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Abstract: Alternative branches of the classical renin–angiotensin–aldosterone system (RAS) rep-
resent an important cascade in which angiotensin 2 (AngII) undergoes cleavage via the action of
the angiotensin-converting enzyme 2 (ACE2) with subsequent production of Ang(1-7) and other
related metabolites eliciting its effects via Mas receptor activation. Generally, this branch of the
RAS system is described as its non-canonical alternative arm with counterbalancing actions to the
classical RAS, conveying vasodilation, anti-inflammatory, anti-remodeling and anti-proliferative
effects. The implication of this branch was proposed for many different diseases, ranging from acute
cardiovascular conditions, through chronic respiratory diseases to cancer, nonetheless, hypoxia is
one of the most prominent common factors discussed in conjugation with the changes in the activity
of alternative RAS branches. The aim of this review is to bring complex insights into the mechanisms
behind the various forms of hypoxic insults on the activity of alternative RAS branches based on the
different duration of stimuli and causes (acute vs. intermittent vs. chronic), localization and tissue
(heart vs. vessels vs. lungs) and clinical relevance of studied phenomenon (experimental vs. clinical
condition). Moreover, we provide novel insights into the future strategies utilizing the alternative
RAS as a diagnostic tool as well as a promising pharmacological target in serious hypoxia-associated
cardiovascular and cardiopulmonary diseases.

Keywords: hypoxia; angiotensin-converting enzyme 2; angiotensin(1-7)

1. Introduction

Since its discovery, the alternative RAS axis made quite the entrance into the es-
tablished molecular cascades and regulatory processes on various tissue and molecular
levels. The range of its impact not only resides in physiological regulation and protective
counter-regulation of RAS but seems to exert promising results in tissue pathologies as
well, hypoxia being one of them. This review is focused on the regulatory impact that
ACE2/Ang(1-7)/Mas axis exerts over cardiovascular and pulmonary systems affected by
hypoxic changes. In particular, these organ systems are the relevant site of RAS activity,
as they are frequently associated with the presence of local RAS. These alone are a topic
of discussion as it remains elusive in which way the local systems are connected and
operate together [1]. Pathological conditions that we discussed in this review are either
acute, chronic or intermittent hypoxic phenotypes with limited efficiency of therapeutical
strategies and serious adverse consequences on a patient’s health outcome. We also aspired
to show the purpose and clinical relevance of the ACE2/Ang(1-7)/Mas axis for future
pharmacological interventions. Targeting the ACE2/Ang(1-7)/Mas axis, either through the
enhancement of their activity, prevention of the metabolism or administration of selective
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activators could reveal the great potential for novel treatment regimens that reside in the
alternative arm of RAS.

2. The Other Side of RAS—Protective ACE2/Ang(1-7)/Mas Axis

In contrast to the classical RAS pathway which as thoroughly researched for many
years [2], another branch of RAS, specifically ACE2/Ang(1-7)/Mas axis was described as
an alternative non-canonical pathway. The protective arm of RAS produces effects that
could be referred to as counterbalancing actions that oppose those elicited by traditional
RAS AngII/AT1R signaling cascade. Some of these effects intervene with the mainte-
nance of vascular tone [3,4], anti-inflammatory, anti-proliferatory [5] or anti-remodeling
properties [6] and create a link to the protective signalization pathways.

2.1. Activity Mode of ACE2-Dependent Regulation

ACE2 is broadly expressed in a variety of organs and almost all kinds of tissues [7].
As a type I transmembrane protein with monocarboxypeptidase activity and 42% amino
acid sequence homology in the catalytic domains with ACE [8–10], ACE2 manages the
part of a key negative regulator of the ACE/AngII axis. The importance of ACE2 is also
implemented in its function as a receptor and contact point for severe acute respiratory
syndrome coronavirus (SARS-CoV) [11] and SARS-CoV-2 [12], a virus responsible for
the ongoing global COVID-19 pandemic. ACE2 exerts counterregulatory actions over
ACE/AngII/AT1R axis on two distinct levels: firstly, by cleavage of its main effector
AngII or by limiting the availability of ACE substrate through hydrolysis of AngI and
secondly, by generating the active peptide Ang(1-7). In brief, ACE2 via carboxypeptidase
activity, hydrolyses octapeptide AngII, by cleavage of its C-terminal residue, resulting in
the generation of heptapeptide Ang(1-7). Ang(1-7) can be also formed less efficiently via
ACE-mediated conversion of Angiotensin 1-9 (Ang1-9) which was previously generated by
ACE2-catalyzed hydrolysis of Angiotensin I (AngI) [8,9,13]. The key active product of the
non-classical reaction cascade is Ang(1-7) whose physiological role is primarily mediated
via receptor Mas (Figure 1) [14]. It is worth mentioning that another peptide product of
ACE2, Ang1-9, exhibits its own physiological effects mediated through Mas receptors and
AT2Rs as well. Therefore, the physiological activity of Ang1-9 does not have to end with
the fact that it is an Ang(1-7) precursor but could be considered an accessory pathway of
the protective RAS arm [15].

Figure 1. RAS cleavage cascade and the principal receptors of Ang II and Ang(1-7).

ACE2 activity is not restricted by substrate specificity for AngII but is able to cleave
single-peptide residues from several bioactive peptides such as AngI, kinins (des-Arg9
bradykinin, but not bradykinin), apelins, dynorphins or neurotensins [8,16]. On the other
hand, ADAM17, a disintegrin and metalloproteinase also referred to as tumor necrosis
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factor α (TNFα) converting enzyme, was found to mediate the proteolysis and ectodomain
shedding of ACE2, thereby decreasing its activity in tissues and at the same time increasing
activity of soluble ACE2 which lacks the membrane anchors as it circulates the blood [17].

2.2. Angiotensin (1-7) and Mas Receptor Interactions

Ang(1-7), formed directly or indirectly by ACE2 or different enzymes from the pre-
cursor peptides AngI or AngII [13,16], is an endogenous agonist for G protein-coupled
receptor Mas [14]. Mas was initially identified as proto-oncogen [18] but gained a status
of orphan GPCR [19] mediating Ang(1-7) signaling later on [14]. A more recent paper
however documented contrasting results and suggested that Ang(1-7) does not bind to Mas
directly [20], however, authors also stressed that used tissue preparations or utilization of
recombinant ligand/receptor could differ from the real in vivo situation. Needless to say,
there is conflicting evidence regarding the direct binding of Ang(1-7) to Mas as discussed
below (for more detailed information see the review of Karnik et al., 2017 [21]). Interest-
ingly, Mas was implicated in heteromeric interactions with other RAS receptors: forming
functional interaction with AT2R [22], while inhibiting AT1R receptor response [23], which
is an important fact to take into consideration whilst looking at its downstream molecular
pathways. In experimental settings, the use of selective Mas antagonist A779 ((D-Ala7)-
angiotensin-(1-7)) [24] as well as Mas deficiency blunted a significant amount of protective
effects of the axis and promoted adverse signaling [14,25]. While these types of results
do endorse the prominence of Mas in the alternative RAS axis, extended research is still
indispensable. Speaking of RAS receptors, besides Mas, Ang(1-7) is known to bind AT2R [2]
or the Mas-related G protein-coupled receptor member D (MRGD) [26].

2.3. ACE2/Ang(1-7)/Mas Axis in Cardiovascular and Pulmonary Regulation

Selected molecular pathways affected by ACE2/Ang(1-7)/Mas axis in cardiovascular
and pulmonary systems are graphically summarized in Figure 2.

Figure 2. Selected molecular pathways affected by ACE2/Ang(1-7)/Mas axis in cardiovascular and
pulmonary systems.

