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Abstract
Offspring of older mothers are at increased risk of adverse birth outcomes, childhood can-

cers, type 1 diabetes, and neurodevelopmental disorders. The underlying biologic mecha-

nisms for most of these associations remain obscure. One possibility is that maternal aging

may produce lasting changes in the epigenetic features of a child’s DNA. To test this, we

explored the association of mothers’ age at pregnancy with methylation in her offspring,

using blood samples from 890 Norwegian newborns and measuring DNA methylation at

more than 450,000 CpG sites across the genome. We examined replication of a maternal-

age finding in an independent group of 1062 Norwegian newborns, and then in 200 US mid-

dle-aged women. Older maternal age was significantly associated with reduced methylation

at four adjacent CpGs near the 2nd exon of KLHL35 in newborns (p-values ranging from

3x10-6 to 8x10-7). These associations were replicated in the independent set of newborns,

and replicated again in women 40 to 60 years after their birth. This study provides the first

example of parental age permanently affecting the epigenetic profile of offspring. While the

specific functions of the affected gene are unknown, this finding opens the possibility that a

mother’s age at pregnancy could affect her child’s health through epigenetic mechanisms.

Introduction
Advanced maternal age during pregnancy has been associated with adverse birth outcomes [1–
4] as well as health problems in children (childhood cancer [5], type 1 diabetes [6], and neuro-
developmental disorders [7,8]). The biologic mechanisms underlying most of these associa-
tions remain unknown. One mechanism by which maternal age could influence the health of
offspring is through epigenetic modifications such as DNAmethylation. DNA methylation
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refers to the addition of a methyl group to the 5’ position of a cytosine at cytosine-guanine
dinucleotides (CpGs) and has been associated with a growing number of diseases.

During development, the parental genomes are completely demethylated between fertiliza-
tion and implantation. New methylation marks start to be established around the time of blas-
tocyst implantation, and continue throughout fetal growth [9]. Some of the only exceptions are
a relatively small number of imprinted loci. Placement of the early epigenetic marks is of grow-
ing interest because of their potential for modulating gene transcription, development, and dis-
ease risk. In particular, DNA methylation has been proposed [10] as a mechanism by which
parental or fetal exposure could determine subsequent risk of adult diseases (the “developmen-
tal origins of disease” hypothesis [11]). The mechanisms by which remethylation is controlled
during development at various sites across the genome are still unknown; there are very few
documented examples of parental exposures or direct fetal exposure in utero that lead to persis-
tent epigenetic change in the offspring [12,13].

It is well established that as people age, there are changes in the levels of DNAmethylation
in blood and various other tissues (for example [14]). However, the epigenetic consequences of
advanced maternal age in offspring have been little explored. Support for an epigenetic effect
includes reports of age-related gene-expression changes in both mouse [15] and human
oocytes [16]; some of these differentially expressed genes play a role in chromatin structure
and DNA methylation. Age-related changes in DNAmethylation have also been observed in
mouse oocytes and mouse and human sperm [17–19]. To date, only one study has investigated
the relationship between parental age and DNA methylation in offspring [20]. Although a
number of maternal age-related DNA methylation changes were reported, the study was lim-
ited by a small sample size, the use of a low-density DNAmethylation microarray, and the lack
of an independent population for replication of their findings. Thus, the possible effects of
maternal age on the newborn epigenome, and the persistence of such effects if they exist,
remain mostly unexplored.

Results
In this epigenome-wide association study (EWAS), maternal age at delivery was associated
with decreased methylation at four sites in the newborn epigenome. Using samples from a
study of Norwegian newborns (NFCS), we identified four adjacent CpGs near exon 2 of
KLHL35 (kelch-like family member 35) with P-values ranging from 3.3x10-6 to 8.1x10-7 (Figs 1
and 2; S2 Table: Model1; S2–S4 Figs). Although not significant after strict Bonferroni correc-
tion for 465,525 tests (genome-wide threshold p< 1.07x10-7; S5 Fig), these CpGs showed sur-
prisingly large effect sizes (Fig 1; S2 and S3 Tables): The mean methylation level (average β-
values) for these four CpGs was 40%. A 20-year increase in maternal age would be estimated to
decrease average absolute methylation at these sites by roughly 12.5% (Fig 3), representing a
35% relative decrease in methylation. We found no corresponding effect of paternal age on
methylation levels at these sites (S4 Table).

