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Abstract Mapping genome-wide binding sites of all transcription factors (TFs) in all
biological contexts is a critical step toward understanding gene regulation. The state-
of-the-art technologies for mapping transcription factor binding sites (TFBSs) couple
chromatin immunoprecipitation (ChIP) with high-throughput sequencing (ChIP-seq)
or tiling array hybridization (ChIP-chip). These technologies have limitations: they
are low-throughput with respect to surveying many TFs. Recent advances in genome-
wide chromatin profiling, including development of technologies such as DNase-seq,
FAIRE-seq and ChIP-seq for histone modifications, make it possible to predict in vivo
TFBSs by analyzing chromatin features at computationally determined DNA motif
sites. This promising new approach may allow researchers to monitor the genome-
wide binding sites of many TFs simultaneously. In this article, we discuss various
experimental design and data analysis issues that arise when applying this approach.
Through a systematic analysis of the data from the Encyclopedia Of DNA Elements
(ENCODE) project, we compare the predictive power of individual and combinations
of chromatin marks using supervised and unsupervised learning methods, and evalu-
ate the value of integrating information from public ChIP and gene expression data.
We also highlight the challenges and opportunities for developing novel analytical
methods, such as resolving the one-motif-multiple-TF ambiguity and distinguishing
functional and non-functional TF binding targets from the predicted binding sites.
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1 Introduction

One major goal of functional genomics is to comprehensively characterize the reg-
ulatory circuitry behind coordinated spatial and temporal gene activities. In order to
achieve this goal, a critical step is to monitor downstream regulatory programs of
all transcription factors (TFs). With the capability of mapping genome-wide tran-
scription factor binding sites (TFBSs), chromatin immunoprecipitation coupled with
high-throughput sequencing (ChIP-seq) [2, 21, 25, 29] or tiling array hybridization
(ChIP-chip) [6, 27] have become standard approaches for studying gene regulation.
Both technologies are now being widely used by investigators worldwide as well
as consortium projects such as the ENCODE [9], modENCODE [7] and Roadmap
Epigenomics [3] to map functional cis-regulatory elements. Although ChIPx (i.e.,
ChIP-seq and ChIP-chip) offers the power to survey genome-wide binding sites,
a number of limitations make this technology low-throughput with respect to sur-
veying a large number of TFs. First, successful application of ChIPx requires high-
quality antibodies specifically recognizing the TF of interest. Unfortunately for many
TFs, ChIP-quality antibodies are not available. Second, each individual ChIPx ex-
periment can only analyze one TF in one cell type. To analyze many TFs, one has
to test to ensure sensitive antibodies, optimize the protocol, and perform experi-
ments repeatedly, which is both costly and labor-intensive. For these reasons, cur-
rently it is unrealistic to use ChIPx to directly monitor genome-wide TFBSs for all
TFs. Therefore, the development of innovative methods and technologies that allow
high-throughput mapping of in vivo TFBSs of all TFs is both important and urgently
needed.

Computational predictions based on mapping DNA sequence motifs to genome se-
quences offer an alternative approach to analyze TFBSs [18, 19, 33, 34]. Predictions
based purely on DNA sequences, however, are known to have low specificity. In ad-
dition, in vivo TF binding is highly context-dependent. Without further information,
computationally determined motif sites cannot describe the highly dynamic TF bind-
ing activities in different cell types and conditions. Recent technological advances
have made it possible to analyze genome-wide chromatin profiles [2, 4, 10, 11, 14—
16, 25, 32]. For example, a variety of histone modifications (HMs) (e.g., H3K27ac,
H3K4mel, H3K4me2, H3K4me3) can now be measured by ChIP-seq [2, 11, 14, 15].
Additionally, DNase-seq and FAIRE-seq have been developed for mapping DNase I
hypersensitivity (DHS) and open chromatin [4, 13, 32]. Analyses of data generated
by these technologies show that many chromatin features correlate with TF binding
(Fig. 1). As a result, HM ChIP-seq, DNase-seq and FAIRE-seq can serve as a surro-
gate in place of TF ChIPx for mapping TFBSs [5, 8, 26, 36, 38]. Coupling analyses
of these surrogate data with computationally determined motif sites allows one to
predict in vivo TF binding. This predictive approach has several unique advantages.
First, the requirement for antibodies is easier to satisfy, because ChIP-quality anti-
bodies are available for many HMs, and DNase-seq and FAIRE-seq do not require
TF-specific antibodies. Second, measurements offered by HM ChIP-seq, DNase-seq
and FAIRE-seq are context-dependent, hence TFBS predictions based on these data
are specific to the biological contexts in question (Fig. 1(a)). Third, this approach
makes analysis of TFs high-throughput. Among the approximately 1400 human TFs,
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Fig. 1 Correlation between TF binding and chromatin features. (a) Histone modification H3K27ac
ChIP-seq and DNase-seq profiles at a MYC motif site are shown along with ChIP-seq data for TF MYC
in two cell lines K562 and Huvec. The profiles shown are read counts in 100-bp sliding windows at 25-bp
resolution. MYC binding (i.e., the peak in MYC ChIP-seq data) can be inferred from the H3K27ac and
DNase data. In this example, the motif site is bound by MYC in the K562 cell line but not in the Huvec
cell line. The cell-type specific binding is correlated with the cell-type specific H3K27ac and DNase I
hypersensitivity. In the K562_H3K27ac track, MYC binding leads to nucleosome displacement. As a re-
sult, the binding site is surrounded by two nucleosomes carrying the H3K27ac signals [14], causing the
dip shape in the signal curve. In the K562_DNase track, the peak reflects the chromatin accessibility due
to TF binding. (b) Pearson correlation coefficients between different types of chromatin data and the ac-
tual MYC ChIP-seq binding intensities in K562 across all MYC motif sites. Certain chromatin features
(e.g., H3K27ac, H3K4me2, H3K4me3, H3K9ac, DNase and FAIRE) clearly correlate with MYC binding.
(¢) A scatter plot demonstrating the correlation between H3K27ac and MYC ChIP-seq binding intensities
in K562 across all MYC motif sites. Each dot is a motif site. The binding intensities are normalized and
log 2-transformed read counts (see Online Resource Supplemental Method 1). ‘Cor’: Pearson correlation
coefficient. (d) Correlation between DNase-seq and MYC ChIP-seq binding intensities in K562

