMA, independent

TABLE 2 | The top hit probes identified in SMR analysis*.

eQTL
data

Probe Gene CHR Top SNP PeQTL PGWAS Beta SE PSMR PHEIDI Q value

Uterus ENSG00000198496.6 NBR2 17 rs2292595 4.34 ×
10−27

0.0002 0.0359 0.0100 0.0003 0.1417 0.2211

ENSG00000155393.8 HEATR3 16 rs11642695 3.78 ×
10−12

4.66
× 10−5

0.0871 0.0248 0.0004 0.5173 0.2211

ENSG00000101751.6 POLI 18 rs4940321 1.31 × 10−8 5.47
× 10−5

−0.0960 0.0291 0.0010 0.4576 0.3252

ENSG00000164535.10 DAGLB 7 rs13235365 5.58 ×
10−13

0.0004 0.0404 0.0126 0.0014 0.9852 0.3505

ENSG00000226752.3 PSMD5--
AS1

9 rs4837796 3.37 ×
10−28

0.0031 0.0265 0.0093 0.0043 0.8854 0.7269

ENSG00000164048.9 ZNF589 3 rs11718329 2.06 ×
10−10

0.0019 0.0419 0.0150 0.0051 0.3164 0.7269

ENSG00000164045.7 CDC25A 3 rs4511915 3.80 ×
10−13

0.0035 0.0314 0.0115 0.0065 0.1342 0.7269

ENSG00000188878.12 FBF1 17 rs9674908 1.20 × 10−8 0.0022 −0.0578 0.0213 0.0068 0.6307 0.7269
ENSG00000027001.7 MIPEP 13 rs75783226 1.95 × 10−9 0.0025 0.0498 0.0185 0.0070 0.1324 0.7269
ENSG00000229759.1 MRPS18AP1 3 rs11130163 7.36 ×

