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Gene regulation: translational 
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During the past year, several examples of cellular mRNAs have been 
described in which translational initiation occurs by internal ribosome 
binding, a mechanism hitherto thought to be restricted to picornaviral 
RNAs. New insights into the molecular mechanism of internal ribosome 
entry have been provided by the structural and functional analyses of 
both the internal ribosome entry sites and the protein factors that stimulate 

translation mediated by these elements. 
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Introduction 

Translation initiation of most mammalian mRNAs is initi- 
ated by a ‘scanning mechanism’ [ 11. In this mechanism, 
the 43s ternary complex, composed of the 40s riboso- 
mal subunit carrying the initiator tRNA as well as a set 
of eukaryotic initiation factors [2,3], binds at the 5’ end 
of capped cellular mRNAs and moves linearly, scanning 
the primary sequence of the mRNA, until an AUG codon 
in the context of a PuNNAUGPu (where Pu indicates A 
or G, and N any nucleotide) consensus motif is encoun- 
tered. Subsequently, the 60s ribosomal subunit joins the 
complex and protein synthesis commences [ 1,3]. 

While the scanning mechanism can easily accommo- 
date translational initiation on most known mammalian 
mRNAs, the efficient translation of certain mRNAs con- 
taining long 5’ non-coding regions (5’ NC%) burdened 
with numerous AUGs and embedded in consensus mo- 
tifs, is not easy to envisage [4]. Most notably, mRNAs of 
picomaviruses contain 5’ NCRs that lack a 5’ m7GpppG 
cap, are 600 to 1200 nucleotides in length and harbor 
many AUG codons [ 51. In addition, picornavims infection 
results in the specific inhibition of host cell translation 
[6]. This observation indicated that viral mRNA transla- 
tion must be initiated by a mechanism that is different 
from the cap-dependent scanning mechanism used by 
cellular mRNAs. Indeed, in 1988, Pelletier and Sonen- 
berg [7], and Jang et al. [8] showed that the mRNAs of 
two picomaviruses, poliovirus and encephalomyocarditis 
(EMC) virus, are translated by the unusual mechanism 
of internal ribosome binding. Specifically, they showed 
that internal ribosome entry site (IRES) sequences could 
be used to create functional dicistronic transcripts [7,8]. 
This was the first indication that eukaryotic ribosomes 
can in principle utilize an initiation mechanism resem- 

bling the internal initiation mechanism used in prokary- 
otes. 

Over the past year, other viral as well as cellular mRNAs 
were shown fo harbor IRES elements that can be used 
for internal initiation of translation. This review details 
studies that seek to answer how widely IRES elements 
are used, and what the molecular mechanism of internal 
ribosome binding is. 

New strategies for the functional identification 
of internal ribosome entry sites 

Dicistronic mRNAs produced in vitro or in vivo 
As first demonstrated by Pelletier and Sonenberg [7], 
and Jang et al [8], most investigators have employed 
dicistronic mRN& to identify IRES sequences. As dia- 
gramed in Fig. la, the first cistron of a capped dicistronic 
mRNA can be translated by a cap-dependent scanning 
mechanism. The second cistron should not be translated 
unless preceded by either sequences that mediate inter- 
nal ribosome entry, or sequences that allow ribosomal 
reinitiation or ribonuclease cleavage followed by cap-in- 
dependent translation of this now-monocistronic mRNA 

To demonstrate that translation of the second cistron is 
indeed due to internal ribosome binding, as opposed to 
a reinitiation mechanism [9**], it is necessary to show 
that the translation of the second cistron in intact di- 
cistronic mFWAs is independent from the translation of 
the first cistron in the same RNA. This was done in sev- 
eral instances by demonstrating three occurrences: firstly, 
that intact IRES-containing dicistronic mRNA was associ- 
ated with polysomes in poliovirus-infected cells under 
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Fig. 1. Strategies for the functional iden- 
tification of internal ribosome entry sites 
(IREW. (a) The suggested mechanism for 
the translation of capped, dicistronic 
mRNAs containing sequences between 
the two cistrons (here, the CAT and LUC 
genes) that mediate internal ribosome 
binding. Interaction of the three compo- 
nents of the cap-binding protein com- 
plex (~220 and eukaryotic initiation fac- 
tors 4A and 4E) with the 5’-terminal cap, 
and the 435 ternary complex, composed 
of the 405 ribosomal subunit, eukaryotic 
initiation factors and initiator-tRNAMet, 
are shown. Sequences mediating inter- 
nal ribosome binding, termed the IRES 

or ribosome landing pad (RLP), and the 
association and disassociation of riboso- 
mal subunits at the beginning and the 
end of the coding regions, respectively, 
are indicated. lb) Poliovirus as a vehicle 
for the delivery of dicistronic mRNAs. 
Dicistronic polioviral transcripts synthe- 
sized in vifro and containing the 5’ non- 
coding region of poliovirus ORESI) and a 

putative IRES fIRES2) inserted between 
sequences encoding the viral capsid 

(Pl) and viral non-structural proteins fP2 
and P3) are transfected into tissue cul- 
ture cells (shaded). IRESZ mediates the 
translation of the non-structural pro- 
teins required for amplification of the 
recombinant viral genomes. High-titer 
viral stocks can be obtained and used 
to quantitatively deliver the recombi- 
nant RNA into cells for further analysis. 
This strategy was introduced by Molla 
el a/. 116**1. 