sequence-specific DNA binding motifs have been determined for about 500 TFs by
high-throughput means such as protein microarrays [17, 28, 30, 37, 39]. Thus, the
predictive approach allows one to infer TFBSs for hundreds of different TFs simul-
taneously in one assay. For these reasons, predicting TFBSs based on sequencing
chromatin surrogates offers a promising new solution to the global analysis of gene
regulation.

As a new approach, many open issues remain to be addressed. Examples include
what principles to follow when designing experiments, which guidelines to use to
choose informative surrogate data types, and what methods will analyze the data op-
timally. For statisticians and computational scientists, it is of interest to know what
are the crucial analytical challenges and opportunities for developing new methodol-
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ogy. The purpose of this article is twofold. First, through an analysis of the ENCODE
data, we will demonstrate some basic characteristics of this approach which will shed
light on several important experimental design and data analysis issues. Second, we
will use the data to introduce several analytical challenges to investigators who are in-
terested in exploring this new field. For some of these open problems, we will provide
our own perspective on potential solutions.

2 Key Questions

Our analyses were designed to shed light on the following questions.

(1) Overall prediction performance: What is the overall accuracy and sensitivity for
predicting TFBSs by using chromatin surrogates?

(2) Best surrogate data type: Which surrogate data type(s), individually or in com-
bination, can produce the best prediction performance?

(3) Supervised versus unsupervised learning: Predictions can be made by two differ-
ent approaches. In the unsupervised approach, only surrogate chromatin data are
collected. The TFBSs are then predicted based on analyzing the surrogate data at
the DNA motif sites. In the supervised approach, one collects ChIP-seq data for
at least one TF in addition to generating the surrogate chromatin data. One then
uses these data to train a model to predict TFBSs based on the surrogate data.
The trained model will be applied to predict binding sites of all other TFs. The
supervised approach seems to use more information and intuitively should out-
perform the unsupervised approach. Is this true? Should one use the supervised
approach or the unsupervised one? For the supervised approach, is it possible
to eliminate the need for generating the training TF ChIP-seq data by coupling
one’s own surrogate data with TF ChIP-seq data from other labs (e.g., existing
data in public databases) to train a model, and then apply the model to make
predictions?

(4) Possibilities to improve motif-site-based predictions: Many TFs do not have
known motifs and even for the TFs with known motifs, TFBSs may not al-
ways occur at the canonical motif sites. Usually a large number of motif sites
are found per TF motif, but only a small fraction of the motif sites are actually
bound. Thus, it becomes difficult to maintain a low false discovery rate (FDR)
without severely reducing statistical power to discover true TFBSs. Is it possible
to overcome these limitations?

(5) One-motif-multiple TFs: What will happen if multiple TFs can recognize a com-
mon motif?

(6) From binding sites to functional targets: One TF may have thousands of predicted
binding sites. What fraction of them is functional, in the sense that perturbing the
TF expression will result in changes in target gene expression? Is it possible to
predict functional target genes?
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Answers to these questions have important implications to future studies. For ex-
ample, answers to (1)—(3) may help one to design future experiments to better allocate
available resources. Answers to (1) and (3)—(6) may help statisticians and computa-
tional biologists to decide where to invest their efforts for developing the most needed
analytical tools.

3 Data

To answer these questions, we have analyzed 11 different surrogate data types (Ta-
ble 1), and constructed various models to predict binding sites of 9 different TFs
(Table 2). These data were generated by 6 different labs in the ENCODE consor-
tium and involved two different cell lines for which rich data are available: K562 and
Gm12878. The data analyzed represent those available to us from ENCODE at the

Table 1 Summary of surrogate chromatin data

Lab Data type K562 Gm12878 Description

Broad H3K27ac v Vv acetylation of H3 Lysine 27
Broad H3K27me3 Vv N trimethylation of H3 Lysine 27
Broad H3K36me3 VA Vv trimethylation of H3 Lysine 36
Broad H3K4mel v 4 monomethylation of H3 Lysine 4
Broad H3K4me2 v Vv dimethylation of H3 Lysine 4
Broad H3K4me3 Vv N trimethylation of H3 Lysine 4
Broad H3K9ac Vv 4 acetylation of H3 Lysine 9
Broad H3K9mel J monomethylation of H3 Lysine 9
Broad H4K20mel J Vv monomethylation of H4 Lysine 20
Duke DNase (DHS) Vv Vv DNase I hypersensitivity

UNC FAIRE J v nucleosome-depleted regions

Available HM ChIP-seq, DNase-seq and FAIRE-seq data in the ENCODE consortium for cell lines K562
and Gm12878 were analyzed. Each row is a data set containing 1-3 replicate samples

Table 2 Summary of TF

HudsonAlpha (HA)  EGRI activator 4 V
HudsonAlpha (HA)  GABP  activator Vv Vv
HudsonAlpha (HA)  SRF activator N N
HudsonAlpha (HA)  USF activator VA Vv
HudsonAlpha (HA)  NRSF  repressor 4/ Vv

We analyzed 9 different TFs Yale E2F4 activator J

from 3 different labs in the .

