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Differential expression of MDGA1 in major depressive disorder 
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A B S T R A C T   

The identification of gene expression-based biomarkers for major depressive disorder (MDD) continues to be an important challenge. In order to identify candidate 
biomarkers and mechanisms, we apply statistical and machine learning feature selection to an RNA-Seq gene expression dataset of 78 unmedicated individuals with 
MDD and 79 healthy controls. We identify 49 genes by LASSO penalized logistic regression and 45 genes at the false discovery rate threshold 0.188. The MDGA1 gene 
has the lowest P-value (4.9e-5) and is expressed in the developing brain, involved in axon guidance, and associated with related mood disorders in previous studies of 
bipolar disorder (BD) and schizophrenia (SCZ). The expression of MDGA1 is associated with age and sex, but its association with MDD remains significant when 
adjusted for covariates. MDGA1 is in a co-expression cluster with another top gene, ATXN7L2 (ataxin 7 like 2), which was associated with MDD in a recent GWAS. 
The LASSO classification model of MDD includes MDGA1, and the model has a cross-validation accuracy of 79%. Another noteworthy top gene, IRF2BPL, is in a close 
co-expression cluster with MDGA1 and may be related to microglial inflammatory states in MDD. Future exploration of MDGA1 and its gene interactions may provide 
insights into mechanisms and heterogeneity of MDD.   

1. Introduction 

Major depressive disorder (MDD) is a leading cause of disability 
globally (Rehm and Shield, 2019). Genome-wide association studies 
(GWAS) of MDD have found numerous variants with small effect sizes 
(Hyde et al., 2016; Shi et al., 2011). However, there remain gaps in our 
understanding of the biological mechanisms of MDD and our ability to 
translate genetic effects clinically. Gene expression is an intermediate 
level of analysis that can act as a bridge between genetic associations 
and biological pathways to symptom dimensions. In addition to being an 
intermediate phenotype, gene expression is dynamic, allowing it to vary 
with symptom state and environment. 

It has been difficult to identify significant single-gene effects at the 
expression level for MDD. In a large RNA-Seq study of 922 subjects, 29 
genes were found to have associations with MDD status at the relaxed 
false discovery rate (FDR) threshold of 0.25 (Mostafavi et al., 2014). The 
set of top genes was significantly enriched for the IFNα/β signaling 
pathway. No genes were differentially expressed at the .05 FDR 
threshold; however, their results support the role of immune system 
signaling in the pathogenesis of MDD. A more recent study found one 
gene with differential expression between HC and MDD with adjusted P 
= 0.008 (Cole et al., 2021). While they did not find strong single-gene 
signals for MDD, Cole et al. did find a statistically significant associa
tion with a biological aging signature derived from the residuals of a 
multi-gene model of chronological age (Cole et al., 2021). 

In our previous analysis of whole-blood RNA-Seq of MDD, we used a 

read alignment protocol that enriched for the expression of antisense 
RNA (Wanowska et al., 2018), and we developed an approach that 
identified an antisense gene module for MDD (Le et al., 2018, 2020). 
Antisense expression analysis can complement regular gene expression 
by revealing regulatory effects. For example, antisense transcripts can 
act in cis or trans to inhibit the expression of a gene. In the current study, 
we use standard gene expression, which uses a sense alignment protocol 
(strandedness set to reverse). We compare statistical and machine 
learning feature selection approaches to identify multivariate classifi
cation models of MDD diagnosis. We then use hierarchical cluster 
analysis to explore relationships between the top MDD genes. 

2. Materials and methods 

2.1. RNA-sequencing alignment and annotation 

We use RNA-Seq gene expression data from a study of major 
depressive disorder (MDD) with 78 unmedicated MDD and 79 healthy 
controls (HC) described in Ref (Le et al., 2018). The data contain 66 
males and 91 females and an age range of 18–55. Participants between 
the ages of 18 and 55 years were recruited from the clinical services of 
the Laureate Psychiatric Clinic and Hospital (LPCH) and radio and print 
advertisement in the Tulsa metropolitan area, Oklahoma. The study 
included 78 subjects who met DSM-IV-TR criteria for MDD (52 females, 
mean age = 33 ± 11) and 79 HCs who showed no history of any major 
psychiatric disorder, personally or in a first-degree relative (41 females, 
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mean age = 31 ± 10). The HCs were matched to the MDD cohort based 
on age and sex. See Table 1 of Ref (Le et al., 2018). for additional sample 
characteristics such as occupational status, educational status, smoking 
status, BMI, and MADRS. In the previous analysis, we used stranded 
RNA-Seq preprocessing, which enriches for antisense non-coding RNA, 
sometimes called Natural Antisense Transcripts (NATs). In the current 
study, we process the data with a sense alignment protocol (stranded
ness set to reverse), which enriches for gene expression. The RNA-Seq 
expression was derived from PBMCs isolated from morning blood sam
ples. We normalize to counts per million reads followed by quantile 
normalization and log2 transformation. We filter genes lower than 0.045 
coefficient of variation from 8923 genes, leaving 5587 genes. The pre
processed expression data and analysis code are available at https://gith 
ub.com/insilico/DepressionGeneModules. 