2.3.1. Heart

Local cardiac RAS activity and its interconnection with relevant molecular pathways
have been a subject of interest in numerous studies that have gradually improved our
understanding of their local range of actions. Specifically, on the cardiomyocyte level in
which proliferative/hypertrophic stimuli are relevant factors for future cardiac remodeling,
a study by Tallant et al. demonstrated Ang(1-7)-dependent inhibition of cardiomyocyte
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growth via mitogen-activated protein kinase (MAPK) extracellular signal-regulated kinase
(ERK) 1/2 activity inhibition [27]. Ang(1-7) is generally engaged in antihypertrophic
signalization, regarding the effect on the hypertrophic nuclear factor of activated T cells
(NFAT) or glycogen synthase kinase 3β (GSK3β) signaling cascade [6], and involved in
direct cardiac antifibrotic effects [28]. Ang(1-7) also exhibited Mas-dependent activation of
endothelial NO synthase (eNOS) and Akt [29], or increased cardiac NOS expression and
activity via AT2R- or bradykinin-dependent pathway [30]. Concurrently, cardioprotective
actions of Ang(1-7) could be also associated with its antioxidative [31] or anti-inflammatory
properties, in particular with modulation of TNF-α, interleukin-6 or interleukin-10 [32].

Notwithstanding the apparent protective effects of the alternative axis against patho-
logical remodeling, the effects on cardiac function under physiological conditions in the
settings of ACE2 gene knockout are ambiguous. In the first report by Crackower et al.,
ACE2-deficient hearts displayed reduced cardiac contractility, aortic and ventricular pres-
sures, and structural changes with no signs of hypertrophy or fibrotic changes which lead
them to consider the ACE2 as a potential regulator of cardiac function [33]. Conversely,
Gurley et al. found no evidence of ACE2 being involved in the regulation of cardiac
structure or function [34]. Other research groups were similarly not able to confirm the
cardiac phenotype observed by Crackower and associates [35,36]. In line with all these
findings, physiological heart function might not be ACE2-dependent, but ACE2-deficiency
could rather cause higher susceptibility to cardiac injury [35,36] and favor the deleterious
effects of AngII [37].

2.3.2. Endothelium, Blood Vessels and Thrombosis

As the counterregulatory RAS, ACE2/Ang(1-7)/Mas axis induces vascular relaxation
and improves endothelial function through the activation of eNOS and concomitantly stim-
ulates NO/cGMP/PKG signaling pathway possibly via Akt-dependent mechanism [3,4].
As regards the coronary circulation, the data are similar in the matter that Ang(1-7) induced
vasodilatation that could be blocked by Mas antagonist A-779 [38]. Anti-proliferative effect
on vascular growth was proposed to be mediated by prostacyclin release, subsequent
stimulation of cAMP production and suppression of AngII stimulated ERK1/2 MAPK
activities as well as NAD(P)H oxidase-derived superoxide anion-mediated PI3K/Akt
pathway [5,39]. Moreover, Sousa-Lopes and associates showed that Ang(1-7) negatively
modulates ERK1/2 activation via stimulation of mitogen-activated protein phosphatase
(MKP) 1 phosphorylation [40].

In addition to the established role in vascular tone modulation, both arms of RAS
contribute to the regulation of hemostasis. While the activity of AngII on AT1R was
implicated in the prothrombotic mechanisms and potentiation of platelet aggregation [41],
the effects mediated through AT2R lead to thromboprotection via NO and prostacyclin
production [42]. On the other hand, mounting evidence on Ang(1-7) is suggesting its potent
antithrombotic effects that are mediated via the Mas [43] in both endothelial cells [3,44] and
platelets [25,45]. In endothelial cells, Ang(1-7) gives rise to NO release and prostacyclin
production [3,44], similarly to platelets, where Fraga-Silva et al. documented Ang(1-7)/Mas
activation-stimulated NO production that was inhibited by both Mas antagonist A-779 or
Mas knockout [25]. On a related note, elevated plasma levels of NO and prostacyclin were
found in mice overexpressing AT2R and Mas receptors [45].

2.3.3. Lungs

On the subject of local RAS activity, lungs are known to express all the major compo-
nents of RAS [46] including pulmonary vasculature endothelial and smooth muscle cells,
type I and II alveolar epithelial cells, bronchial epithelial cells [47–52] or bronchial smooth
muscle [53]. In fact, the existence of the intrapulmonary renin–angiotensin system as a
locally active system is suggested although not confirmed and therefore the possibility
of lungs being a self-sufficient system in terms of expressing its own mediators without
depending on their circulating precursors should be taken into consideration [46].



Int. J. Mol. Sci. 2021, 22, 12800 5 of 33

Although the excessive activation of classical ACE/AngII/AT1R RAS branch is re-
sponsible for many detrimental effects on the pulmonary vasculature and lung parenchyma
such as vasoconstriction [4], pro-inflammatory [5,54], pro-apoptotic [55] or pro-fibrotic
effects [56] as well as the acceleration of thrombosis [57], induction of oxidative stress [58]
or growth-promoting actions involved in pulmonary remodeling [59], Angiotensin II-type
2 receptor (AT2R) cascade [60] likewise the alternative arm of RAS exert predominantly
opposite effects. ACE2/Ang(1-7) pathway is reportedly involved in the mediation of anti-
apoptotic, anti-inflammatory and anti-proliferative response via the attenuation of MAPKs
activities and nuclear factor–kB (NF-kB) pathway [53,55,61–63]. Concurrently, the axis is
suggested to regulate the activation of MAPK phosphatase-2 [64]. In particular, under
ovalbumin-induced settings, Ang(1-7) exhibited anti-inflammatory properties, reduced
inflammatory cell infiltration in peribronchial, perivascular or alveolar regions, inhib-
ited phosphorylation of ERK1/2 or IkB-α, IgE and decreased multiple pro-inflammatory
cytokines and chemokines [53,63]. ACE2/Ang(1-7)/Mas was further implicated in the man-
agement of cell survival mechanisms and anti-apoptotic regulation given that ACE2/Ang(1-
7) prevented alveolar epithelial cell JNK phosphorylation, caspase activation and nuclear
fragmentation [61,64–66] or lipopolysaccharide-induced apoptosis of pulmonary microvas-
cular endothelial cells (PMVECs) [55,62]. Furthermore, the axis exerts protective effects
against lung remodeling by decreasing the collagen deposition and expression [53] and
against lung fibrosis in which oxidative stress represents a relevant role along with NOX4-
derived ROS-mediated RhoA/Rho kinase pathway [67–69]. On top of that, Ang(1-7)
axis does seem to inhibit the activity of ADAM17, a shedding enzyme involved in ACE2
proteolysis and pulmonary inflammation [66].

3. ACE2 Deficiency-Related Pathologies Underlying Hypoxia

Hypoxia is a condition in which the body or a region of the body is deprived of an
adequate oxygen supply at the tissue level [70]. During acute hypoxia, hypoxic cells tem-
porarily shift from oxidative to anaerobic (lactate) metabolism, providing a small amount
of energy [71]. Severe or prolonged hypoxia can lead to cell death [72]. In most tissues
of the body, the response to hypoxia is vasodilation, thus allowing greater perfusion. By
contrast, in the lungs, the response to hypoxia is vasoconstriction [73]. Ischemic hypoxia
(e.g., ischemia-reperfusion injury [74]) and hypoxemic hypoxia (e.g., ARDS [75]) are well-
known examples of acute hypoxic conditions. On the other hand, chronic hypoxia is caused
by long-lasting reduced oxygen content in the blood [76]. Chronic hypoxia is typically
observed in chronic obstructive pulmonary disease (COPD) with the development of em-
physema and subsequent decreased air-exchanging capacity of lungs [77], in pulmonary
hypertension (PH) accompanied by pulmonary edema [78], or heart failure (HF) charac-
terized by the insufficient tissue perfusion and blood congestion in the pulmonary blood
stream (congestive heart failure) [79].