ENCODE consortium for cell Yale E2F6 activator v

lines K562 and Gm12878. Each ~ UTA MYC activator Vv v

row is a data set containing 1-3 UTA CTCF insulator W W

replicate samples
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time the study was initiated, and only TFs with known DNA binding motifs were
considered.

Nine of the eleven surrogates are histone modifications. Among them, H3K27ac,
H3K4mel, H3K4me2, H3K4me3 and H3K9ac correlate with active promoters or en-
hancers, whereas H3K27me3 is a mark for gene repression [2, 15, 35]. H3K36me3
is enriched in the gene body of actively transcribed genes [2]. H4K20mel and
H3K9mel have been previously linked to repressive chromatin [31], but recent stud-
ies also found correlation between these two HMs with active transcription [2]. As
the current understanding of HM functions is incomplete, it is possible that some
HMs individually or in combination have unknown new functions. Besides these nine
HMs, our surrogates also included DNase I hypersensitivity measured by DNase-seq,
which is a signature for DNA binding by trans-acting factors in place of canoni-
cal nucleosomes, and open chromatin measured by FAIRE-seq, which is a mark for
nucleosome-depleted regions. Among the nine TFs considered, NRSF is a repressor
that inactivates neuronal gene transcription in non-neuronal cells. CTCF is a protein
that binds to insulators and may also serve as a transcriptional repressor. The other
TFs all have roles in activating gene expression.

Since analyses of the two cell lines have reached essentially the same conclusions,
this paper will use K562 as an example to demonstrate the main results. In addition to
K562 and Gm12878, we have also analyzed DNase-seq and ChIP-seq data for MYC
in HelaS3 cells in Sect. 11 to investigate issues related to inferring functional target
genes.

4 Which Surrogates Are Informative Predictors Individually?

We first investigated which surrogates (i.e., DHS, FAIRE, and various HMs) are
most informative for predicting TFBSs. We downloaded aligned ChIP-seq, DNase-
seq and FAIRE-seq reads (human genome build 36/hg18) from the ENCODE website
(http://genome.ucsc.edu/ENCODE/). Consider J surrogate data sets. To predict bind-
ing sites of a TF, the DNA binding motif of the TF was mapped to human genome by
CisGenome [20] using the default parameters. For each motif site s and surrogate data
set j, the normalized read count x,; in a 500-bp flanking window centered at the mo-
tif site was obtained to represent the surrogate signal intensity (see Online Resource
Supplemental Method 1). For each motif site, the actual TF binding intensity y; was
also computed using the ENCODE ChIP-seq data for the TF (Online Resource Sup-
plemental Method 1). We used the surrogate signal intensities x;; to rank-order motif
sites. Top ranked sites were predicted to be bound by the TF. We varied the cutoff and
evaluated the predictions using the actual TF binding intensities y;. For evaluation,
motif sites with y; > 1 were treated as true binding sites. Intuitively, y; > 1 means
the log 2 ratio between the normalized ChIP and Input control read counts is bigger
than one (or 2-fold enrichment). Using these as gold standard, we obtained a curve
for each surrogate data type that describes the positive predictive values (PPV, i.e.,
the percentage of true positives among top predictions) at varying cutoffs. We also
computed the area under the receiver operating characteristic curve (AUC) for each
surrogate and compared different surrogates in terms of AUC.
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Fig. 2 Area under the receiver operating characteristic curves for predicting TFBSs in K562 based on
single surrogate. (a) GABP; (b) E2F4; (¢) NRSF; (d) CTCF. Results for other TFs are in Online Resource
Supplemental Fig. S1

When each surrogate was used individually as the predictor, DHS performed the
best in most situations based on the global PPV curves and AUC (Fig. 2, Online Re-
source Supplemental Figs. S1, S2, Supplemental Table S1). Only for CTCF, FAIRE
outperformed DHS. Several HMs, including H3K27ac, H3K4me2, H3K4me3 and
H3K9ac, also performed well in most but not all data sets. In general, the predic-
tive power of HMs depends on the TF. H3K27ac, H3K4me?2, H3K4me3 and H3K9ac
predicted TFBSs well for EGR1, GABP, SRF, USF, E2F4, E2F6 and MYC (Fig. 2,
Online Resource Supplemental Figs. S1, S2). However, for NRSF, H4K20mel and
H3K9mel performed better than the other HMs. For CTCF, H3K4mel performed
the best among the tested HMs. These results are consistent with the patterns we
saw in Online Resource Supplemental Fig. S3 where Pearson correlation coefficients
between the predictors x,; and the actual binding y, are compared.

The above analysis compares the prediction performance globally based on all mo-
tif sites. We also examined the PPVs for the top ranked predictions which are most
likely to be picked up for follow-up experimental studies (Fig. 3, Online Resource
Supplemental Fig. S4). While DHS still performed the best in most data sets, we
found a few cases where other surrogates predicted TFBSs better than DHS among
the top predictions. For example, for MYC (i.e., c-Myc), H3K27ac and H3K9ac per-
formed better. For NRSF, H4K20me!l outperformed DHS for top 800 motif sites. For
CTCEF, FAIRE and H4K20me1 performed the best.
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Fig. 3 Positive predictive value curves for predicting TFBSs in K562 based on single surrogate. The
x-axis is the number of the top ranked motif sites. The y-axis is the positive predictive value. (a) GABP;
(b) E2F4; (¢) MYC; (d) NRSF; (e) CTCF. Only representative surrogates and TFs are shown. See Online
Resource Supplemental Fig. S4 for comprehensive results

In summary, we found DNase I hypersensitivity to be the most consistently ac-
curate predictor for TFBSs, whereas the predictive power of HMs depends on the
TF-of-interest.