2.2. Feature selection 

We use least absolute shrinkage and selection operator (LASSO) for 
multivariate feature selection. LASSO penalized logistic regression is a 
multivariate linear model that includes a penalty to efficiently select 
important features while mitigating correlation. We use the penalty 
hyperparameter that minimizes the cross-validation prediction error, 
which reduced the dimensionality to 49 genes from 5587 filtered genes. 
Prediction is based on the classification of MDD versus healthy controls 
using logistic regression. We compare LASSO selected genes with uni
variate logistic regression P-values corrected for multiple hypotheses 
with the BH adjustment. Additionally, we compare the top genes with 
lowest FDR-adjusted univariate P-value (45 genes), where each model is 
adjusted for age and sex. We explore the relationship between the top 
univariate genes using hierarchical clustering of the Euclidean distance 

matrix. 

3. Results 

The LASSO penalty term (lambda = 0.7855) that minimizes the 
cross-validation error results in a model containing 49 genes with non- 
zero coefficients and 78.98% cross-validation accuracy. MDGA1 
(MAM domain–containing glycosylphosphatidylinositol anchor 1) has 
the highest LASSO coefficient (0.15, Fig. 1A) and the lowest nominal P- 
value (4.92e-05). Univariate logistic regression results in 45 genes with 
adjusted P-values at 0.187 FDR (Table 1). The value 0.187 is the lowest 
FDR threshold that yields significant associations for MDD. This adjusted 
P-value means approximately 18.7% of the 45 genes are false positives 
(8 of the 45 genes). The top gene, MDGA1, has been associated with 
other psychiatric disorders such as BD and SCZ (Kahler et al., 2008; Li 
et al., 2011). Hierarchical clustering of the top 45 univariate genes 
shows a cluster of genes correlated with MDGA1 (Fig. 1B), including 
ATXN7L2 (ataxin 7 like 2), which had a genetic association with MDD in 
a previous study (Shi et al., 2011). MDGA1 has both age and sex P-value 
lower than 0.05 in the logistic regression of gene expression as outcome 
and age and sex as predictors (Supplementary Fig. 2). However, MDGA1 
remains significant for MDD when we adjust for age and sex. We find 31 
intersecting genes between the top 45 MDD genes selected by logistic 
regression P-value without covariates and the top 45 genes when the 
model is adjusted for age and sex. MDGA1 is among the 31 intersecting 
genes (Supplementary Table 1). 

4. Conclusion 

Our univariate RNA-Seq analysis yields 45 genes with false discovery 
rate 0.187, which can be interpreted to mean that approximately 8 of the 
top 45 MDD genes are false positives. The top main effect, MDGA1, has 
not been implicated previously in MDD, but multiple studies have 
associated intronic single nucleotide polymorphisms in MDGA1 with 
SCZ and BD (Kahler et al., 2008) (Li et al., 2011). The identification of a 
known SCZ and BD gene in our MDD sample is not surprising due to the 
large degree of pleiotropy in psychiatric disorders. A recent GWAS 
meta-analysis of 8 psychiatric disorders found 109 significant loci 
shared by at least two disorders (Cross-Disorder Group of the Psychiatric 
Genomics Consortium, 2019). Using the shared genetics between the 
eight disorders, they found three clusters, where one of the clusters 
represents mood and psychotic disorders (MDD, BD, and SCZ). The ge
netic correlation using linkage disequilibrium score regression analyses 
was highest between BD and SCZ (0.7), and the genetic correlation be
tween MDD and BD (0.36) was very similar to the genetic correlation 
between MDD and SCZ (0.34). The shared genetics with other disorders 
suggests heterogeneity within MDD, and MDGA1 could be investigated 
as a biological basis for MDD subtypes. 

In mouse studies, MDGA1 is expressed in somatosensory areas of the 
brain and is important for forebrain development (Takeuchi et al., 
2007). MDGA1 is a member of the immunoglobulin domain cell adhe
sion molecule subfamily, and neuronal cell adhesion molecules have 
been implicated in psychiatric disorders (Vawter, 2000). In our study, 
MDGA1 is highly correlated with ATXN7L2 (Fig. 1B), and although not 
genome-wide significant in Ref. (Shi et al., 2011), ATXN7L2 was one of 
the most significant associations in a GWAS of early-onset MDD. The 
cluster of genes that are over-expressed in MDD (Fig. 1B) includes 
MDGA1 and ATXN7L2. These two genes are in a subcluster next to 
IRF2BPL (Interferon regulatory factor 2 binding protein like), which is 
associated with neurological phenotypes (Marcogliese et al., 2018). 
IRF2BPL and IRF2BP2 are corepressors of IRF2, and IRF2BP2 is a 
regulator of microglial polarization (Vawter, 2000). Microglia are 
macrophages in the central nervous system (CNS) that can become 
polarized to an M1 pro-inflammatory state or to an M2 
anti-inflammatory state. In a recent study, IRF2BP2-deficient macro
phages showed elevated expression of IRF2BPL, likely to compensate for 