3.1. Activity of ACE2-Ang(1-7)-Mas Axis in Settings of Acute Hypoxia
3.1.1. Ischemia-Reperfusion Injury and Myocardial Infarction

Ischemia-reperfusion injury (I/R injury or IRI) is the tissue damage caused by the
paradoxical exacerbation of cellular dysfunction and death when blood supply returns
(reperfusion) to previously ischemic tissue (anoxia or hypoxia). The absence of oxygen and
nutrients during the ischemic period creates a condition in which the restoration of circula-
tion results in inflammation and oxidative damage. IRI occurs in a wide range of organs
including the heart, lungs, kidney, gut, skeletal muscle and brain and may involve not only
the ischemic organ itself but may also induce systemic damage to distant organs [80]. An
example can be renal IRI leading to renal failure and subsequent cardiovascular patholo-
gies (hypertension, heart failure, etc.) [81]. The renin–angiotensin system is known to be
stimulated after myocardial infarction (MI) [82]. Notwithstanding the presence of Ang II is
significant in MI, the role of the cardioprotective counterpart, ACE2-Ang(1-7)-Mas axis, as
an early form of compensatory mechanism is unknown.
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The situation surrounding ACE2/Ang(1-7) axis in the heart is slightly trickier. Renal
IRI can cause degenerative changes in heart histology with the onset of oxidative stress
and inflammation accompanied by increased ACE/ACE2 and Ang II/Ang(1-7) levels
in heart tissue [83]. If we take a closer look at myocardial IR injury, or more precisely
animal (rat and murine) models of myocardial infarction (mainly occlusions of the left
anterior descending coronary artery), the results almost consistently showcase surprising
findings. Three different papers [24,84,85] showed that 4 weeks after MI the protein levels
of ACE2 were increased in the infarcted zone, whereas the non-infarcted zone was not
affected, although neglecting Ang(1-7) levels. A study by Kassiri et al. [85], however, observed
decreased mRNA ACE2 levels in the infarcted zone, which could suggest that the heart itself
is in fact ACE2-deficient but the excess of ACE2 might come from the circulating blood into
the damaged tissue. On the other hand, the work of Qi et al. [86], made an effort to contradict
these observations, but in fact, they collected tissues from the peri-infarct region, not directly
from the infarcted zone. Moreover, one experiment showed increased mRNA of ACE and
ACE2 in both infarct and non-infarct regions after the same period of reperfusion [87]. Overall,
all these findings are still inconclusive and need further investigation.

Despite the discrepancies in these findings, gene-modifying and treatment-utilizing
animal models can shed more light on this problem. Similarly, to other I/R models, ACE2-
transgenic rats showed reduced left ventricular (LV) volume, the extent of myocardial
fibrosis, increased tissue levels of ACE, AngII, and collagen type I in the myocardium
and increased LV ejection fraction [88]. Loss of ACE2 enhanced the susceptibility to MI,
with increased mortality, infarct expansion, oxidative stress, remodeling, inflammation
and adverse ventricular remodeling characterized by ventricular dilation and systolic
dysfunction [85]. Treatment of ex vivo hearts by administration of 10−8 M Ang(1-7) into
the bath solution using Langendorff technique re-established the impulse conduction dur-
ing ischemia-reperfusion and reduced incidence of arrhythmias during IR, possibly due
to cardiomyocyte hyperpolarization via the activation of sodium pump [89]. Activation
of ACE2 by diminazene aceturate (DIZE) treatment [86,90–92] led to an improvement
of almost all evaluated parameters (however, lacking evidence against amelioration of
hypertrophy). These effects were abolished by ACE2 inhibition (“compound 16”) [84,86]
or by Mas-receptor antagonist (A779) [24,88]. Nevertheless, there is still insufficient evi-
dence regarding human studies. Just one study by Wang et al. [93] reported that patients
with low serum ACE2 levels (≤1.06 ng/mL), 1 h after coronary artery bypass grafting,
were associated with an increased risk of postoperative MI. To further investigate the
role of ACE2-Ang(1-7)-Mas axis in clinical settings of MI, we need more human trials,
especially with randomized treatments. Nonetheless, mentioned studies suggest that
despite the inconsistency of observed ACE/ACE2 levels between various IR models and
tissues, administration of ACE2 or any modulation of ACE2/Ang(1-7)/Mas axis has a
cardioprotective potential in all of these conditions and thus such treatment could be a
candidate for future human trials.

The experimental models of the lung (hind-limb constriction [94,95]) and kidney
(hind-limb constriction [96] or renal pedicles [83]) IRI conducted on rats and mice lead
to a rise of ACE and AngII tissue and plasma levels with a simultaneous decrease in
ACE2 and Ang(1-7) levels. Only one study [97] found increased both ACE2, Mas and
decreased ACE and AT1R mRNA expression in kidney tissue after 4 h of reperfusion
while plasma levels of both Ang(1-7) and AngII were unchanged compared to control
group. Nonetheless, the data may differ on tissue or plasma levels, experimental model
(duration of reperfusion from 4 to 24 h after ischemia) or expression evaluation method
(WB/ELISA/fluorescence versus qRT-PCR). Indeed, the paper by Chen et al. [94] focused
on this issue and observed an immediate increase in AngII in lung tissue along with an
increase in Ang(1-7) levels after 4 h of reperfusion, however, they subsequently decreased.
Yet, in the plasma, AngII was increased from the beginning and Ang(1-7) was decreasing
over time. Another model [83] with a longer reperfusion period (24 h) observed increased
ACE/ACE2 and also Ang II/Ang(1-7) tissue ratio but unexpectedly the levels of plasma
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Ang(1-7) were decreased whereas the levels of plasma ACE2 did not change. To further
elucidate the role of ACE2/Ang(1-7) in I/R injury in lungs and kidneys, we can make
a look at rodent models with modified ACE2 expression. Both lung and kidney post-
ischemic tissues exhibited inflammation (increased expression of inflammatory cytokines
and enhanced leukocyte infiltration), oxidative stress and activation of apoptosis. ACE2-
deficient animals showed more severe symptoms [96,98] compared to the animals with
ACE2-induced overexpression eliciting only milder symptoms [95,99] in contrast to the
wild-type. Similar results were obtained after the treatment with ACE2 activator DIZE
in the lung [95] and renal [83] IRI or by using the AT2R agonist (“compound 21”). These
results suggest that renal and lung IRI may ultimately lead to increased ACE/ACE2 tissue
ratio and plasma levels, with ACE2 being an important factor in alleviating IRI symptoms.

3.1.2. The Role of ACE2-Ang(1-7)-Mas in Acute Respiratory Distress Syndrome

Acute respiratory distress syndrome (ARDS) is a serious lung condition characterized
by rapid onset of widespread inflammation with diffuse alveolar damage and fluid build-
up in the lung alveoli [100]. The fluid keeps the lungs from filling with enough air so that a
person cannot breathe, the lungs cannot move enough oxygen into the bloodstream and
body tissues are restricted from sufficient perfusion [75]. ARDS is also one of the endpoints
of COVID-19 disease [101]. In fact, the postulated pathomechanism of COVID-19 mentions
a modulation of the ACE2-Ang(1-7) axis, however, other diseases causing ARDS can affect
this axis as well (though there is no direct evidence, this idea was based on observation from
the SARS epidemic in 2002 [102,103]). For instance, lethal strains of the Influenza A virus
(H7N9) were observed to downregulate ACE2 and upregulate AngII levels in mice [104].
Additionally, ACE2 deficiency was found to aggravate the symptoms in this model. These
findings are also supported by a human study [105] of various causes of ARDS which
observed an increased Ang(1-10)/Ang(1-9) ratio, thus suggesting a decrease in ACE2
activity. On the contrary, one rat study of cigarette smoke-induced ARDS [106] detected
raised levels of both ACE and ACE2, although cigarette smoke alone is able to increase
ACE2 expression [107,108]. To support the idea of decreased activity of ACE2 in ARDS,
the recombinant ACE2 shows activity on decreasing the occurrence of ARDS symptoms in
murine [109] and rat [110] models induced by acid aspiration or lipopolysaccharide (LPS).
Regarding these findings, ACE2 is expected to have beneficial effects on the prevention of
ARDS, mainly based on its anti-inflammatory, as well as anti-remodeling properties.