5 How Do Surrogates Perform Jointly?

Next, we asked whether using multiple surrogates together can improve prediction.
Let X, = (X1, ..., %s7)T be the vector that contains all surrogate intensities at motif
site s; we constructed models that use X, to predict y;.

Before constructing any model, we first investigated whether binding sites of each
TF fall into different classes exhibiting different chromatin patterns. For each TF, we
clustered its bound motif sites (i.e., sites for which y; > 1) based on x;. It turns out
that for the same TF, most motif sites bound by the TF share a similar pattern in x;
(Online Resource Supplemental Fig. S5(a)). Next, for each TF, we asked whether its
motif sites have regionalized patterns of X;. In this regard, we clustered all motif sites
of the TF based on x; (Online Resource Supplemental Fig. S5(b)). We then examined
whether the distribution of the motif sites in each cluster is concentrated on certain
genomic regions. However, we did not observe such a phenomenon (Online Resource
Supplemental Fig. S5(c), (d)). Furthermore, we checked the correlation between y;
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Table 3 Methods used for prediction

Abbreviation Category Description

SS unsupervised Single surrogate

AS_PC1 unsupervised All surrogates, the first principal component

MS_L supervised The best subset of surrogates, linear regression

AS_L supervised All surrogates, linear regression

AS_PCR supervised All surrogates, principal component regression
AS_CART supervised All surrogates, classification and regression tree

AS_RF supervised All surrogates, random forest

AS_SVR_L supervised All surrogates, linear kernel support vector regression
AS_SVR_G supervised All surrogates, Gaussian kernel support vector regression

and each surrogate in each chromosome. We found that the correlation patterns in dif-
ferent chromosomes were similar (Online Resource Supplemental Figure S6). Based
on these explorations and due to considerations of computational efficiency, we de-
cided not to construct regionalized prediction models with varying forms or parame-
ters for different genomic regions. Instead, for each TF, we constructed models whose
form and parameters remain the same across the genome.

Eight prediction methods were tested, including one unsupervised approach
and seven supervised learning methods (Table 3; Online Resource Supplemental
Method 2). The methods employed include both linear and non-linear models. In
the unsupervised approach, the first principal component (PC1) of x; was computed
using all motif sites. The motif sites were then rank-ordered based on PC1. Since the
direction of unique PCs can only be determined up to a positive or negative sign, mo-
tif sites were sorted based on PC1 and —PC1 separately. Both rankings were tested,
and the one with better prediction performance was reported. In the supervised ap-
proach, the prediction model was trained using ChIP-seq data for one TF and then
applied to other TFs to make predictions. The training methods include linear re-
gression (L) using all surrogates (AS) as predictors, principal component regression
(PCR) using the first two principal components of X;s, classification and regression
tree (CART), random forest (RF), and support vector regression with linear (SVR_L)
and Gaussian (SVR_G) kernels. For the linear regression, we also enumerated all
combinations of multiple surrogates (MS), identified the best subset of surrogates us-
ing the Mallows’ Cp statistic, and then obtained the linear model based on the best
surrogate set (MS_L). For the non-linear models, we did not analyze different surro-
gate combinations since it would require a tremendous amount of computation time.

Interestingly, we found that even though the best methods based on multiple or all
surrogates improved predictions for some TFs compared to analyses based on DHS
alone, none of these methods consistently outperformed DHS for all test TFs (Fig. 4,
Online Resource Supplemental Fig. S7). For instance, RF and SVR_G trained using
EGR1 ChIP-seq data and all surrogates outperformed DHS for E2F4 and E2F6, but
performed worse than DHS for NRSF and CTCEF. A recent study based on an unsuper-
vised approach has reported that adding HM ChIP-seq did not improve the power for
predicting TFBSs using DHS [26]. Our results are consistent with that observation.
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Fig. 4 Positive predictive value curves for predicting TFBSs in K562 based on models trained using
EGRI1. (a) Prediction for GABP; (b) prediction for E2F4; (¢) prediction for NRSF; (d) prediction for
CTCEF. Prediction results for other TFs are in Online Resource Supplemental Fig. S7. Using other TFs to
train the model produced similar results (data not shown)

Differently from [26], however, our analyses here also examined a number of super-
vised learning approaches. The analyses show that integrating multiple surrogates by
these supervised approaches did not improve predictions consistently.

6 Supervised Versus Unsupervised Learning

Ranking motif sites based on DHS alone is essentially an unsupervised approach. Fig-
ure 4 and Supplemental Fig. S7 show that when DHS is included in the predictors,
the gain of using all surrogates and supervised learning over this simple unsupervised
method is not universally guaranteed. We speculate that part of the reason is that the
supervised approach trains models using one TF and applies it to another TF. Due to
intrinsic differences between TFs, the model may be optimized for the training TF
but may not be optimal for the test TF. To examine whether this is the case, we com-
pared two prediction scenarios. In scenario 1, a prediction model was trained using
surrogate and ChIP-seq data for TF A in a subset of chromosomes (chromosomes
1-16). The model was then applied to predict binding sites of TF A in other chro-
mosomes (chromosomes 17-22 and X). The prediction performance was evaluated
using ChIP-seq data for TF A in the test chromosomes (Online Resource Supplemen-
tal Figs. S8, S9). In scenario 2, a prediction model was trained using ChIP-seq data
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Fig. 5 Positive predictive value curves for predicting TFBSs in K562 based on models trained on EGR1
using only HM ChIP-seq data. (a) Prediction for GABP; (b) prediction for E2F4; (¢) prediction for NRSF;
(d) prediction for CTCF. Only representative methods and TFs are shown. See Online Resource Supple-
mental Fig. S10 for comprehensive results

for TF A, and then applied to predict binding sites of TF B. The prediction perfor-
mance was evaluated using ChIP-seq for TF B (Fig. 4, Online Resource Supplemental
Fig. S7). In scenario 1, the prediction model trained using AS_L, MS_L, AS_CART,
AS_RF, AS_SVR_L and AS_SVR_G all performed better than using DHS alone,
and supervised learning on average performed better than unsupervised approaches.
In contrast, in scenario 2, supervised prediction based on all surrogates did not con-
sistently outperform DHS (e.g., compare NRSF and CTCF in Fig. 4 and Online Re-
source Supplemental Fig. S8). This demonstrates that supervised learning was able
to improve the prediction for the training TF but cannot guarantee an improvement
when the trained model is applied to another TF.