conditions in which cap-dependent translation was in- 
hibited [7,10,11**]; secondly, that direct transfection of 
uncapped dicistronic RNA into tissue culture cells re- 
sulted in the translation of the second but not the first 
cistron [11**,12] (C Wang, P Samow and A Siddiqui, un- 
published data); and thirdly, that translation of the first 
cistron in dicistronic mRN& was inhibited by an analog 
of the m7GpppG cap without affecting the translational 
efficiency of the second cistron [ 131. 

Demonstrating that translation of the second cistron of 
a dicistronic mRNA does not result from the genera- 
tion of monocistronic transcripts, produced by nucle- 
ases, is a more difficult problem. It has been argued 
that dicistronic mRNAs are not conclusive tools to iden- 
tify IRES elements because one can not be certain that 
the dicistronic transcript is the only transcript produced 
[ 141. One can, of course, never conclusively demonstrate 
a zero concentration of smaller, uncapped transcripts 
present in cells that mediate translation of the second 
cistron. However, it is striking that small deletions in 
IRES elements have been shown to abolish translation 
of the second cistron in a dicistronic mRNA without in- 
ducing a detectable increase in cleavage of the dicistronic 
mRNA [8,15,16”]. 

A further argument against the use of dicistronic RN4.s 
to demonstrate IRES function was that IRES elements, 
which one could imagine to be position-independent, 
function with different efficiencies depending on their 
location in the RNA [ 141. This is not really surpris- 
ing; it is expected that the functional highly structured 
IRES elements [ 17,181 may be affected by long-range term 
tiary interactions between the IRES and other parts of a 
long RNA molecule. This may explain the deleterious ef- 
fect on IRES function of certain small mutations located 
outside the IRES element [ 15,19,20]. Furthermore, ongo- 
ing translation of the first cistron in dicistronic mRNAs 
may affect the structure of the IRES in a dicistronic con- 
text, and thus result in altered translational efficiency of 
the second cistron. Such effects, termed ‘translational at- 
tenuation’, are known in prokaryotes [21]. 

Dicistronic mRNAs carried in poliovirions 

Very recently, the elegant genetic approach of Molla et al. 

[ I6**] has provided further evidence of IRES function in 
the 5’ NCR of EMC virus. A dicistronic poliovirus RNA 
genome was constructed containing the EMC virus IRES 
inserted into the normally contiguous poliovirus coding 
region (Fig. lb). Transfection of the dicistronic RNA con- 



Gene regulation: translational initiation by internal ribosome binding OH and Sarnow 297 

taming two IRE%, into human HeIa cells resulted in the 
production of polioviruses that had packaged the recom- 
binant genome. Because translation of the Pl coding re- 
gion was terminated by an introduced stop codon, it was 
concluded that IRES2 (Fig. lb) was mediating translation 
of the P2 and P3 non-structural proteins by an internal 
ribosome-binding mechanism. Also a deletion in IRES2 
abolished the synthesis of P2 and P3 proteins, arguing 
against the possibility that translation of the P2 and P3 
proteins was mediated by a reinitiation mechanism af- 
ter translation had terminated at the Pl stop codon. A 
similar result might have been obtained if virus parti- 
cles were produced that harbored subgenomic P2 and 
P3 RNA molecules, in addition to full-length viral RNAs 
containing the two IRES sequences. Because the num- 
ber of plaque-forming units was linearly dependent on 
virus stock concentration, it could be concluded that 
each individual plaque was the result of infection by a 
single poliovirus particle [ 16**]. Using viral vehicles as 
carriers for dicistronic RNAs will be a valuable approach 
for the identification of IRES elements and for the delivery 
of dicistronic RNAS with high efficiency into cells. 

RNA circles 
The use of single-stranded RNA circles to identify and 
characterize IRES elements is currently being pursued. It 
has been shown that eukaryotic ribosomes do not bind 
to circular RNAs composed either of 110 polyadenosine 
residues [22] or of 73 nucleotides derived from a RNase 
Tl resistant (and thus lacking G residues) fragment of 
tobacco mosaic virus [23]. However, both kinds of RNA 
circles [ 22,231 could bind to prokaryotic ribosomes. The 
prediction is that eukaryotic ribosomes should bind to 
RNA circles containing IRES elements, because a free 5’ 
end in the RNA should not be needed for the internal 
ribosome-binding conferred by these elements. 