Table 1 
Univariate logistic regression results of genes with adjusted P-values at 0.187 
FDR (45 genes). Genes are sorted by raw P-value and separated by over (left) and 
under expression (right) in MDD versus healthy control. Hierarchical clustering 
of these genes in Fig. 1.  

Over Expressed Genes in MDD Under Expressed Genes in MDD 

gene coefficient raw P 
value 

gene coefficient raw P 
value 

MDGA1 3.272226 4.92E-05 NPFF − 4.93599 2.93E-04 
ZDHHC20 3.447524 1.66E-04 FAM138A − 3.90726 4.31E-04 
IRF2BPL 4.02807 3.99E-04 POGZ − 3.36093 6.20E-04 
ARFGAP1 4.502432 4.08E-04 KANTR − 4.04004 6.57E-04 
UBD 2.025948 4.76E-04 ZMYM6NB − 2.72513 6.66E-04 
BCL2L12 3.550422 6.05E-04 ZNF658 − 3.2259 7.14E-04 
ZFP36L2 2.623329 6.23E-04 RCSD1 − 4.11089 7.30E-04 
ICOS 3.337997 7.09E-04 SS18L2 − 3.22678 8.16E-04 
CBL 4.308463 7.22E-04 FAM193A − 3.73778 8.29E-04 
TSR3 4.027897 7.81E-04 CCAR2 − 3.47723 8.30E-04 
DYNLRB1 3.316966 8.48E-04 RARS2 − 2.71883 8.88E-04 
HNRNPUL2 5.406151 8.73E-04 PANX1 − 3.6218 8.95E-04 
TADA3 3.483415 9.39E-04 TSC2 − 3.33729 9.33E-04 
CD83 2.352797 1.21E-03 ISX − 5.30674 9.43E-04 
C16orf74 3.829435 1.31E-03 SETDB2 − 5.09759 9.95E-04 
ATXN7L2 3.266239 1.35E-03 DPEP3 − 2.34135 1.03E-03    

NDUFB1 − 3.75476 1.13E-03    
SUPT7L − 5.36926 1.14E-03    
STX16- 
NPEPL1 

− 3.39406 1.18E-03    

CSPG4 − 4.48842 1.19E-03    
CDK5RAP2 − 3.66751 1.23E-03    
ABCE1 − 2.82685 1.31E-03    
TRPC5 − 4.58532 1.35E-03    
SRSF5 − 3.19411 1.36E-03    
NGRN − 3.75049 1.37E-03    
ELP3 − 3.32066 1.48E-03    
C1orf35 − 3.03975 1.50E-03    
EIF2D − 3.64157 1.50E-03    
MCM3AP- 
AS1 

− 4.74524 1.51E-03  
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the deficiency (Vawter, 2000). 
The current study uses well-characterized and unmedicated MDD 

subjects and matched controls in an examination of gene expression 
differences using RNA-Seq. The top gene, MDGA1, is not significant at 
the traditional 0.05 adjusted P-value; however, we provide evidence for 
its differential expression between MDD and healthy controls based on 
the false discovery rate, prior studies in related disorder, and the bio
logical function of this gene. MDGA1 is associated with sex and age 
(Supplementary Fig. 2); however, it remains a top MDD gene when 
adjusted for these covariates. Future characterization of the interactions 
between MDGA1, IRF2BPL and other genes in their clusters may help 
identify treatment targets and better understand MDD heterogeneity. 
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.bbih.2022.100534. 

Fig. 1. Top MDD associated genes: Hierarchical 
clustering (Euclidean) of the 45 MDD-associated 
genes selected by univariate logistic regression with 
FDR (subplot A). The cluster containing the top gene, 
MDGA1, is shaded, and the IRF2BPL gene is in the 
adjacent cluster. Genes in the main left/right bifur
cation, as separated by the dashed lines, are under/ 
over expressed in MDD. Penalized regression co
efficients of the 49 genes with non-zero LASSO co
efficients (subplot B). The top over-expressed gene in 
MDD is MDGA1 with 0.1598 penalized coefficient 
value followed by IRF2BPL. The top under-expressed 
gene in MDD relative to controls is NPFF. The 35 
overlapping genes between the LASSO and univariate 
analyses are colored blue on the horizontal axis of 
subplot B. (For interpretation of the references to 
color in this figure legend, the reader is referred to the 
Web version of this article.)   
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