10−15
0.0052 0.0260 0.0099 0.0085 0.6590 0.7269

Whole
blood

ILMN_1675156 CDC42 1 rs2473290 7.00 ×
10−118

2.82
× 10−9

0.0896 0.0155 8.03
× 10−9

1.56
× 10−8

6.84
× 10−5

ILMN_1705330 CDC42 1 rs2473290 2.08 ×
10−32

2.82
× 10−9

0.1778 0.0334 1.02
× 10−7

3.83
× 10−5

0.0004

ILMN_2343048 ABCB9 12 rs4148856 1.17 ×
10−23

1.96
× 10−8

−0.2064 0.0421 9.37
× 10−7

0.3185 0.0027

ILMN_2343047 ABCB9 12 rs641760 9.79 ×
10−17

7.64
× 10−9

−0.2509 0.0528 2.01
× 10−6

0.1106 0.0043

ILMN_1654421 MPHOSPH9 12 rs10772996 7.72 ×
10−19

6.34
× 10−8

−0.2501 0.0541 3.73
× 10−6

0.9425 0.0064

ILMN_1767642 C11orf46 11 rs12364889 1.81 ×
10−34

8.32
× 10−7

0.1410 0.0309 5.10
× 10−6

0.0977 0.0072

ILMN_2266948 SLC38A1 12 rs11183420 5.41 ×
10−36

2.33
× 10−6

0.1401 0.0316 9.36
× 10−6

0.0048 0.0107

ILMN_1691188 UIMC1 5 rs353491 4.49 ×
10−17

2.28
× 10−7

0.2164 0.0490 1.00
× 10−5

0.1816 0.0107

ILMN_2359907 CD68 17 rs56319762 2.76 ×
10−51

5.07
× 10−6

0.1093 0.0250 1.26
× 10−5

0.0157 0.0119

ILMN_1654552 MRPS31 13 rs7324090 5.69 ×
10−10

1.44
× 10−9

−0.3700 0.0853 1.44
× 10−5

0.3289 0.0122

ILMN_1706531 ABCC5 3 rs4074672 3.24 ×
10−169

1.61
× 10−5

0.0552 0.0129 1.94
× 10−5

0.2197 0.0150

ILMN_1738424 CDC42 1 rs2038106 7.64 ×
10−30

4.44
× 10−6

0.1430 0.0337 2.21
× 10−5

1.23
× 10−9

0.0157

ILMN_1739943 SBNO1 12 rs1569068 1.30 ×
10−10

2.92
× 10−8

0.3387 0.0807 2.73
× 10−5

0.8568 0.0179

*We showed the top ten pleiotropic association for the SMR analysis using GTEx eQTL data, and all the significant pleiotropic associations (after correction of multiple testing using FDR) in
the SMR analysis using CAGE eQTL data. The GWAS, summarized data were provided by the study of Gallagher et al. and can be downloaded at http://ftp.ebi.ac.uk/pub/databases/
gwas/summary_statistics/GCST009001-GCST010000/GCST009158/. The CAGE and GTEx eQTL data can be downloaded at https://cnsgenomics.com/data/SMR/
#eQTLsummarydata.
PeQTL is the p-value of the top associated cis-eQTL in the eQTL analysis; PGWAS is the p-value for the top associated cis-eQTL in the GWAS analysis; Beta is the estimated effect size in
SMR analysis; SE is the corresponding standard error; PSMR is the p-value for SMR analysis and PHEIDI is the p-value for the HEIDI test.
Bold font means statistical significance after correction for multiple testing using FDR.
CAGE, Consortium for the Architecture of Gene Expression; CHR, chromosome; eQTL, expression quantitative trait loci; GTEx, Genotype--Tissue Expression; HEIDI, heterogeneity in
dependent instruments; SNP, single--nucleotide polymorphism; SMR, summary data--based Mendelian randomization; FDR, false discovery rate; GWAS, genome--wide association
studies.
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significant SNPs (p < 5 × 10−8 and independent from each other
at r2 < 0.6) were first identified. Then, all known SNPs in LD (r2 >
0.6) with one of the independent SNPs were included, using the
pre-calculated LD structure based on 1000G. As a results, SNPs
that were not originally in the GWAS results could also be
included. This may partly explain the difference in the findings.

Findings from our SMR and FUMA analyses are not consistent,
although we did identify several genes that were significant in both
the SMR and FUMA analyses (Table 2 and Supplementary Table
S3). This is likely due to the different focuses of the two types of
analyses. The SMR analyses attempted to identify genes whose
expressions were causally associated with ULs by using genetic
variants as the instrumental variables (Zhu et al., 2016). By
contrast, the FUMA analysis focused on genetic variants to
characterize and annotate significant SNPs which were then
mapped to genes for subsequent functional annotation by
integrating knowledge from multiple resources (Watanabe et al.,
2017). In one word, SMR focused on potentially causal association
of gene expression, while FUMA attempted to pinpoint the most
likely causal genetic variants and genes without differentiating
whether the causal function is through gene expression or not.

There are three core assumptions underlying the SMR
analyses: 1) the genotype is associated with gene expression; 2)
the genotype is not associated with confounding factors that bias
the associations between gene expression and ULs; and 3) the
genotype is related to ULs only via its association with gene
expression. Concern is minimal, moderate or cannot be directly

verified for these assumptions. Specifically, for assumption 1, the
SMR analyses adopted a p-value threshold of 5 × 10−8 to select the
top associated eQTL. Therefore, we believe that the genetic
variants we selected indeed showed strong association with
gene expression and the concern of weak instrument is
minimal. Assumption 2 is often based on biological belief that
the genotype will not be associated with socioeconomic and
behavioral characteristics that commonly confound the effects
of exposure (i.e., gene expression) on the outcome (i.e., ULs)
(Lawlor et al., 2008). This assumption could not be verified
directly because we used summarized data for the SMR
analyses. Violation of assumption 3 (i.e., horizontal pleiotropy)
may distort MR results. It was found that horizontal pleiotropy
can be detected in over 48% significant causal relationships inMR
and introduced distortions as high as 201% in the causal estimates
in MR. It can induce false-positive causal relationships in up to
10% of relationships (Verbanck et al., 2018). We did observe that
the HEIDI test was significant for some of the observed
associations, implying the existence of horizontal pleiotropy
(Table 2). Caution should be exerted in interpretation of the
findings in the presence of pleiotropy.