An investigator may decide to collect HM ChIP-seq data without DNase-seq for
other considerations (e.g., if one is primarily interested in studying HMs and the bud-
get does not allow additional DNase-seq). With only HMs as predictors, we observed
similar phenomena, that is, the supervised approach did not consistently outperform
the unsupervised approach (Fig. 5, Online Resource Supplemental Fig. S10). How-
ever, the difference in prediction accuracy between the best supervised method and
the best unsupervised method became much bigger. For instance, RF and SVR_G
trained using EGR1 ChIP-seq data now performed substantially better than the best
unsupervised ranking based on H3K27ac for predicting GABP, SRF, USF, E2F4 and
E2F6. For predicting NRSF and CTCF, RF and SVR_G trained by EGR1 performed
substantially worse than unsupervised rankings based on H4K20mel.
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To further shed light on when the supervised methods can outperform the unsuper-
vised methods, we clustered the nine TFs based on the eleven surrogates. For each TF,
the TF’s ChIP-seq data was used to group motif sites into two classes: bound (ys > 1)
and not bound (y; < 1). The enrichment of the surrogate signals in the bound class
compared to the non-bound class was used to cluster TFs (Online Resource Supple-
mental Method 3). The TFs fall into two distinct classes (Fig. 6). The repressor and
insulator proteins NRSF and CTCF were clearly separated from the other TFs which
can serve as transcriptional activators. H3K9ac, H3K4me2, H3K4me3 and H3K27ac
were clearly enriched in the bound motif sites for those activators but not for NRSF
and CTCF.

A careful examination of Figs. 4, 5 and 6 reveals that whether or not the supervised
approach improves the unsupervised approach depends on whether or not the training
and test TFs are of similar types. For instance, supervised models trained using EGR1
predicted GABP and E2F4 well as they are in the same class (also see SRF, USF,
E2F6 in Supplemental Figs. S7, S10), but they did not perform so well for NRSF and
CTCF. Interestingly, when we attempted to predict CTCF using models trained by
NRSF and only using HMs as predictors, or predict NRSF using models trained by
CTCEF, supervised learning improved the prediction performance a lot in both cases,
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compared to predictions based on DHS and FAIRE (Online Resource Supplemental
Fig. S11).

Figure 6 shows that DHS is enriched in bound motif sites for all TFs, consistent
with the observation that it is the most consistently accurate predictor for all analyzed
TFs. This also explains why we observed bigger differences between the best super-
vised prediction and the best single surrogate based ranking in Fig. 5 after excluding
DHS from the predictors, compared with Fig. 4 in which DHS was included as a
predictor.

Together, our results suggest that the intrinsic differences among TFs are an im-
portant reason why supervised learning based on all surrogates does not guarantee a
gain over the unsupervised ranking based on DHS alone. Therefore, when developing
future supervised learning methods for predicting TFBSs using surrogate data, it is
important to consider the heterogeneity of the TFs. One may need to group TFs into
different categories (e.g., activators, repressors, etc.) so that TFs within each category
have similar characteristics. One could then train a model for each category in order
to take the full advantage of the supervised learning, which may eventually lead to
improved prediction accuracy.

7 Cross-Lab Prediction

Both unsupervised and supervised approaches require one to generate surrogate data
for the cell type of interest. For the supervised approach, one also needs to collect
training TF ChIP-seq data for different TF classes. If TF ChIP-seq data for the same
cell type are available in public databases, a natural question is whether one can cou-
ple these public TF ChIP-seq data (typically generated by a different lab) with his/her
own surrogate data to train the prediction model, thereby eliminating the needs for
generating one’s own TF ChIP-seq. In our analyses, EGR1, GABP and NRSF came
from one lab. E2F4 and E2F6 came from another lab. Figures 4, 5 and Supplemen-
tal Figs. S7 and S10 show that using the random forest and support vector regres-
sion trained by EGR1, one achieved comparable or better prediction performance
for predicting E2F4 and E2F6 as compared to predicting GABP and NRSF. Fur-
thermore, when we attempted to predict binding sites for EGR1 by models trained
using data from different labs, including USF (HudsonAlpha), SRF (HudsonAlpha),
GABP (HudsonAlpha), MYC (UTA), E2F4 (Yale) and E2F6 (Yale), models trained
by data from different labs performed similarly (Fig. 7, Online Resource Supplemen-
tal Fig. S12). Collectively, these suggest that cross-lab training is feasible, and as
ChIP-seq data in public domains continue to grow rapidly, the need to generate one’s
own training TF ChIP-seq data may be partially eliminated in the future.