The Adkins study of maternal age and methylation (based on 168 newborns) does not allow
us to attempt to replicate our findings, as the four CpGs identified in our study were not cov-
ered by the Illumina 27K array used by Adkins [20]. None of the associations reported by
Adkins were replicated in our data.

We sought replication of the four KLHL35 CpGs associated with maternal age in an inde-
pendent study of Norwegian newborns (MoBa). Although effect sizes were somewhat smaller,
all four CpGs near exon 2 showed statistically significant decreases in methylation (p<0.05,
with 3 of the 4 meeting an appropriate Bonferroni correction; Fig 3 and S5 Table).
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To assess the long-term persistence of these maternal-age effects, we conducted a second
replication of the candidate KLHL35 CpGs in a smaller sample of adult women from the Sister
Study [21]. All four CpGs near exon 2 showed reduced methylation with advanced maternal
age (p<0.05, although none met an appropriate Bonferroni correction). Moreover, the reduc-
tion in methylation levels were remarkably similar to those found in the original analysis of
NFCS newborns (Fig 3 and S5 Table: Model1).

Discussion
We have identified a distinctive pattern of reduced DNAmethylation in the blood of newborn
infants that is linked to the mother’s age at delivery. Importantly, this pattern at four CpG sites

Fig 1. Epigenome-wide association results of maternal age in NFCS newborns. Volcano plot showing the relationship between the
effect magnitude (coefficient) and strength of association (p-value) for Model1. The red horizontal line denotes the strict threshold for
epigenome-wide significance based on a conservative Bonferroni correction for 465525 tests (p < 1.07x10-7). The four CpGs that are
circled in purple are near the second exon of the gene, KLHL35.

doi:10.1371/journal.pone.0156361.g001
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in the KLHL35 gene was replicated in an independent sample of Norwegian newborns, and
again in a sample of adult US women. Although we were unable to obtain serial biologic sam-
ples from the same individuals, the identification of the same maternal age-related DNA meth-
ylation changes in both newborns and adults suggests that these changes likely persist from
birth for more than 40 years. To date, there are very few examples of parental exposures before
conception, or even direct fetal exposure in utero, leading to a persistent epigenetic change

Fig 2. KLHL35methylation association results in NFCS. All KLHL35CpGs present on the Illumina 450K chip are
shown as rectangles above the gene diagram. Each CpG is colored according to its mean absolute β-value adjusted
for technical factors: red (70–100%), blue (30–70%), and orange (0–30%). The four CpGs that are circled in purple are
near the second exon and show the strongest associations. The green rectangles below the gene diagrammark the
CpG islands (UCSC, GC content� 50%, length > 200 bp with islands < 300 bp shown in light green, Observed/
Expected CpGs > 0.6). The red horizontal line denotes the strict threshold for epigenome-wide significance based on a
conservative Bonferroni correction for 465525 tests (p < 1.07x10-7).

doi:10.1371/journal.pone.0156361.g002
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throughout life [12,13]. While the reported maternal age association could be due to unmea-
sured or uncontrolled confounding, we have adjusted for several factors in our statistical
model, including infant’s birth weight, maternal alcohol use, maternal smoking, maternal edu-
cation, and parity. Additional factors such as gestational age, maternal body mass index, multi-
vitamin use, dietary folate, and folic acid supplement use during pregnancy were explored but
not included in the model as potential confounders as they were not associated with maternal
age at delivery (p<0.05).

A mechanism by which maternal age might lead to persistent epigenetic differences in the
offspring is unclear. These changes could be due to epigenetic inheritance of an altered

Fig 3. Maternal age-related DNAmethylation changes in newborns (NFCS andMoBa) and adults (Sister Study) per 20 years.
Methylation at each CpG (β-value) was tested for association with maternal age and the β coefficients from the regression analysis were
converted into the percent difference in methylation per 20 years (maternal age). The covariates included in Model1 differed slightly
across the NFCS, MoBa, and the Sister Study analyses (S1 Text).

doi:10.1371/journal.pone.0156361.g003
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maternal chromatin state. Perhaps more likely is that an altered in utero environment affects
the re-establishment of DNA methylation marks within KLHL35 after the initial wave of
demethylation. In the absence of experimental data, it is unclear whether the altered DNA
methylation state is biologically significant, influencing gene expression or chromatin struc-
ture. While CpGs at only one gene were found to show this methylation pattern with maternal
age, there are vast numbers of CpG sites not captured by the 450K panel. If these sites are
affected by maternal age, it seems plausible that other sites could also be affected. Further, our
study only examined one form of epigenetic mechanism, thus there remains the possibility that
other forms of epigenetic modifications, such as histone modifications or miRNAs, could also
be influenced by maternal age.