Our study has limitations. Although we identifiedmultiple genes,
such as CDC42 and ABCB9, in pleiotropic association with ULs, we
cannot directly compare expression of the identified genes between
ULs patients and the normal control due to a lack of relevant gene
expression data. Future studies are needed to examine changes in
gene expression of the identified genes and further explore the

FIGURE 2 | Pleiotropic association ofCDC42with ULs using CAGE eQTL. Top plot, grey dots represent the --log10(p values) for SNPs from the GWAS of ULs, with
solid rhombuses indicating that the probes pass HEIDI test. Middle plot, eQTL results. Bottom plot, location of genes tagged by the probes. CAGE, Consortium for the
Architecture of Gene Expression; eQTL, expression quantitative trait loci; GWAS, genome--wide association studies; GTEx, Genotype--Tissue Expression; HEIDI,
heterogeneity in dependent instruments; SMR, summary data--based Mendelian randomization; SNP, single nucleotide polymorphism; ULs, uterine leiomyomas.
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FIGURE 3 | Pleiotropic association of ABCB9 and MPHOSPH9 with ULs using CAGE eQTL data. Top plot, grey dots represent the log10(p values) for SNPs from the
GWASofULs,with solid rhombuses indicating that theprobes passHEIDI test.Middle plot, eQTL results. Bottomplot, location of genes tagged by theprobes.CAGE,Consortium
for the Architecture of Gene Expression; eQTL, expression quantitative trait loci; GWAS, genome--wide association studies; GTEx, Genotype--Tissue Expression; HEIDI,
heterogeneity in dependent instruments; SMR, summary data--based Mendelian randomization; SNP, single nucleotide polymorphism; ULs, uterine leiomyomas.

FIGURE 4 |Genetic risk loci identifiedbyFUMAanalysis usingGWASdataonULs.Genomic risk loci aredisplayed in the format of “chromosome:start position--endposition”on
the Y axis. For each genomic locus, histograms from left to right depict the size, the number of candidate SNPs, the number of mapped genes (using positional mapping and eQTL
mapping), and the number of genes known to be located within the genomic locus, respectively. CAGE, Consortium for the Architecture of Gene Expression; eQTL, expression
quantitative trait loci; GWAS, genome--wide association studies; GTEx, Genotype--Tissue Expression; SNP, single nucleotide polymorphism; ULs, uterine leiomyomas.
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possible pathogenic mechanisms. The incidence of ULs varies
among ethnicities, implying the existence of ethnic-specific
genetic architecture. However, the GWAS summarized data used
in our analyses were based on participants of European ancestry.
Moreover, ethnicity-specific gene expression and eQTL data are
unavailable. As such, our findings might not be generalized to other
ethnicities, and more studies comparing expression of the identified
genes among different ethnicities are warranted. Previous research
demonstrated that the SMR approach had good performance with a
sample size of 1,000 and 10,000 for QTL summarized data and
GWAS summarized data, respectively (Zhu et al., 2016). Therefore,
power should not be a big concern for the SMR analysis using CAGE
eQTL data which utilized eQTL data from 2,765 subjects andGWAS
summarized data from 244,324 subjects. However, the SMR analysis
using GTEx eQTL data might suffer from insufficient power with
eQTL data from only 70 subjects. The number of eligible probes used
in the SMR analyses was limited, especially in the analysis using
GTEx eQTL (eligible probes = 999). We further checked and found
that there were only 482 probes that were common in both GTEx
eQTL data and the CAGE eQTL data, and none of the significant
probes identified by using the CAGE eQTL data were included in the
eligible probes in the GTEx eQTL data. Taken together, we believe
that limited sample size and eligible probes was the major reason of
null findings of the SMR analysis using GTEx eQTL data, and that
we could not rule out the possibility of missing some important
genes that were not tagged in the eQTL data. In addition, the FDR
approach to correct for multiple testing resulted in additional
possibilities of missing important genes.

CONCLUSION

We identified many genetic variants, genes and genomic loci that
are potentially involved in the pathogenesis of ULs. Biological
validation of some of the identified genes is highly needed in future
research, especially of the seven genes that were identified by both
the SMR analysis using CAGE eQTL data and the FUMA analysis.
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