3.1.3. ACE2-Ang(1-7)-Mas Branch and COVID-19

By the fall of 2021, the COVID-19 pandemic officially reached over 220 million infected
and over 4.5 million deaths worldwide. The studies showed that patients suffering from
COPD [111], cardiovascular diseases [112] and diabetes [113] are more vulnerable to severe
courses of COVID-19. As we previously mentioned, these pathologies are known to
increase the ACE/ACE2 ratio in such patients. SARS-CoV-2 utilizes ACE2 to enter the
human cells [12], however, we currently have no direct data on how the virus affects this
ratio. Nevertheless, patients infected by a closely related SARS-CoV virus in 2002 showed
a decrease in ACE2 expression [114–116], therefore, it is likely to expect that SARS-CoV-2
infection might increase the ACE/ACE2 ratio as well. It is also important to mention, that
many medications might affect the expression level or activity of ACE2, even though, the
gathered up-to-date data regarding the deleterious (increasing the risk of infection) or
beneficial (protective effects of ACE2 on pulmonary functions) effects these might exert are
conflicting. One Korean retrospective study [117] claims that the renin–angiotensin system
blockers might increase the risk of infection by SARS-CoV-2, but on the other hand, the
manifestation of the disease was milder and did not result in higher mortality. Nevertheless,
a recently published cohort study on 8.3 million people refutes this thesis, in fact, ACEi
or ARBs seems to decrease the risks of COVID-19 and overall mortality rather than the
opposite [118,119]. Additionally, a difference between the ACEi and ARBs towards the
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ACE2/Ang(1-7) axis should be taken into consideration since ACE inhibitors deplete also
ACE2 substrate resulting in a reduction of anti-inflammatory metabolites production [120].

The other important fact is that patients frequently die from suffocation by alveolar
damage caused by ARDS [121,122], multi-organ failure caused by cytokine storm [122] or
thromboembolism [122]. In respect of the anti-inflammatory [123] and anti-aggregant [124]
properties of ACE2, current phase 2 clinical trials might bring promising results in regard
to recombinant human ACE2 as a potential treatment of ARDS [125] and severe cases of
COVID-19 [126]. ACE2 was found to be protective in murine [109,127,128] and rat [129]
models of ARDS. Decreased ACE2 levels in lungs suffering from ARDS caused by RSV (Res-
piratory Syncytial Virus) were also observed in neonate children [130]. Despite insufficient
data about the role of ACE2 in COVID-19 associated complications, soluble ACE2 is thought
to have protective effects on a pulmonary form of the disease not only by its anti-inflammatory
and anti-remodeling properties but importantly by exhibiting an anti-aggregant activity, which
is important for the survival of hospitalized COVID-19 patients.

3.2. ACE2-Ang(1-7)-Mas Arm in Conditions of Intermittent Hypoxia

Intermittent hypoxia (also known as episodic hypoxia) is a condition in which a person
or animal undergoes alternating periods of normoxia and hypoxia. Intermittent hypoxia
may exert various effects on blood pressure, glucose tolerance, sympathetic activation,
cognition, and inflammation depending on the dosage or experimental protocol [131,132].
Underlying mechanisms can be complicated or even unknown. One of the clinically
relevant models of intermittent hypoxia is a condition known as obstructive sleep apnea
(OSA). OSA is the most common sleep-related breathing disorder characterized by recurrent
episodes of complete or partial obstruction of the upper airway leading to reduced or absent
breathing during sleep. Relevant outcomes may include a fall in blood oxygen saturation
(hypoxia), a disruption in sleep, or both [133]. It is also considered a risk factor for refractory
asthma [134].

3.2.1. Cardiovascular System

Chronic intermittent hypoxia (CIH) is the main pathomechanism underlying OSA
which is known to affect RAS activity [134]. The utilization of rodent animal models of
CIH (7 days of hypoxia followed by normoxia) to mimic the clinical onset of OSA causes
many pathological changes in various organs. CIH caused an increase in ACE/ACE2
ratio in blood plasma, renal arterioles and other renal tissues, which led to an elevation of
blood pressure, arterial wall thickening (arterial fibrosis), renal fibrosis and generation of
reactive oxygen species (ROS) connected to oxidative stress and inflammation [135,136].
However, in a study by Lu et al., most of these effects were attenuated after administration
of exogenous Ang(1-7) [137], which proposes a cardioprotective effect in OSA. Elevated
levels of ACE and AngII with decreased levels of ACE2 were also observed in the hearts of
mice undergoing CIH [138]. This imbalance was reversed after treatment with angiotensin
receptor blocker (ARB) telmisartan. Cardiovascular benefits of ACE inhibitors and ARBs
are well known in clinical practice, however, implications for the CIH are unclear. Effects
of administered ACE2 or Ang(1-7) have not yet been satisfyingly examined and require
further examination.

3.2.2. Lungs and Pulmonary Vasculature

In the model of subchronic intermittent hypoxia/hyperoxia (after 72 h) on primary
murine lung endothelial cells increased levels of ACE and reduced levels of ACE2 were ob-
served [139]. Another in vitro model observed TGF-β-mediated epithelial-to-mesenchymal
transition (EMT) in LPS-treated human bronchial epithelial cells. Angiotensin(1-7) treat-
ment abolished the aggravation of TGF-β-mediated EMT and epithelial fibrosis upon
chronic IH exposure [134]. CIH in vivo also showed a high degree of interstitial edema,
alveolar atelectasis, oxidative stress, and inflammatory cell infiltration in alveolar epithelial
cells [140,141] with ACE and ACE2 expression impairment. Treatment with angiotensin(1-
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7) was able to reverse a lung injury through attenuation of lung fibrosis [134], inflammation
and oxidative stress [141].

It is generally accepted that hypoxia also exacerbates pulmonary fibrosis. Hypoxia
in vitro stimulates TGF-β-mediated signaling resulting in higher collagen content, gly-
cosaminoglycan production and accumulation of extracellular matrix in human lung
fibroblasts [142,143]. This effect was also observed in chronic intermittent hypoxia in
bleomycin-induced lung fibrosis in rat and murine models [144–146] associated with the ac-
tivation of NF-κB pathway, increased levels of growth factors (TGF-β, PDGF), inflammatory
cytokines (TNF, IL-1β) and overall mortality.

The effects of ACE2-Ang(1-7)-Mas axis in acute high altitude hypoxia might also
be interesting, however, they have not been studied in this context. There is only a
little data available and targeted exclusively on RAAS. It seems that RAAS activity is
unchanged in healthy participants [147–149], while they are maintained in high (3000 m)
altitudes. The situation changes after the further ascend to very high (above 5000 m)
altitudes [150,151], where the data seem to be contradictory. It makes high altitude hypoxia
a good candidate for future studies regarding both RAAS and ACE2-Ang(1-7)-Mas axis.
The possible effects of the angiotensin system on high altitude pulmonary edema are also
needed to be evaluated.

3.3. ACE2-Ang(1-7)-Mas Branch in Chronic Hypoxic Conditions
3.3.1. ACE2-Ang(1-7) System Association with Heart Failure

Cardiac muscle cannot maintain essential cellular processes under hypoxemic or
ischemic conditions and thus a sufficient supply of oxygen is indispensable to sustain
cardiac function and viability. However, the role of oxygen in the heart is complex and goes
well beyond its role in energy metabolism [152]. ACE2-Ang(1-7) system is known to be
imbalanced in many cardiovascular diseases and is also affected by the hypoxic condition,
as we display in this review, thus changes in the ACE/ACE2 ratio in plasma or tissue in
HF patients can be expected.

The early-stage (up to 4 weeks after surgery) of rat and murine HF seems to be associ-
ated with the upregulation of both ACE/Ang II and ACE2/Ang(1-7) pathways [153–156],
whereas the advanced or end-stage (more than 4 weeks after surgery) of HF tend to be
associated with downregulation [153,157] of ACE2/angiotensin(1-7) and upregulation of
the ACE/AngII pathway. Although these data are consistent in this time-related manner
in both plasma and heart tissues, two studies, a canine congestive heart failure model [158]
and a rodent HF model with ascending aortic constriction [159], do not support this theory.
Our earlier study observed a similar trend as a low dose of daunorubicin, mimicking
early-stage of heart failure, produced an increase in cardiac ACE2 mRNA levels whilst the
higher dose markedly decreased ACE2, suggesting a direct effect of chronic daunorubicin
cardiomyopathy (end-stage heart failure) on ACE2 expression [160]. ACE/ACE2 balance
may determine the decompensation of HF in early stages with progressive downregulation
as the disease progress.