8 Sensitivity

Since DHS has robustly performed among the best, our subsequent analyses were
focused on DHS. To evaluate sensitivity, we analyzed ChIP-seq data for each TF
using CisGenomev2 algorithm [20] and called peaks using 1 % FDR as the cutoff.
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Peaks that contained the motif of the corresponding TF were used as gold standard. In
parallel, we ranked motif sites by DHS, used the top ranked sites to predict TFBSs,
and estimated the FDR among the predicted sites by comparing their DHS signal
distribution to the DHS signal distribution at randomly chosen genomic loci (Online
Resource Supplemental Method 4). The receiver operating characteristics (ROC) in
Fig. 8 show that at the 25 % FDR level, the predictions were able to recover 50-90 %
of the ChIP-seq peaks containing the motifs. SRF is an exception. For SRF, the data
were noisy and the lowest prediction FDR we can obtain was 58 %. In practice, this
means that none of the predicted SRF binding sites can be claimed as statistically
significant. It should be noted that the ROC will change if peaks and motif sites are
called using different cutoffs, or if different motifs are used to make predictions.
Therefore Fig. 8 should be interpreted as a rough picture of the sensitivity of the
prediction approach.

9 Challenge 1: Improving Overall Prediction Performance

All our predictions so far were based on analyzing motif sites, but TF binding does
not always occur at the canonical motif sites of a TE. Indeed, for most TFs we ana-
lyzed, only 30-60 % of the ChIP-seq peaks contained the canonical motifs (Fig. 8).
For SRF and NRSF, the percentages were even lower (7.8 and 15.3 % respectively).
Therefore, if ChIP-seq peaks without the canonical motifs were included in the gold
standard, then the sensitivity of the motif-site-based predictions would drop to below
60 %. In addition, motif-based predictions have two other limitations. First, approx-
imately 900 out of 1400 human TFs do not have known motifs. Second, a motif can
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Fig. 8 Sensitivity against FDR plot. The x-axis is the FDR of DHS at candidate sites. The y-axis is the
percentage of gold standard motif peaks discovered. “No. peaks” is the total number of gold standard peaks
called by CisGenome at FDR 1 %. “Prop. motif peaks” is the proportion of gold standard peaks contain-
ing motif sites, called as motif peaks. “No. motif peaks” is the total number of motif peaks. (a) EGRI;
(b) E2F4; (c) E2F6; (d) GABP; (e) SRF; (f) USF; (g) MYC; (h) NRSF; (i) CTCF

have tens of thousands of sites in the human genome. Typically only a small frac-
tion of these sites are bound. Including the large number of non-bound sites in the
analysis increases multiplicity and decreases the statistical power. For these reasons,
methods for improving the sensitivity and generality of the computational predictions
are clearly needed.

Indeed, there is a big room for improvement. To demonstrate, we have investi-
gated whether one can use experimentally determined TFBSs in existing ChIPx ex-
periments in place of motif sites as candidates for making predictions. For each test
TF, we analyzed the ENCODE ChIP-seq data in Hepg2 and Gm12878 cell lines and
called peaks using CisGenome at 1 % FDR. The peaks were then merged to serve
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Fig. 9 Sensitivity against FDR plot for comparing motif-site-based and existing-peak-based predictions.
The x-axis is the FDR of DHS at candidate sites. The y-axis is the percentage of gold standard peaks
discovered. The gold standard peaks are all binding regions called by CisGenome at FDR 1 %, including
those without the canonical motifs of the TFs. The number beside the TF name indicates the number of total
ChIP-seq peaks. In the existing-peak-based approach, candidate sites were obtained by using ChIP-seq
peaks in Hepg2, Gm12878, or their unions

as candidate sites for making predictions in the K562 cell line. For some TFs, no
ChIP-seq data were available for Hepg2. For some other TFs, no peaks were called
at the 1 % FDR level in either Hepg2 or Gm12878. These TFs were not included in
the analysis. Next, DNase-seq read counts in the K562 cell line were obtained for
each candidate site, and the candidates were sorted according to DHS read counts.
Finally, to define the gold standard, TF ChIP-seq data in K562 were analyzed, and
all peaks, including those that do not contain motifs, were treated as gold standard
true binding sites. The ROCs in Fig. 9 indicate that by adopting ChIP-seq peaks from
other cell types, better prediction performance was achieved for 4 out of the 5 tested
TFs, comparing to the motif-site-based analysis. In some cases, the improvement was
substantial. For instance, the sensitivity at 25 % FDR was increased from 20 to 60 %
for USF.

Due to cell-type specificity, binding sites from one cell type may fail to charac-
terize binding sites in another cell type. We therefore speculate that by combining
ChIP-seq peaks from multiple cell types to derive candidate sites, one may improve
the prediction performance. This is confirmed in Fig. 9 which shows that using peaks
merged from Hepg2 and Gm12878 as candidates usually performed better than us-
ing peaks from each individual cell line. The only case that the motif-based predic-
tions outperformed existing-peak-based predictions was GABP. This might be be-
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cause GABP peaks in K562 are very different from Hepg2 and Gm12878 peaks. If
GABP ChIPx data in more cell types are available, the existing-peak-based analysis
may perform better.

Our analyses show that instead of using motif sites, one may use experimentally
determined binding sites from other cell types as candidates to make predictions. This
approach does not require one to know the TF binding motif, hence the predictions
are not limited to motif sites. On the other hand, the power of this approach relies
on availability of previous ChIPx data. This highlights the value of publicly available
ChIPx data and efforts to compile such data sets. Importantly, ChIPx data in public
domains have varying data qualities. In order to effectively utilize these data, meth-
ods for measuring data quality, excluding bad quality data sets and incorporating the
quality measures into the prediction model, will be needed.