Not much is known about KLHL35. This gene is part of the kelch-like gene family [22]
and has been associated with cancer. In particular, KLHL35 is hypermethylated in hepatocel-
lular carcinoma [23], renal cell carcinoma [24], and various other cancers, based on data
from The Cancer Genome Atlas [14]. In addition, RNAi knockdown of KLHL35 in human
embryonic kidney cells results in an anchorage-independent growth advantage [24]. Taken
together, epigenetic dysregulation of KLHL35 appears to be a feature shared across multiple
cancers.

An unusual feature of the implicated CpG sites in the KLHL35 gene is that they exhibit
intermediate levels of absolute DNAmethylation (Adjusted β-values in NFCS range from: 0.30
to 0.54). CpG methylation levels are more typically near 100% or zero percent at given sites.
One way a CpG site might have intermediate levels of methylation is if one parental allele is
imprinted (with the different methylation levels in the maternal and paternal alleles averaging
out to an apparent intermediate level of methylation at the site). However, the KLHL35 gene
does not seem to be one of the imprinted genes. Known examples of maternally imprinted loci
escape the wave of demethylation that occurs following fertilization [9]. In contrast, the exon 2
region of KLHL35 is likely susceptible to epigenetic reprogramming after fertilization, since no
DNAmethylation is observed in single blastocysts for the single CpG site in this region
(cg05353869) with data in GSE51239 (see S1 Text, for details) [25]. If there is differential meth-
ylation of parental alleles in this region, traditional imprinting is unlikely to explain the
observed relationship.

In sum, we find a novel and robust pattern of gene methylation associated with mother’s
age. This epigenetic change is apparently persistent (detectable> 40 years after birth), and one
of only a few examples of epigenetic modifications associated with the prenatal environment.
The relationship between epigenetic changes in the newborn and subsequent health outcomes
remains to be seen.

Material and Methods

Discovery population
The discovery population was made up of newborns from the Norway Facial Clefts Study
(NFCS), which has been previously described in detail [26]. Briefly, NFCS is a national popula-
tion-based case-control study of facial clefts (incomplete fusion of the lip and/or palate during
development). In the current study, a subset of 418 facial cleft cases and 480 controls were
selected based on DNA availability. Details regarding sample collection and study population
are provided (S1 Text, S1 Table, S1 Fig). The study, including the consent procedure, was
approved by the Norwegian Data Inspectorate and Regional Medical Ethics Committee of
Western Norway, and written informed consent was obtained from both the mother and father
for the child.
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Replication populations: newborns and adults
Replication of selected findings was conducted using data from an independent pregnancy
cohort, the Norwegian Mother and Child Cohort Study (MoBa) conducted by the Norwegian
Institute of Public Health [27,28]. Babies in the methylation analysis were selected from a sub-
study originally designed to examine the relationship between maternal plasma folate during
pregnancy and childhood asthma at three years [29]. Illumina Human Methylation450K data
for selected CpG sites from 1062 umbilical cord blood samples [30] were used for the replica-
tion analysis. Information regarding maternal age and other characteristics of mothers and
infants in the replication study are provided (S1 Text, S1 Fig). The MoBa study, including con-
sent procedure, was approved by the Regional Committee for Ethics in Medical Research, the
Norwegian Data Inspectorate and the Institutional Review Board of the National Institute of
Environmental Health Sciences (NIEHS), USA, and written informed consent was provided by
all mothers participating.

In order to explore whether selected maternal-age-related changes in DNAmethylation per-
sist into adulthood, we used data from the Sister Study, a nationwide prospective US cohort of
women having a sister with breast cancer. Illumina Human Methylation450K data from 200
adult women [21] originally selected based on in utero exposure to diethystillbestrol (DES)
were used in the analysis. Additional details regarding maternal and participant characteristics
are provided (S1 Text, S1 Fig). Informed written consent was obtained from all participants
prior to participation. The study, including consent procedure, was approved by the Institu-
tional Review Boards of the National Institute of Environmental Health Sciences (NIEHS),
National Institutes of Health, and the Copernicus Group (http://www.cgirb.com/irb-services/).