To elucidate cardioprotective effects of Ang(1-7) in failing hearts, several rodent
models of HF showed significant improvements in inflammation, oxidative stress, fibrosis,
ejection fraction and overall decreased mortality in ACE2-overexpressing animals [161,162]
or after treatment with rhACE2 [163] or Ang(1-7) [164]. These effects were antagonized
by the blockade of the Mas receptor. ACE inhibitors are clinically acknowledged to
possess such effects, however, ACE2 overexpression seems to have at least comparable
cardioprotective effects similar to AT1R antagonists (irbesartan) [37] or it can be even more
beneficial compared to ACE inhibitors (cilazapril) in the treatment of doxorubicin-induced
cardiomyopathy [161]. The other important fact is that some AT1R antagonists (olmesartan,
candesartan, losartan) also show some effects on ACE2/Ang(1-7) axis independently on
AngII targeting, and some (irbesartan, valsartan) do not [165]. This idea can be supported
by another finding that olmesartan seems to be superior to telmisartan in reduction of
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myocardial collagen deposition and adverse remodeling [156], explained by the additional
effect on the ACE2/Ang(1-7) axis.

According to the clinical data, patients diagnosed with HF show an increasing trend
in plasma levels of circulating soluble ACE2 in more severe NYHA groups (from NYHA-II
to NYHA-IV) [159,166–168]. Surprisingly, LV tissue levels of ACE2 seem to decrease as
the disease progresses [169] despite increased ACE2-mRNA expressions [169–171]; or
even unchanged in late-stage patients [172]. Such phenomenon can be explained by the
fact that circulating ACE2 is capable of systemic AngII cleavage, however, it lacks local
(myocardial) activity. A study by Messmann et al. [170] even found decreased cardiac
Mas mRNA expression. It is also important to mention that actual guidelines indicate
the ACE inhibitors or ARB (among others) as first-line therapy in congestive HF patients.
As we previously mentioned, these drugs are known to modulate the ACE2/ACE ratio.
Unfortunately, most of the studies are completely neglecting this fact, except for one
study by Epelman et al. [166] that admits this limitation and also discusses the problem of
circulating versus tissue ACE2. There is also a paper by Walters et al. stating that increased
ACE2 plasma activity is present in patients with atrial fibrillation since they propose that
elevated plasma ACE2 activity levels are connected with increased shedding of ACE2 from
the tissue into the circulation and thus increase in tissue AngII is leading to structural left
atrial remodeling [173]. Therefore, plasma ACE2 was proposed as a marker of disease
severity and structural remodeling in human atrial fibrillation.

The effects of failing hearts on the ACE/ACE2 ratio are as complex as in the case
of COPD. Many limitations are required to be eliminated in future studies in order to
evaluate the true nature of this relationship. Based on long clinical practice in the use of
ACEi and ARBs, their effects on the ACE/ACE2 ratio are essential in the prognosis of
HF patients. On the other hand, it makes them one of the biggest limitations of potential
human trials elucidating the role of ACE2 in HF. Despite the unknown role of ACE2 in HF
pathomechanism, evidence supporting its cardioprotective potential is getting stronger.

3.3.2. Obstructive Coronary Artery Disease and the Role of ACE2-Ang(1-7)-Mas Axis

Coronary artery disease (CAD) or ischemic heart disease (IHD), is one of the most
common cardiovascular diseases characterized by the obstruction of heart arteries with
consequent reduction of blood flow into the myocardium [174]. CAD is also one of the
known complications in the development of heart failure [175].

From a clinical perspective, drugs affecting RAS are commonly prescribed in CAD;
however, their efficacy is in question. They are effective in the reduction of cardiovascular
events compared to placebo, but not when compared with other therapeutically used
drugs in CAD (calcium channel blockers, thiazide diuretics, etc.). Moreover, RAS blockers
are recommended only in CAD patients with hypertension or heart failure, not in CAD
patients with a lower cardiovascular risk [176,177]. Therefore, the role of RAS in CAD is
not very clear, despite its impact on vascular remodeling and inflammation.

Although there is a lack of evidence demonstrating the high importance of RAS in
CAD development, increased levels of circulating ACE2 were observed in patients with
CAD [178,179]. On the other hand, Ang(1-7) levels remained unchanged, when compared
to controls. Unfortunately, there are no interventional studies available for any impact of
ACE2-Ang(1-7)-Mas axis on CAD. This link also seems to come apart after the investigation
of Campbell et al. [180], where no direct connection was found between angiotensin II and
angiotensin (1-7) coronary plasma levels after the treatment with various ACE inhibitors.
Authors suggest that Ang(1-7) levels were increased as a result of increased metabolism of
AngI, rather than by ACE2-mediated cleavage of angiotensin II.

CAD is often accompanied with the formation of atherosclerotic plaques. In experi-
mental models of atherosclerosis (apolipoprotein E-deficient animals fed with a high-fat
diet), coronary and aortic expressions of ACE2 were found to be reduced, while the levels
of ACE2 mRNA were not affected [181,182]. Such conditions might be partially explained
by excessive ACE2 release from vessels. In humans, ACE2 activity tends to decline with



Int. J. Mol. Sci. 2021, 22, 12800 11 of 33

the progression of atherosclerosis [183], which is in accordance with the situation in ex-
perimental models. Knockout of ACE2 gene results in increased atherosclerotic plaque
area, enhanced macrophage accumulation into the lesions, the proliferation of vascular
smooth muscle cells (VSMCs), accompanied with an increase in AngII levels and increased
expression of adhesive proteins, as well as increased matrix metallopeptidase 9 (MMP-
9) activity [184,185]. Additionally, Mas-receptor deficiency augmented AngII-induced
atherosclerosis and plaque rupture through mechanisms involving increased oxidative
stress, inflammation, and apoptosis [184]. All of these complications were abolished by
overexpression of ACE2 [54,186–189] and treatment with ACE2 activator (DIZE) [190,191]
or subcutaneous Ang(1-7) [192]. Taken together, there is evidence regarding components of
ACE2-Ang(1-7)-Mas axis involvement in CAD devolvement and progression; however, to
further elucidate the therapeutic potential of modulation of this axis will require utilization
of more selective tools to separate the upstream RAS effects provided by ACE inhibitors or
AT1 blockers in general CAD therapy.

3.3.3. Involvement of ACE2-Ang(1-7)-Mas Axis in Chronic Obstructive Pulmonary
Disease (COPD)

Patients with stable COPD have an impaired ability to excrete sodium [193,194] ac-
companied by renal fluid retention and edema [195] enhanced by hypercapnia-induced
renal vasoconstriction and antidiuresis [195]. Acute hypoxia in COPD patients does not
alter or decrease renin, ACE, angiotensin or aldosterone [196,197] plasma levels. Although,
renin and angiotensin II levels can be significantly elevated in the presence of an under-
lying condition, such as chronic hypoxia and hypercapnia [194]. Renin, angiotensin II
and aldosterone levels are much higher in COPD patients with edema than in patients
without edema, while sodium and water excretion is decreased significantly in edematous
COPD patients. The elevation of renin, angiotensin II and aldosterone correlate with the
inability to excrete sodium and water. These data suggest, that in the conjunction with
hypercapnia/hypoxia-mediated disturbances in renal function, stimulation of RAAS, es-
pecially with the increase in aldosterone, may contribute to edema formation in COPD
patients [198]. However, impaired ability to excrete sodium might not be simply improved
by the administration of an ACE inhibitor, since ACE inhibition lowers plasma levels
of aldosterone without improving sodium excretion. This suggests that the inability of
patients with hypoxemic COPD to excrete sodium is not caused by their increased plasma
levels of aldosterone [193].

As we mentioned in the preceding paragraphs, the ACE2-Ang(1-7)-Mas axis plays
generally a protective role against the effects of angiotensin II. On the other hand, down-
regulation of this axis can potentiate its deleterious counterpart, the ACE-AngII-AT1 axis.
Indeed, an increased ACE/ACE2 ratio is suggested to play an important role in the devel-
opment of various chronic cardiovascular and pulmonary diseases. ACE2 downregulation
can lead to vasoconstriction, increased platelet aggregation, inflammation, proliferation,
and fibrosis [31,54,124,199]. Moreover, ACE2 downregulation was observed in arterial
hypertension [31,164,200–202], atherosclerosis [181], coronary heart disease [203], diabetes
mellitus [202,204], cardiac fibrosis/remodeling [201,205] and heart failure [31,164]. Such im-
balance can also be involved in pulmonary hypertension [199,206] and chronic obstructive
pulmonary disease.