10 Challenge 2: One-Motif-Multiple-TF Ambiguity

Multiple TFs may recognize a common motif. For instance, both MYC and USF can
bind to the E-box motif CACGTG, and both E2F4 and E2F6 can bind to the E2F motif
TTTCGCGC. When a motif site is predicted to be bound, a natural question is which
TF is the one that binds. ENCODE ChIP-seq data for E2F4, E2F6, MYC and USF
in K562 allowed us to examine this question. For all four TFs, the ChIP-seq binding
intensities at the motif sites correlated with the DHS (Fig. 10(a), (b), (d), (e)). At the
motif sites predicted to be bound based on high DHS read count (Online Resource
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Fig. 10 Binding behavior of two TFs recognizing the same motif. (a) E2F4 ChIP-seq signal against
DNase-seq signal at E2F motif sites; (b) E2F6 ChIP-seq against DNase-seq at E2F motif sites; (¢) E2F4
ChIP-seq against E2F6 ChIP-seq at E2F motif sites with DNase intensities greater than log, (10); (d) USF
ChIP-seq signal against DNase-seq signal at E-box motif sites; (¢) MYC ChIP-seq against DNase-seq at
E-box motif sites; (f) USF ChIP-seq against MYC ChIP-seq at E-box motif sites with DNase intensities
greater than log, (10). All data are from the K562 cell line
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Supplemental Method 5), E2F4 and E2F6 ChIP-seq intensities were highly corre-
lated (Fig. 10(c), cor. coef. = 0.53), whereas the MYC and USF ChIP-seq intensities
were only weakly correlated (Fig. 10(f), cor. coef. = 0.19). The correlation between
E2F4 and E2F6 suggests that two TFs recognizing the same motif may dynamically
compete or cooperate for binding to the same motif sites. The notion that each motif
site has a dominant TF that precludes binding of the other TFs may not necessarily
be true. On the other hand, in both E2F4-E2F6 and MY C-USF analyses, many motif
sites did show preferences for one TF over the other. Whether these differences are
purely random or depend on local sequence context and binding of co-factors remain
to be explored in the future. If they are not random, then an interesting future research
direction will be to develop methods to elucidate the rules for choosing the preferred
binding TFs (e.g., by modeling local sequence context or introducing better motif
models that discriminate competing TFs).

11 Challenge 3: From Binding Targets to Functional Targets

In ChIPx experiments, a TF can have tens of thousands of binding sites. Typically
only a small fraction of these TFBSs are functional, in the sense that perturbation of
the TF expression will change the target gene expression in the biological context in
question [12, 22]. Similarly, one can expect that only a fraction of the predicted TF-
BSs using surrogate data are functional. Among the TFs we tested, we searched the
Gene Expression Omnibus (GEO) [1] and found one data set in which gene expres-
sion profiles were obtained before and after perturbing MYC expression in HelaS3
cells. For HelaS3, ENCODE has generated DNase-seq and MYC ChIP-seq data.
These data allowed us to examine the fraction of DHS-predicted MYC TFBSs that
are functional. Functional target genes were defined as genes bound by MYC in pro-
moters based on MYC ChIP-seq and transcriptionally responded to MYC perturba-
tion in the gene expression data (Online Resource Supplemental Method 6). Among
the top 1000 genes bound by MYC determined by ChIP-seq, only about 25 % were
functional targets (Fig. 11). Among the binding target genes predicted by DNase-seq,
only about 10 % were functional targets. These results show that identifying binding
sites is only the first step toward elucidating the global regulatory program. Meth-
ods for determining functional targets are also needed. Although in theory one can
perform gene perturbation experiments for each TF, this approach is expensive and
low-throughput with respect to TFs, similar to performing ChIP-seq experiments for
each TF. Thus, global prediction of TFBSs will need to be accompanied by a method
for global identification of functional target genes, which is an open problem that
requires new solutions.

Analysis of large amounts of gene expression data in GEO shows that the rich
information in GEO may be used to help with identification of functional targets. If
a gene is a target of a TF, one would expect that the expression of the gene and the
TF should be positively or negatively correlated across the diverse cell types. To this
end, we examined the Pearson correlation between MYC and each individual gene in
the human genome using a published compendium of 13,182 Affymetrix HGU133A
array samples [24]. The gene expression samples were consistently normalized using
the frozen RMA algorithm [23]. This analysis shows that the correlation coefficients
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Fig. 11 Predicting functional target genes from DHS (DNase I) and GEO databases. (a) Prediction ac-
curacy plot for MYC in HelaS3 cells showing the percentage of correctly predicted target genes (y-axis)
among the top N ranked genes (x-axis). Each set of predictions are based on four different data sources:
(1) MYC ChIP-seq in HelaS3 cells combined with a compendium of HGU133A samples stored in GEO,
(2) MYC ChlIP-seq in HelaS3 cells alone, (3) DNase I in HelaS3 cells combined with a compendium of
HGU133A samples stored in GEO, and (4) Dnase I in HelaS3 cells alone. There is a clear prediction
improvement for both the ChIP-seq predictions and Dnase I predictions when integrating the information
contained in the gene expression profiles stored in GEO. (b) Density plot of the correlations between each
gene and MYC in the HGU133A GEO compendium for MYC HelaS3 target genes (red dashed line) and
HelaS3 non-target genes (black solid line). Observed correlation values are indicated by the ticks below
the x-axis, while the smoothed density estimate is plotted

for functional targets tend to be bigger than non-target genes (Fig. 11). We ranked the
predicted MYC binding targets by DHS and GEO correlation respectively, and took
the average of the two ranks to score and re-order MYC binding target genes. The top
genes ranked in this way had a much higher proportion of functional targets compared
to ranking predicted targets by DHS alone (20 vs. 10 %). Using a similar approach,
we also improved functional target prediction based on MYC ChIP-seq. Together,
this shows that public gene expression data in GEQO, despite their heterogeneity and
potential lab and batch effects, do contain valuable information that may be used to
distinguish functional and non-functional target genes of a TF. Whether this observa-
tion holds true in general and how to optimally use this information remain to be ex-
plored in future with other TFs when more triplet data sets consisting of DNase-seq,
ChIP-seq, and TF perturbation gene expression data become available. Our present
analyses however suggest, that with enormous amounts of public genomics data in
public domains, novel statistical and computational methods for integrating different
sources of information may play an important role in high-throughput identification
of functional target genes of TFs.
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12 Conclusions and Discussion