Analysis: DNAmethylation data
Detailed descriptions of DNAmethylation data generation (Illumina HumanMethylation450
beadchips), quality assessment, and pre-processing for all three data sets have been previously
published (NFCS [31], with slight modifications in data processing described in S1 Text; the
Sister Study [21], and MoBa [32]). We corrected for batch in MoBa with ComBat [33], using
the SVA package in R.

Initial analysis: Epigenome-wide association in NFCS
Robust linear regression was used to test the association between maternal age at delivery and
the methylation level (β-value) at each CpG site (R package, MASS [34]). The primary model
adjusted for technical factors (96-well plate, bisulfite conversion efficiency, infant’s birth year),
facial cleft status (control, cleft lip with or without cleft palate, and cleft palate only), infant sex,
and several potential confounders (infant birth weight, maternal alcohol use, maternal smok-
ing, maternal education, and parity). Details regarding the evaluation of additional models and
covariate selection is provided (S1 Text). A highly conservative Bonferroni correction for
465,525 tests was used as the criterion for epigenome-wide significance (p< 1.07 x 10−7). All
analyses were conducted using R version 3.0.1.

Replication analyses: newborns and adults
Findings from the discovery population were replicated in independent samples of infants (from
the MoBa study) and adult women (from the Sister Study) using robust linear regression to test
the association between maternal age at delivery and methylation levels (β-values) at the selected
CpG sites (R package, MASS [34]). Additional information regarding analytic models is provided
in S1 Text. A conservative Bonferroni correction was used to adjust for multiple testing.
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S2 Fig. Epigenome-wide association results for Model1 in NFCS newborns.Manhattan plot
where the red horizontal line denotes the strict threshold for epigenome-wide significance
based on a conservative Bonferroni correction for 465525 tests (p< 1.07x10-7). The four CpGs
that are circled in purple are near the second exon of the gene, KLHL35.
(TIFF)

S3 Fig. β-value distributions of select KLHL35 CpGs in NFCS newborns. A) cg06329735, B)
cg05353869, C) cg04231094, and D) cg10909185. β-values are adjusted for technical factors:
batch, bisulfite conversion efficiency, and infant’s birth year.
(TIFF)

S4 Fig. Relationship between maternal age at delivery and DNAmethylation β-values for
CpGs of interest. A) cg04231094, B) cg05353869, C) cg06329735, and D) cg10909185. β-val-
ues are adjusted for technical factors: batch, bisulfite conversion efficiency, and infant’s birth
year.
(TIFF)

S5 Fig. Quantile-Quantile (Q-Q) plot for epigenome-wide association study in NFCS. Plots
the observed (Model1) versus expected -log10(p-values) under the null hypothesis of no associ-
ation.
(TIFF)

S6 Fig. Comparison of Model0 and Model1 maternal age results in NFCS newborns.
Model0: Methylation (β-value) = maternal age + batch + bisulfite conversion efficiency +
infant’s birth year; Model1: Methylation (β-value) = maternal age + cleft + infant’s sex + batch +
bisulfite conversion efficiency + infant’s birth year + infant’s birth weight + maternal alcohol
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coefficient in Model0 versus Model1, B) Comparison of the maternal age –log10(P-value) in
Model0 versus Model1.
(TIFF)

S7 Fig. Comparison of Model1 and Model2 maternal age results in NFCS newborns.Model1:
Methylation (β-value) = maternal age + cleft + infant’s sex + batch + bisulfite conversion effi-
ciency + infant’s birth year + infant’s birth weight + maternal alcohol use + maternal smoking +
maternal education + parity; Model2: Methylation (β-value) = maternal age + cleft + infant’s
sex + batch + bisulfite conversion efficiency + infant’s birth year + infant’s birth weight + mater-
nal alcohol use + maternal smoking + maternal education + parity + six leukocyte proportions
(CD8+ T cells, CD4+ T cells, Natural killer cells, B cells, Monocytes, Granulocytes), A) Compari-
son of the maternal age coefficient in Model1 versus Model2, B) Comparison of the maternal age
–log10(P-value) in Model1 versus Model2.
(TIFF)
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