Nonetheless, data on COPD and their relation to ACE2 expression are scarce and
controversial. Two animal studies by Xue et al. [207] and Zhang et al. [208] suggest that
ACE2 is downregulated in cigarette smoke-induced COPD, whereas characteristic inflam-
mation and fibrosis are possible to be blocked by overexpression of ACE2 [207] or by
Ang(1-7) subcutaneous infusion [208]. However, human cohort studies [209–211] are not
so straightforward. Their findings are in contrast with animal studies, where they observed
higher levels of ACE2 in patients with COPD associated with cigarette smoking compared
to controls or even ex-smokers. It remains unclear whether ACE2 overexpression is an
initial protective response or is associated with COPD pathophysiology, although animal
studies with induced ACE2-Ang(1-7)-Mas axis activation might suggest the former. On
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the other hand, we cannot exclude the effects of associated comorbidities and different
medications in those patients. ACE inhibitors and AT1R blockers (sartans) are known
to upregulate ACE2 [212–214] whilst the role of inhaled corticosteroids (ICS), which are
used as first-line therapy of COPD in the combination with bronchodilators, is not very
clear. A study by Sinha et al. suggests that ICS upregulates ACE2 in vitro [213], while
another study by Finney et al. [215] states the opposite. Human studies of Peters et al. [216]
and Aliee et al. [217] also observed the decrease in ACE2 after ICS administration, al-
though the effect of other medications cannot be refuted. There are numerous animal
studies [181,218,219] suggesting statins, a group of drugs used in the treatment of dyslipi-
demia and atherosclerosis, might upregulate ACE2 expression [181] as well.

Moreover, it is also important to distinguish between tissue and plasma forms of
ACE2. As we mentioned earlier, cleavage of membrane ACE2 into the soluble form is in
part dependent on the tumor necrosis factor-α convertase ADAM17 [17], which acts as a
metalloproteinase and is upregulated in various diseases accompanied with inflammation
and fibrosis [220], such as HF [17,221] or interstitial lung disease [222]. ADAM17 also plays
its role in SARS-CoV-2 entry into human cells [12]. Therefore, cleavage of membrane form
of ACE2 may be due to the pathological upregulation of this protease, resulting in a relative
decrease in local membrane ACE2 levels. Alternatively, cleavage and release of membrane
ACE2 as a soluble form may provide a compensatory mechanism resulting from disease.
Additionally, Ang(1–7) has a very short half-life (<9 s) and the release of soluble ACE2
from the vascular endothelium may alter systemic Ang(1–7) concentrations and the relative
peripheral balance of ACE2/ACE activity [166].

Besides the studies on clinically relevant COPD models, there are also studies de-
scribing lung fibrosis and hypoxia, which are closely related to the pathophysiology
of COPD [220,223–225]. Unfortunately, in the meantime, we can only provide data
from murine [208] and rat [226] animal studies, two studies on human fetal lung fibrob-
lasts [227,228] and one paper studying human lung fibrosis [226]. These studies suggest
that lung fibrosis is accompanied by decreased ACE2 levels and subsequent treatment
by exogenous ACE2 or Ang(1-7) might be beneficial. To our knowledge, no human trials
connecting lung fibrosis with ACE2 have been conducted yet. The situation regarding
hypoxia is similar, without any human trials. In the animal models of hypoxia-induced
pulmonary arterial hypertension [229–232], treatment with recombinant ACE2 or Ang(1-
7) improved symptoms of pulmonary arterial hypertension (PAH) (lowered pulmonary
arterial pressure, lung fibrosis, inflammation), however, there is a lack of evidence about
the involvement of ACE2 in the models including both hypoxia and COPD. It is also hard
to evaluate how hypoxia alone regulates ACE2/Ang(1-7) expression. Studies on hypoxic
human pulmonary artery smooth muscle cells (PASMCs) [233] and CD34+ cells [234] show
that HIF-1-α mediates an increase in ACE2 and Mas expression, however, in the studies
from Wang et al. [235] and Zhang et al. [236] on PASMCs under chronic hypoxia, the ex-
pression of HIF-1-α was increased, while ACE2 was decreased, therefore, the link between
HIF-1-α and ACE2 remains elusive. Surprisingly, ACE2 activity and Ang(1-7) levels were
not affected by chronic hypoxia in rats at all [237].

These results are insufficient and inconclusive in the way how COPD or lung fibrosis
affects the ACE/ACE2 ratio, mainly due to different experimental methods, environmental
factors or the effects of various drugs. However, targeting of ACE2/Ang(1-7)/Mas axis for
pharmacological modulation as a treatment of COPD seems promising for further human trials.

3.3.4. COVID-19 and the Relation with COPD

Even after an eventual decline, COVID-19 may leave some marks over the popula-
tion for years to come. One of the clinical outcomes of the infection appears to be lung
fibrosis [121,238–245]. Lung fibrosis is generally an irreversible condition, which can lead
to PAH or COPD [224]. Indeed, fibrosis was more likely to develop in patients with a
severe clinical condition, especially with high inflammatory indicators [246], however,
a larger cohort needs to be engaged in clinical studies to reliably validate such results.
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Unfortunately, we lack accurate data on how frequently fibrosis occurs or how does it
correlate with the disease severity. Since hundreds of millions of people around the globe
have been infected, the possibility of increasing the rates of PAH or COPD incidence could
test our medical capacities in the future.

3.3.5. Role of ACE2-Ang(1-7)-Mas Arm in Pulmonary Hypertension

Pulmonary hypertension (PH) is a life-threatening condition characterized by a pro-
gressive increase in vascular resistance in the pulmonary vasculature. PH is a serious
complication of several cardiovascular and pulmonary diseases, which ultimately leads to
right ventricular failure and death [247,248]. The exact cause is unknown, although gener-
ally accepted pathomechanism includes a disbalance between endothelin-1 and nitrous
oxide (NO) in endothelium [249] with subsequent vasoconstriction, inflammation and
remodeling of lung vasculature [250]. These substances are currently the main targets of
specific PH therapy [248] along with prostaglandin analogs. Current therapy is, however,
only symptomatic with low or no impact on overall mortality [248]. Thus, the urge to
identify novel targets for the therapy is still high.

Recently, it was shown that animal models of PAH [251,252], hypoxic pulmonary
hypertension (HPH) [253] and human patients with PAH [199,206], including idiopathic
pulmonary arterial hypertension (IPAH) [253], might have an increased ratio of ACE/ACE2.
With the increase in pulmonary arterial pressure, ACE2 expression [254] and Ang(1-7)
plasma levels [255] tend to decrease. In contrast, our research group reported an increase in
lung ACE2/ACE mRNA ratio of monocrotaline-treated rats [256]. While the therapy based
on blocking of the RAAS have not been proven to be significantly efficient [248] (we were
able to find only one clinical study based solely on effects of ACE inhibitors on pulmonary
arterial pressure [257]), aiming at the ACE2-Ang(1-7)-Mas axis seems more promising.

Several rat and murine models suggest its beneficial effects in amelioration of monocrotaline-
induced PAH symptoms. Animals overexpressing ACE2 [230,251,258,259] and Ang(1-7) [229]
had lower right ventricular systolic pressure and pulmonary arterial pressure, less pronounced
right ventricular hypertrophy and pulmonary artery remodeling and better hemodynamics in
PAH. In a swine model of HPH, similar effects were observed after treatment with recombinant
ACE2 [231]. Knock-out of the ACE2 gene resulted in aggravation of the symptoms [258].
Similar results were observed in models utilizing a pharmacological modulation of ACE2
activity [260–264] or by injecting the exogenous Ang(1-7) [265,266]. All those beneficial effects
were abolished by a blockade of Mas-receptor [251,260].

Unfortunately, there is still a lack of evidence for the clinical PH in humans. There
was conducted only one pilot study using single-dose intravenous (0.2 or 0.4 mg/kg)
recombinant human ACE2 as a treatment of PAH [206], although with a good clinical
perspective. Nevertheless, data on clinical outcomes in PAH patients are missing.