Through the analyses of ENCODE data, we have verified that TFBSs can be predicted
using chromatin surrogates with reasonable accuracy and sensitivity. This approach
offers an attractive alternative to ChIP-seq and ChIP-chip as it allows one to survey
many TFs together in one assay. Our analyses show that DNase I hypersensitivity
profiled by DNase-seq consistently performed among the best as a predictor, whereas
the performance of using a specific HM as the predictor may depend on TFs. Thus if
the available resources only allow one to sequence one surrogate data type, one may
consider DNase-seq.

When TF ChIP-seq data are available in addition to multiple types of surrogate
data, one may choose to use these data to train a prediction model and then apply the
model to predict binding sites for other TFs. Our analyses show that the improvement
the supervised learning can provide over the unsupervised method is not significant
when DHS is included as a predictor. When only HMs are used as predictors, the
gain of supervised learning over the unsupervised approach depends on whether the
training and test TFs belong to similar classes. If these two TFs have distinct prop-
erties (e.g., one is activator, whereas the other one is repressor), then the supervised
learning approach may not improve over the unsupervised methods. Therefore, the
advantage of supervised learning for HMs only is also not universally guaranteed. In-
vestigators developing such methods may need to develop different prediction models
for different TF classes.

A recent study of 203 yeast TFs have shown that yeast TFs fall into two cat-
egories: histone-sensitive TFs and histone-insensitive TFs [8]. The target genes of
histone-sensitive TFs have relatively higher HM signals and are easier to be predicted
using HMs. The histone-sensitive TFs are also more likely to interact with chromatin
modifiers and are enriched in the upper layers of regulatory hierarchy. Whether these
phenomena hold true in human is an interesting problem. Our results suggest that
human TFs are very likely to fall into different categories as well. On the other hand,
since we only have data from a limited number of human TFs, including only one
repressor NRSF and one insulator binding protein CTCF, and since the knowledge of
the TF network in humans is still incomplete as most human TFs do not have ChIP
data, we were not able to meaningfully examine the statistical association between
different TF categories and their ability to interact with histone modifiers, or their
positions in the regulatory hierarchy. These issues are worthwhile to be reexamined
in the future as sufficient data would become available.

Our analyses did not use the curve shape information in the surrogate chromatin
data. Several studies show that DNase-seq and some HM ChIP-seq profiles have char-
acteristic footprints surrounding TFBSs. For instance, many of these surrogates have
a characteristic dip structure around the bona fide binding sites (Fig. 1(a)). Incor-
porating the shape information into the prediction model may further increase the
prediction power [5, 26].

Supervised learning requires training TF ChIP-seq data. As more ChIPx data be-
come available in public domains, it may be possible to couple these public data with
one’s own surrogate data to train the prediction models. This may allow one to reduce
the experimental cost.
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Instead of using motif sites as candidates for the analysis, one may also use exper-
imentally determined binding sites of the same TF collected from publicly available
ChIPx data sets, typically in other cell types. This existing-peak-based prediction
approach is not restricted to motif sites and is applicable to TFs without known mo-
tifs. Our results show that it frequently improves the prediction performance over
the motif-site-based prediction approach, perhaps also due to elimination of large
amounts of motif sites that are never bound by the TF. As more ChIPx data accumu-
late, the pool of experimentally determined TFBSs will become increasingly more
comprehensive, which in turn may increase the power of this approach.

The two applications of public ChIPx data highlights the value of compiling such
data. Importantly, methods for assessing data quality are needed to ensure that bad
quality data sets will be excluded to avoid misleading supervised learning or can-
didate site identification. Statistical methods that can integrate the quality measures
into the prediction pipeline may also be needed.

Predictions based on DNase-seq and other surrogate data are complementary to
ChIPx. ChIPx are still useful to accurately determine direct binding of a TF of inter-
est. When designing future experiments, one may couple DNase-seq for surveying
many TFs with relatively low accuracy and sensitivity with ChIP-seq for analyzing
selected TFs with high accuracy and sensitivity. With DNase-seq available, one ques-
tion that remains to be addressed but not discussed in this paper is whether one can
reduce the sequencing depth of the ChIP-seq library but still keep similar sensitivity
by integrating DNase-seq data into ChIP-seq analysis. If so, this will allow one to
reduce the experimental cost, which is particularly useful if one wishes to analyze
many TFs using ChIPx in detail, or analyze the same TF in many different develop-
mental time points or biological conditions. For statisticians, this will create a need
for new data integration methods.

The observation that DHS alone predicted TFBSs reasonably well seems to sug-
gest that there is no much room for statisticians to develop new methods. However,
this is not true if one realizes that predicting TFBSs is not our final goal. It remains un-
clear how one should resolve the one-motif-multiple-TF ambiguity. Moreover, only
a small fraction of binding sites are functional. How to identify the small subset of
functional binding targets remains a significant challenge. Our initial analysis shows
that public gene expression data in GEO may help, but how to systematically and op-
timally use this information and information from other genomics data types needs to
be further explored. These examples show that research related to predicting TFBSs
by sequencing chromatin states is filled with unsolved open problems. Data scientists
will find this research to be both challenging and exciting.
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