The recent report that RNA molecules, when held to- 
gether with a DNA ‘splint’, can be ligated to each other 
by T4 DNA ligase [24*], makes it possible to construct 
IRES-containing RNA circles that are up to 1000 nu- 
cleotides in length (C-Y Chen and P Sarnow, unpub- 
lished data). Upon addition of translation extracts and 
in the presence of translation elongation inhibitors, an 
80s ribosome should form at an AUG codon located 
downstream of the IRES in such circular RNA molecules. 
Indeed, preliminary experiments have indicated that in- 
tact EMC virus IRES-containing circles sediment at 80s 
(CY Chen and P Samow, unpublished data). Therefore, 
circular RNAs should prove to be useful in the elucidation 
of the mechanism of internal ribosome binding. 

New information on internal ribosome entry 
sites 

Viral elements 
IPES elements, usually hundreds of nucleotides in length, 
have been identified in viral genomes from all gen- 
era of the Picornaviridae, including poliovirus (genus 
Enterovims) [7], rhinovirus (genus Rhinovirus) [ 25**], 
EMC virus (genus Cardiovirus) [8] and foot and mouth 

disease (FMD) virus (genus Aphthovim) [ 26,27=]. The 
IRES elements of poliovirus and rhinovirus are very slm- 
ilar, located upstream of the AUG initiator codon [ 25**]. 
From this, and experiments in which additional AUGs 
were added between the IRES and the initiator AUG, it 
was concluded that ribosomal subunits bind to the IRES 
and subsequently scan in a 5’ to 3’ direction until the 
next AUG codon is encountered. There is little similar@ 
between the polioviral/rhinoviral IRESs and those found 
in the EMC or FMD viruses. It has been found that the 
EMC and FMD viral IRESs are both located at the initiator 
AUG codon, suggesting that the ribosomal subunits are 
recruited directly to the initiator AUG codons in these 
viruses [ 270,281. 

An essential feature of the picornaviral IRES element is 
the presence of a conserved oligopyrimidine sequence 
located upstream of an AUG codon [29*-31**]. Mu- 
tations in the oligopyrimidine sequence abolish IRES 
function, and the proper spacing between the oligopy 
rimidine sequence and the AUG codon is also important 
for the maintenance of a functional IRES [29**-31°a]. 
Because part of the oligopyrimidine sequence reveals 
complementarity to the 3’ end of ribosomal 18s RNA, 
it has been suggested that this sequence may function 
in a manner similar to the Shine-Dalgamo sequence 
[15,31**]. However, it has not been reported whether the 
oligopyrimidine-AUG sequence motif can function as an 
IRES on its own, as predicted by this model. 

Much work has been devoted to the identification of viral 
and cellular proteins that mediate ribosome entry to vi- 
ral IRES elements [ 32,33*,34**]. In particular, two cellular 
proteins, p52 [35] and p57 [30**,36,37], have been iden- 
tified by their ability to be crosslinked by ultraviolet light 
to multiple sites in viral IRES elements. Further functional 
assays are needed to reveal the role of these proteins in 
internal initiation. In addition, poliovirus encodes a trans- 
activator protein, 2A, that can stimulate IRES usage [38=*]. 
More recently, the eukatyotic initiation factor (eIF)-4F 
has been shown to stimulate translation of the second 
cistron in a dicistronic mRNA [ 39**,40*]. This finding is 
intriguing, because eIF-4F, also known as the cap-binding 
protein complex [2,3], is also involved in cap-depen- 
dent translational initiation. Furthermore, there seems 
to be competition for eIF-4F between the cap-dependent 
and the cap-independent (by internal ribosome binding) 
initiation pathways [39**]. It is possible that one of the 
reasons that poliovirus encodes a function that modifies 
eIF-4F by proteolytically cleaving the ~220 component of 
eIF-4F [41] is to alter eIF-4F to enable the viral RNA to 
compete for it more efftciently. The proteolyzed form of 
eIF-4F is known to moderately stimulate internal initia- 
tion and inhibit cap-dependent translation in vitro [42]. 
In contrast, EMC virus does not induce the cleavage of the 
~220 component of eIF-4F and, therefore, may compete 
more efficiently with cellular mRNAs for eIF-4F. 