In the following Table 1, we summarized the above-mentioned studies based on the
hypoxic condition and observed changes in ACE2/Ang(1-7)/Mas axis parameters.
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Table 1. Overview of ACE2/Ang(1-7)/Mas parameters alteration in CVS and pulmonary hypoxia models.

Hypoxic
Condition Model Increased Parameter Decreased Parameter Species Reference

Acute hypoxia

I/R injury (after
≤4 h)

↑ pulmonary Ang(1-7)
and ACE2 mRNA mouse [94]

↑ renal ACE2 and Mas
mRNA↓ rat [97]

I/R injury (after >4
h)

↓ plasma Ang(1-7),
pulmonary ACE2 mouse [94]

↓ pulmonary Ang(1-7) mouse [95]

↑ renal Ang (1-7) ↓ renal ACE2, serum
Ang(1-7) mouse [96]

↓ cardiac and hepatic
ACE2 rat [83]

Myocardial
infarction (after 4

weeks)

↑ cardiac (infarct zone)
ACE2 and Mas rat [24]

↑ cardiac (infarct zone)
ACE2 activity rat [84]

↑ cardiac (infarct zone)
ACE2

↓ cardiac (infarct and
non-infarct) ACE2 mRNA mouse [85]

↑ cardiac (infarct zone)
ACE2 mRNA

↓ plasma ACE2 and
peri-infarct tissue ACE2

activity
rat [86]

↑ cardiac (infarct zone)
ACE2 protein and mRNA rat [87]

ARDS (SARS-CoV) ↓ ACE2 Vero E6
cells [103]

ARDS (H7N9
influenza A virus) ↓ pulmonary ACE2 mouse [104]

ARDS (various) ↑ plasma
Ang(1-10)/Ang(1-9) ratio

↓ plasma ACE2, Ang(1-9),
Ang (1-7)/Ang(1-9) ratio human [105]

ARDS (RSV) ↓ pulmonary ACE2
expression and activity

human (age
≈ 2 years) [130]

Intermittent
hypoxia

Obstructive sleep
apnoe

↓ plasma Ang(1-7) rat [132]

↓ plasma Ang(1-7), renal
arteriole ACE2/ACE rat [135]

↓ plasma and renal
Ang(1-7), renal arteriole

ACE2/ACE
rat [136]

↓ cardiac ACE2 mouse [138]

Subchronic
intermittent lung

hypoxia
↓ ACE2 mRNA MLECs [139]

Chronic
intermittent lung

hypoxia

↑ pulmonary ACE2
mRNA rat [140]
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Table 1. Cont.

Hypoxic
Condition Model Increased Parameter Decreased Parameter Species Reference

Chronic hypoxia

Heart failure (early
stage)

↑ plasma and cardiac
Ang(1-7), Ang(1-9),

cardiac ACE2 activity
mouse [153]

↑ cardiac and renal ACE2 rat [154]

↑ plasma ACE and
Ang(1-7), cardiac ACE2

mRNA
rat [155]

↑ plasma Ang(1-7) rat [156]

↑ plasma ACE2 human [159]

↑ cardiac ACE2 mRNA rat [160]

↑ cardiac ACE2/ACE
mRNA ratio human [169]

Heart failure (late
stage)

↓ cardiac ACE2 activty mouse [153]

↑ plasma ACE2 human [159,167,168]

↑ cardiac ACE2 and Mas rat [159]

↓ plasma ACE2 rat [157]

↑ plasma ACE2 activity dog [158]

↓ cardiac ACE2 mRNA rat [160]

↑ cardiac ACE2 protein
and mRNA

↓ cardiac ACE2/ACE
mRNA ratio human [169]

↑ cardiac ACE2 mRNA ↓ cardiac Mas mRNA human [170]

↑ cardiac ACE2 mRNA human [171]

Atherosclerosis
↓ cardiac and renal ACE2 rabbit [181]

↓ aortic ACE2 activity mouse [182]

↓ carotid aortic ACE2
activity human [183]

Coronary artery
disease ↑ plasma ACE2 human [178,179]

Chronic
obstructive

pulmonary dis-
ease/Pulmonary

fibrosis

↓ pulmonary ACE2
mRNA Rat [207]

↑ bronchial ACE2 mRNA human [209]

↑ pulmonary ACE2
mRNA human [210]

↑ pulmonary ACE2 human [211]

↓ pulmonary ACE2
mRNA and enzyme

activity

human,
mouse [226]

Pulmonary
hypertension

↓ pulmonary ACE2
mRNA rat [251]

↓ pulmonary ACE2 rat [252]

↓ pulmonary ACE2
protein and mRNA

human,
mouse [253]

↓ plasma ACE2 human [254]
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Table 1. Cont.

Hypoxic
Condition Model Increased Parameter Decreased Parameter Species Reference

↓ plasma Ang(1-7) human [255]

↑ pulmonary ACE2/ACE
mRNA rat [256]

↓ plasma Ang(1-7), ACE2 human [199]

↓ plasma ACE2 activity
and Ang(1-7)/Ang II ratio human [206]

↑ increased parameter; ↓decreased parameter.

4. Clinical Perspectives and Future Directions

To this day, there is no clinically approved ACE2/Ang(1-7)-aimed pharmacotherapy,
even though several experimental studies based on gene modulation and activation of the
alternative RAS components or recombinant therapy demonstrated the beneficial effect of
stimulating the counter-regulatory RAS, which we listed in Table 2. Although, there are
some exceptions, such as ARBs or ACE inhibitors, as they often possess indirect effects on
this axis (olmesartan is thought to have some direct effects) [156].

Nevertheless, there are still several ongoing and closed clinical trials evaluating
the clinical benefits of intravenously administered human recombinant ACE2 (rhACE2).
RhACE2 (GSK2586881) was well tolerated in IIa phase of a clinical trial in patients with
ARDS [125] and PAH [267], although in the PAH study there are no published results yet.
Another rhACE2 (APN01) was studied in 2nd phase trial for the treatment of COVID-19 to
block viral entry and to decrease viral replication. This trial was completed in January 2021
and the results are expected soon to be published [268]. However, one trial on COVID-
19 was prematurely terminated last year [126]. The idea behind the study was to bind
soluble ACE2 instead of tissue ACE2 to the SARS-CoV-2 virus particle and thus decrease its
virulence. Such a mechanism was seen as a promising lung- and cardioprotective approach
for the administration of rhACE2.

Table 2. Gene modulation and experimental ACE2/Ang(1-7)/Mas pharmacological treatment in hypoxic conditions.

Hypoxic
Condi-

tion

Model/
Disease

Gene Modulation
Model Pharmacological Treatment

Species Ref.
Downregu-

lation Upregulation Enzyme
ACE2

Activa-
tor

Mas
Ago-
nist

ACE2
In-

hibitor

Mas Ant-
Agonist

Acute
hypoxia

I/R injury (after 4
h) ACE2-Tg DIZE mouse [95]

I/R injury (after
>4 h)

ACE2-KO ACE2-Tg mouse [96]

ACE2-KO mouse [98]

Myocardial
infarction (after 4

weeks)

A779 rat [24]

compound
16 rat [84]

ACE2-KO mouse [85]

DIZE compound
16 rat [86]

ACE2-Tg A779 rat [88]

Ang(1-
7) rat [89]

DIZE rat [90–92]

Acute respiratory
distress syndrome

rACE2 mouse [109]

rACE2 rat [110,129]

rACE2 human [125]
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Table 2. Cont.

Hypoxic
Condi-

tion

Model/
Disease

Gene Modulation
Model Pharmacological Treatment

Species Ref.
Downregu-

lation Upregulation Enzyme
ACE2

Activa-
tor

Mas
Ago-
nist

ACE2
In-

hibitor

Mas Ant-
Agonist

ACE2
shRNA rACE2 mouse [127]

ACE2-KO rACE2 mouse [128]

COVID-19 rhACE2 * human [126,268]

Intermittent
hypoxia

Obstructive sleep
apnoe

Ang(1-
7) rat [137]

Subchronic
intermittent lung
hypoxia (MLECs)

Ang(1-
7) mouse [134]

Chronic
intermittent lung
hypoxia (in vivo)

Ang(1-
7) mouse [134]

Ang(1-
7) rat [141]

Chronic
hypoxia

Heart failure
(early stage) rhACE2 A779 mouse [163]

Heart failure (late
stage) ACE2-Tg rat [161,162]

Atherosclerosis

ACE2-Tg HUVECs [54]

ACE2-
KO,

Mas-KO
mouse [184]

ACE2
siRNA rat [185]

ACE2-Tg A779 mouse [186]

ACE2-Tg A779 rabbit [187]

ACE2-Tg A779 THP-1
cells [188]

ACE2-Tg VSMCs [189]

DIZE mouse [190,191]

Ang(1-
7) A779 mouse [192]

Chronic
obstructive

pulmonary dis-
ease/Pulmonary

fibrosis

ACE2-Tg rat [207]

Ang(1-
7) mouse [208]

ACE2 mouse [226]

Pulmonary
hypertension

rhACE2 human [206]

Ang(1-7)-
Tg PMVECs [229]

ACE2-Tg PASMCs [230]

rACE2 pig [231]

ACE2-Tg A779 rat [251]

ACE2-KO ACE2-Tg mouse [258]

ACE2-Tg mouse [259]

Resorcinol-
naphthalein A779 rat [260]

XNT rat [261]

Resorcinol-

naphthalein
MLN4760 rat [262]
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Table 2. Cont.

Hypoxic
Condi-

tion

Model/
Disease

Gene Modulation
Model Pharmacological Treatment

Species Ref.
Downregu-

lation Upregulation Enzyme
ACE2

Activa-
tor

Mas
Ago-
nist

ACE2
In-

hibitor

Mas Ant-
Agonist

Resorcinol-

naphthalein
MLN4760 A779 rat [263]

NCP-
2454 rat [264]

Ang(1-
7) rat [25,265]

rhACE2 human [267]

* ongoing clinical trials.

Despite rhACE2 being possibly beneficial in the treatment of COVID-19, it could
also have some drawbacks. Firstly, high costs and secondly, it has the potential of im-
munogenicity or interaction with S-protein-based vaccines. Two parallel clinical trials are
trying to overcome some of these problems using recombinant bacterial ACE2-like enzyme
(B38-CAP) [269,270]. The studies were announced in May 2020 with the possible launch
of phase 1 in late 2021 or in 2022. Another option is the manufacture of the rhACE2-Fc
fusion protein. The advantage of this approach in comparison to previous ones is that the
fusion of sACE2 to the Fc region of human immunoglobulin can increase its avidity to
viral particles, recruit immune effector functions and increase serum stability, which is a
desirable quality if intended for prophylaxis [271]. One such application, SI-F019 composed
of the rhACE2-Fc fusion protein, was recently assigned to phase 1 clinical trial to evaluate
its safety, tolerability, and pharmacokinetic properties [272].

Immunogenicity can also be overcome by the substitution of ACE2 with Ang(1-7).
Several clinical studies are preparing or recruiting participants for the 2nd phase trial
for the treatment of COVID-19 [273–276]. Besides COVID-19, three other clinical trials
for peripheral arterial disease [277], essential hypertension [278] and obesity-associated
hypertension [279] are about to start.

However, we need to mention that all trials described in this chapter were focused on
hospital treatment. For general use, especially in chronically ill patients, it is necessary to
prepare orally active pharmaceuticals. Intravenous administration is easily provided in
hospitals by professionals, but not in the home environment by the patients themselves.
Pharmacokinetic parameters (destruction by stomach acid and intestinal enzymes, lack
of absorption, short half-life) of soluble ACE2 [280] (and Ang(1-7) as well [166]) prevent
its use from oral administration. There was an attempt to improve pharmacokinetic
parameters of Ang(1-7) by glycosylation of this peptide [281]. Half-life and blood–brain
barrier penetration was improved, although subcutaneous formulation was still required.
There were also attempts at an orally active Ang(1-7). The idea was to incorporate Ang(1-7)
into specialized delivery systems, including cyclodextrin-based nanoparticles in animal
models of diabetes mellitus type 2 [282], hypertensive model of thrombosis [43] and
erectile dysfunction in hypercholesterolemia [283]. ACE2 protein was successfully fused
with non-toxic cholera toxin subunit B expressed in plant chloroplasts, which allowed
ACE2 oral administration in animal models of diabetic retinopathy [284], pulmonary
hypertension [285] and uveitis [286].

However, the development of small molecular drugs is only the beginning. The
best pharmacological targets in ACE2-Ang(1-7)-Mas axis could be activators of ACE2
or Mas agonists. The other possible approach is an inhibition of Ang(1-7) degradation
since Ang(1-7) is primarily degraded by neprilysin (or neutral endopeptidase—NEP) and
aminopeptidase A (APA), secondary to ACE. Ang(1-7) is cleaved by either NEP into inactive
Ang(1-4) or by ACE into another inactive molecule Ang(1-5) [287]. ACE inhibitors and
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NEP inhibitors are already in clinical practice, but they lack Ang(1-7) specificity, especially
NEP inhibitors, such as sacubitril, target many other peptides as well. APA is a member of
the hydrolase enzyme family of aminopeptidases and its main substrates are AngII and
Ang(1-7). AngII is cleaved to an active peptide AngIII with similar effects to AngII. Ang(1-7)
is cleaved to inactive Ang(1-4) and Ang(2-7) [287,288]. APA was found to be overactivated
in MI, thus it might be a good candidate for further studies as a new pharmacological target
in several cardiovascular diseases [288]. Additionally, some other compounds were studied
for their inhibitory effects on APA, such as 4-amino-4-phosphonobutyric acid (4-APBA)
in a mouse model of MI [288], EC33 and its dimer RB150 (firibastat) in the treatment of
high blood pressure in rats [289]. There is also an effort for the treatment of lung [95] and
renal [83] IRI with ACE2 activator (DIZE) and the treatment of myocardial IRI-induced
necrosis by Mas agonist AVE 0991 [290]. AVE 0991 further exhibited anti-inflammatory
potential in an ovalbumin-induced acute asthmatic murine model in which Mas agonist
significantly reduced macrophage infiltration [291]. However, all these experiments were
conducted in animal models only. To our best knowledge, no human trials using small
molecular pharmacotherapy are planned yet.

5. Conclusions

The main findings regarding the alternative RAS in hypoxic conditions are shown in
Figure 3. In short, in both acute and chronic hypoxic conditions in CVS and the lungs, there
is time-dependent regulation of the ACE2/Ang(1-7) axis, increased levels of ACE2/Ang(1-
7) in the early stages in contrast to markedly reduced levels with disease progression at the
end-stage. An important element of such behavior throughout the studies is the increased
circulation of soluble ACE2 connected to the activity of proteolytic enzymes, particularly
sheddases, such as ADAM17. However, generally, there are no major differences between
most acute and chronic hypoxic conditions since the pathologies are predominantly charac-
terized by enhanced activity of classical ACE/AngII axis and ACE2/Ang(1-7) suppression.
The biggest scientific challenge lies in the fact that most of the translational and clinical
studies in humans are affected by the effects of drugs that are included in the patient´s
treatment regimen on the ACE2/Ang(1-7) axis or by the interaction/alteration of normal
RAS activity and its components. Nonetheless, treatment potential resides in enhancing
the activity of the alternative RAS arm (activators/agonists, recombinant components),
which has accounted for numerous protective effects in different experimental models,
contrastingly to the shutdown of this axis which promotes adverse signaling. Fluctuating
plasma levels might also be an accountable prognostic/disease marker for future detection
and disease outcome/treatment, particularly, increased plasma ACE2 can serve as a novel
and reliable marker of acute cardiac damage. Moreover, during the time of writing this
article, several clinical studies are being conducted, namely for the treatment of ARDS,
COVID-19 and PAH, pointing to the fact, that the alternative RAS branch is one of the
most promising neuroendocrine cascades for the future diagnosis and treatment of many
hypoxia-related CVS and pulmonary diseases, including diseases such as myocardial
infarction, heart failure, PAH or even COVID-19.
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Figure 3. The main conclusions of the overall ACE2/Ang(1-7)/Mas axis activity in cardiovascular
and pulmonary hypoxic conditions.
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