Two recent reports have described the presence of IRES 
elements in viruses outside the Picornaviridae family. 
First, hepatitis C virus (HCV), tentatively assigned to 
be a flavivirus, contains a 5’ NCR whose sequence and 
predicted secondary structure are more similar to picor- 
naviral5’ NCRs than to the 5’ NCRs of RNAs from other 
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Aaviviwes. Both the poliovirus and the HCV genome 
contain long 5’ NCRs with several AUG triplets, some 
preceded by oligopyrimidine sequences.“IXvo studies re- 
ported that the 5’ NCR of HCV, when placed into the 
intercistronic spacer of a dicistronic mRN& promoted 
internal initiation as efficiently as the EMC virus IRES in 
in vitro translation systems (43.1 (C Wang, P Samow and 
A Siddiqui, unpublished data). A third study did not find 
evidence that the HCV 5’ NCR could function as an IRES 
144.1. In this last study, additional non-viral sequences 
were present between the HCV 5’ NCR and the initiator 
AUG triplet; thes,e extra sequences could have changed 
structures in the RNA resulting in an abrogation of a func- 
tional IRES (C Wang, unpublished data). An IRES was also 
discovered in mRNA3 of infectious bronchitis virus (IBV), 
a coronavirus [45**]. The capped mRNA3 is functionally 
tricistronic encoding 3a, 3b and 3c proteins [45**]. It was 
argued that 3a is likely to be produced by a cap-depen- 
dent scanning mechanism, 3b by a leaky scanning mech- 
anism, in which the 3a initiator AUG is bypassed, and 3c 
by internal ribosome entry [45**]. The IRES thought to 
mediate translation of 3c is located within the 3a and 3b 
coding sequences; the first example of an IRES located 
within a coding region. It will be very interesting to study 
the effects of ribosomes engaged in the synthesis of 3a 
or 3b on IRES usage for 3c translation. 

Cellular elements 
Because internal initiation mediated by picornaviral IRES 
is efficient in uninfected cells [46,47], it was clear that 
the host cell translation apparatus was able to perform 
this function without the help of viral gene products. 
This led to the idea that cellular mRNAs, that could escape 
the inhibition of cap-dependent translation in poliovirus- 
infected cells [ 481, may contain functional IRES elements. 
In fact, it was found that the 5’ NCR of the mRNA encod- 
ing the immunoglobulin heavy chain binding protein, 
whose translation continues in poliovirus-infected cells 
[48], could be translated by internal initiation [lo]. 

A second example of a cellular IRES came from the ex- 
amination of the mRNA of the murine androgen recep- 
tor. Mice bearing the testicular feminization (Tfm) muta- 
tion in this gene display altered androgen responsiveness 
[49]. Curiously, the TJin androgen-receptor mRNA con- 
tains a single-nucleotide deletion in the coding region, 
resulting in short-lived mRNA that produces carboxyl-ter- 
minal androgen-receptor peptides by internal ribosome 
binding [ 491. 

In a search for additional cellular IRES elements, it was 
noted that 42% of known Drosophila genes contain 
one or more AUG triplets in their 5’ NCRs [50]. The 
average length of a Drasophih gene 5’ NCR is 250 nu- 
cleotides 1501, five times longer than the average mam- 
malian gene 5’ NCR [51]. One striking example of such 
a Drosophila gene is the homeotic gene Antennapedia 
(Antp) whose 5’ NCR is either 1512 or 1727 nucleotides 
in length, depending on whether transcription was ini- 
tiated from the PI or P2 promoter [ 52,531. A 252 nu- 
cleotide sequence element in exon D, common to mR- 
NAs from both transcription units, was found to contain 
an IRES element [ 1 l**]. Moreover, within this IRES is a 

55 nucleotide sequence element that is highly conserved 
among different Drosophila species [54]. When placed 
into the intercistronic region of a dicistronic mRNA, the 
55 nucleotide sequence alone functioned as an IRES in 
cultured Drosophila cells (S-K OH and P Sarnow, unpub- 
lished data). The function and potential regulation of the 
Antp IRES in Drosophila is currently being explored. 

Conclusions 

Over the past year IRES elements have been discovered 
in mRNAs from viruses outside the Picornatk-lake, such 
as the HCV and coronaviruses, and in cellular mRNAs, 
such as the homeotic Antp mRNA. Novel experimen- 
tal systems involving dicistronic polioviruses and circu- 
lar RNAs will serve as useful genetic and biochemical 
tools to elucidate the mechanism of internal ribosome 
binding. In addition, the fruitfly Drosophila may be the 
choice for genetic approaches to identib key players in 
internal initiation and to study their regulation during cell 
growth. 

The surprising finding that the coding region of mRNA3 
of coronavirus can harbor an IRES element demonstrates 
that eukaryotic mRNAs can be functionally polycistronic, 
opening the possibility of controlling translational initia- 
tion within the coding region as well as at the 5’ end of 
mRNAs. IRES elements within coding regions may pro- 
vide an interesting way to control gene expression at the 
cotranslational level. 
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